
Let G be a finite cyclic group and g 2 G one of its genera-

tors. Let jGj = m.

Let h 2 G. Then there exists a unique x 2 f0; : : : ;m� 1g,
such that gx = h.

This x is the (discrete) logarithm of h to the base g. Denotex = logg h.

If g is clear from the context then we do not mention it:log h is the discrete logarithm of h.

We can also define logg if g is not a generator of G, but

then logg is a partial function.



A particular instance: G = Z�p for p 2 P.� Operation — multiplication.

Supposedly discrete logarithm is hard for this instance.� if p is a randomly generated prime of sufficient length.

In the following, if we speak about a group G, we assume

that multiplication, taking inverses and finding the unit

element are simple operations.



Example: Z�13. A generator of it is 2.i 0 1 2 3 4 5 6 7 8 9 10 112i mod 13 1 2 4 8 3 6 12 11 9 5 10 7

Inverting this table gives ush 1 2 3 4 5 6 7 8 9 10 11 12 2 Z�13log2 h 0 1 4 2 9 5 11 3 8 10 7 6 2 Z



On the other hand, 3 is not a generator of Z�13.i 0 1 2 3 4 5 6 7 8 9 10 113i mod 13 1 3 9 1 3 9 1 3 9 1 3 9

Hence log3 1 = 0, log3 3 = 1 and log3 9 = 2. The functionlog3 is undefined for other values.

Exercise. Give an example of a (family of) cyclic group(s)

where finding the discrete logarithms is an easy problem.



Hybrid usage of asymmetric and symmetric cryptosystems

to encrypt a plaintext x:

Let a symmetric cryptosystem be fixed. It may be a block

cipher with a fixed mode of operation.

1. Generate a new key ks of the symmetric cryptosystem.

2. Let y = Esymmks (x).
3. Let k0 = Easymmkp (ks).
4. The cryptotext is (k0; y).



In a bit more general terms:

If A wants to send a message x to B then� A and B somehow agree on the key ks for the symmet-

ric cryptosystem.

– The eavesdropper must not learn ks.� A sends to B the message Esymmks (x).



Using an asymmetric cryptosystem, the agreement on ks

is achieved with the following steps:� B generates a new asymmetric keypair (kpub; kse
) and

sends kpub to A.� A generates ks and sends k0 = Easymmkpub (ks) to B.� B decrypts ks = Dasymmkse
 (k0).



Diffie-Hellman key agreement protocol:� Let a cyclic group G and its generator g be fixed. LetjGj = m.

– They may be fixed globally, or be chosen at each

run of the protocol.� A randomly chooses a 2 f0; : : : ;m � 1g. B randomly

chooses b 2 f0; : : : ;m� 1g.� A sends ga to B. B sends gb to A.� Both A and B compute k0 = gab.
– A computes (gb)a. B computes (ga)b.� A hash of k0 is taken as the key ks.
– k0 is distributed differently than the keys for typical

symmetric cryptosystems.



The adversary sees (the description of) G, g, ga and gb.
The adversary wants to compute gab.
This problem is the Diffie-Hellman problem.

It is no harder than discrete logarithm.

It is also presumed to be hard for Z�p.



Example: let G = Z�13. Let g = 2.
Let A generate a = 7. Let B generate b = 4.
Then A sends to B ga = 27 � 11 (mod 13). And B sends

to A gb = 24 � 3 (mod 13).A computes 37 = 729 � 3 (mod 13). And B computes114 = 14641 � 3 (mod 13).
The adversary only sees 11 and 4 and has to solve the

Diffie-Hellman problem.



ElGamal public key cryptosystem:

Let a cyclic group G, jGj = m and its generator g be fixed.� Key generation: randomly choose a 2 f0; : : : ;m � 1g.
Let h = ga.
– Public key: h. Secret key: a.� If G and g are not global, then they are part of

the public (and secret) key.� Set of possible plaintexts: G.� Encryption of x 2 G: randomly generate r 2 f0; : : : ;m� 1g.Eh(x; r) = (gr; x � hr)� Decryption: Da(
1; 
2) = 
2 � 
�a1



Decryption works:

We had Eh(x; r) = (gr; x � hr) and ga = h.Da(gr; x � hr) = x � hr � (gr)�a = x � hr � (ga)�r = x � h0 = x



Example. Let G = Z�19 and g = 2.
Let the secret key be 13. The public key is then 3.
Let the message be 8. To encrypt, we generate r 2 f0; : : : ; 17g.
Let r be 10.
The cryptotext is (gr; xhr) = (210; 8 � 310) � (17; 14).
To decrypt we compute 
a1 = 1713 � 16. We invert it and

obtain 
�a1 = 6. The plaintext is 
2 � 
�a1 = 14 � 6 � 8.



If we can solve the Diffie-Hellman problem then we can

break ElGamal cryptosystem.

Let cyclic G, m = jGj and generator g be fixed. Let h 2 G

be an ElGamal public key.

We are given a ciphertext (
1; 
2) = (gr; x �hr) where r andx are unknown. We want to find x.

We solve the DH problem instance (G; g; 
1; h). Here 
1 =gr and h = ga. We obtain y = gar = hr.
We find x = xhr � h�r = 
2 � y�1.



If we can break ElGamal cryptosystem then we can solve

the Diffie-Hellman problem.

Let the problem instance (G; g; g0; g00) need solving, whereg0 = ga and g00 = gb but a and b are unknown to us.

Let ElGamal cryptosystem use the same G and g.
Let the public key be (g00)�1 and the message be (g0; 1). We

break the system and find the plaintext x satisfying(g0; 1) = (ga; x � (g�b)a) = (ga; x � g�ab)
hence x = gab is the solution to the Diffie-Hellman problem.



Assume that ElGamal cryptosystem is used to create se-

veral different ciphertexts using the same key.

What do we have to keep in mind when choosing r?
Can we reuse a random r?
Given (gr; x1hr) and (gr; x2hr) we can find x1=x2. Hence ar should not be reused.



Property ElGamal RSA

Encryption

complexity

two modular expo-

nentiations

one modular ex-

ponentiation (with

small modulus)

Decryption

complexity

one modular expo-

nentiation

one modular expo-

nentiation

Randomized? yes no

Message expan-

sion

twice none (i.e. once)

Genericity applicable to any

cyclic group

usable in a single

structure



Given a cyclic G with m = jGj, how do we verify thatg 2 G is a generator?

Assume that we can factor m: m = pe11 � � � pekk .� If we cannot, pick some other G.� To generate p 2 P, such that we can factor jZ�pj = p�1,
we can let p be a strong prime.



The order of g must divide m.

If the order of g is not m then it must divide one of the

numbers m=pi, where i 2 f1; : : : ; kg.
We verify whether gm=pi = 1 for some i 2 f1; : : : ; kg. If

not, then g is a generator.� Fortunately, we do not have to create groups/generators

ourselves.� Several have been standardized by IETF, ITU-T, NIST,

etc.



Given a cyclic G with m = jGj and a generator g 2 G, how

do we compute logg h for some h 2 G?

Simplest method — enumeration. Compute g0; g1; g2; : : :

until gn = h for some n. Then logg h = n.

Time complexity: O(m). Space complexity: O(1).



Shanks’ baby-step giant-step algorithm (“meet-in-the-middle”):

Let l = dpm e. Then logg h = ql+ r for someq 2 f0; : : : ; l� 1g and r 2 f0; : : : ; l� 1g. LetS = f(hg�r; r) j 0 6 r < lg

be organized as a hash table with hg�r as the key.

If (1; r) 2 S then logg h = r.
Otherwise compute gl; g2l; g3l; : : : until (gql; r) 2 S for someq and r. Then logg h = ql+ r.
Time complexity: O(pm). Space complexity: O(pm).
Still infeasible if jGj > 2160.



Exercise. Suppose that we know thatlogg h 2 fa; a + 1; : : : ; bg for some a; b. How can we modi-

fy Shanks’s algorithm in order to take advantage of that

information?

Exercise. Is the group size m necessary information for

Shanks’ algorithm? What impact does this have on the

choosing of the secret exponent in RSA?



Birthday paradox: let there be 23 random people in the

same room. The probability that two of them have the

same birthday is more than 50%.

In general, let X be a set, jXj = n. Let x1; : : : ; xk be mu-

tually independent uniformly distributed random variables

over X. The probability that x1; : : : ; xk are all different iskYi=1 n+ 1� in = k�1Yi=1 n� in = k�1Yi=1�1� in� 68x2R : 1+x6ex

k�1Yi=1 e�i=n = e� k�1Pi=1 i=n = e�k(k�1)=(2n)

If k > 12(1 +p1 + 8n ln 2) then this probability is at most1=2.



Pollards �-algorithm: partition the groupG into three partsG1; G2; G3, such that membership tests for all parts are

easy. Let 1 62 G2.
Define f : G! G by

f(x) =
8>><>>:

gx; x 2 G1x2; x 2 G2hx; x 2 G3
Define f0(x) = x and f i(x) = f(f i�1(x)).



Let z 2 f0; : : : ;m�1g be randomly chosen. Let xi = f i(gz).
There exist �i and �i, such that xi = g�ih�i , where �0 = z,�0 = 0 and

�i+1 =
8>><>>:

�i + 1; xi 2 G12�i; xi 2 G2�i; xi 2 G3 �i+1 =
8>><>>:

�i; xi 2 G12�i; xi 2 G2�i + 1; xi 2 G3

(all computations are modulo m).



Suppose that we have found such i and j, where i 6= j butxi = xj. Then g�ih�i = g�jh�j

meaning that h�j��i = g�i��j

Hence logg h = �i � �j�j � �i (mod m) :

If (�j � �i)�1 (mod m) does not exist then we try again

with a different z.
Or. . . there definitely exists such k that k(�j��i) = �i��j

(take k = logg h). If there are not too many such k-s then

we can try them all out.



Consider the values fxigi2N . If the values xi were mutually

independent uniformly distributed random variables then

two equal values exist among O(pm) first ones with high

probability.

They are not independent, but for the purpose of our

analysis, we do not care.

To find logg h: compute x0; x1; : : :, �0; �1; : : : and �0; �1; : : :

until xi = xj for i 6= j. Then proceed as in the previous

slide.

Time complexity:O(pm). Space complexity:O(pm). (both

expected)



x0
x1

xi�1
xi = xj

xi+1 xi+2
xj�1

f
f

f
f

f
f

This gives the name �
Note: xi = xj implies xi+1 = xj+1

f
Length of tail: O(pm). Length of cycle: O(pm).



Floyd’s cycle-finding algorithm: compute the sextuples(xi; �i; �i; x2i; �2i; �2i)

(here i = 0; 1; 2; : : :) until xi = x2i.
Here (xi+1; �i+1; �i+1; x2(i+1); �2(i+1); �2(i+1)) can be compu-

ted from (xi; �i; �i; x2i; �2i; �2i), which can then be discar-

ded.xi = x2i is reached while xi is making the first round on

the cycle. Hence i = O(pm) at that moment.

Discrete logarithm’s algorithm’s time complexity: O(pm)

(expected). Space complexity: O(1).



Example: let G = Z�197. Let g = 2. Then g is a generator.

Indeed, m = jGj = 196 = 22 � 72. We have2 1962 � �1 and 2 1967 � 104 (mod 197) :

Let us find log2 133 in Z�197.
Partition: G1 = f1; : : : ; 65g, G2 = f66; : : : ; 131g, G3 =f132; : : : ; 196g.
Randomly pick z = 20. Then x0 = 66, �0 = 20, �0 = 0.



i xi �i �i x2i �2i �2i

0 142 20 0 142 20 0

1 171 20 1 88 20 2

2 88 20 2 122 41 4

3 61 40 4 61 164 16

Hence log2 133 = 40� 16416� 4 (mod 196)12�1 (mod 196) does not exist. We have to consider all k-s
satisfying the following congruence as possible values forlog2 133: 12k � �124 (mod 196) :



Dividing everything by g
d(12; 196) = 4 gives us3k � �31 � 18 (mod 49)

I.e. k � 6 (mod 49). The possible values for k modulo 196

are 6, 55, 104 and 153. We try all of them:26 � 64 (mod 197) 2104 � 133 (mod 197)255 � 89 (mod 197) 2153 � 108 (mod 197) :

Hence log2 133 = 104 in Z�197.



Suppose that we know the factorization of jGj = m: letm = pe11 � � � pekk . Pohlig-Hellman algorithm lets us to re-

duce the computation of discrete logarithms in G to the

computation of discrete logarithms in groups of order pi.
Let g be a generator of G and let us look for logg h.

For each i 2 f1; : : : ; kg definemi = mpeii gi = gmi hi = hmi :



gi generates of subgroup of G of order peii and hi belongs

to that subgroup.

Let xi = loggi hi. Then x = logg h satisfies the system of

congruences fx � xi (mod peii )g16i6k
which has a unique solution modulo m (use chinese re-

mainder theorem to find it).



Indeed, for all i 2 f1; : : : ; kg,
(g�xh)mi = (gmi)�xhmi = g�xi hi = g�(lpeii +xi)i hi = g�xii hi = 1

for some l 2 Z .

Hence the order of g�xh divides mi for all i. Then it also

divides g
d(m1; : : : ;mk) = 1. Hence the order of g�xh is 1,
i.e. g�xh = 1 and gx = h.

We have reduced the finding of discrete logarithms in G

to the finding of discrete logarithms in the subgroups of G

whose orders are prime powers.



Assume now that jGj = pe for some p 2 P. We want to findlogg h in G where g is a generator of G.

Denote x = logg h. Then x = x0+x1p+x2p2+� � �+xe�1pe�1

for some x0; : : : ; xe�1 2 f0; : : : ; p � 1g. Our task is to find

these xi.
We are going to have gx = h. Then also gpe�1x = hpe�1. Butpe�1x = pe�1x0+pe(x1+px2+: : :+pe�2xe�1) � pe�1x0 (mod pe)

As gpe = 1, the value x0 must satisfy gpe�1x0 = hpe�1. Hencex0 can be found be solving a discrete logarithm in the

subgroup generated by gpe�1. Its order is p.



Assume that we have already found x0; : : : ; xj�1. To findxj we note that we must havegxjpj+���+xe�1pe�1 = hg�x0�x1p�����xj�1pj�1

Denote the right hand side by hj. Then we must also havegxjpe�1+xj+1pe+:::+xe�1p2e�j�2 = hpe�j�1j
Here the left hand side equals gxjpe�1. We find xj from the

equation (gpe�1)xj = hpe�j�1j .



Example: let G = Z�64153. Then jGj = 64152 = 23 � 36 � 11.
Let g = 5. Then g is a generator of G. Indeed,5 641522 � 64152 (mod 64153)5 641523 � 58563 (mod 64153)5 6415211 � 57412 (mod 64153)
Let us find log5 43210 in G.



Reduce finding that discrete logarithm to finding discrete

logarithms modulo prime powers:

m1 = 6415223 = 8019 m2 = 6415236 = 88 m3 = 6415211 = 5832

g1 = 58019 = 6899 g2 = 588 = 45332 g3 = 55832 = 57412h1 = 432108019 = 5325 h2 = 4321088 = 60946h3 = 432105832 = 37326
(all powers modulo 64153).



We must find x1 = logg1 h1 = log6899 5325 in G. We know

that this logarithm must belong to f0; : : : ; 7g. By trying

all possibilities we find that x1 = 6.
We must find x3 = logg3 h3 = log57412 37326. We know that

this logarithm must belong to f0; : : : ; 10g. By trying all

possibilities we find that x3 = 9.
We must find x2 = logg2 h2 = log45332 60946. We know that

this logarithm must belong to f0; : : : ; 36 � 1g. We reduce

finding this logarithm to finding logarithms in the group

of three elements.



We havex2 = y0 + 3y1 + 9y2 + 27y3 + 81y4 + 243y5;

where yi 2 f0; 1; 2g.
We find y0 from g243y02 = h2432 . I.e.58563y0 = (45332243)y0 = (g2432 )y0 = h2432 = 60946243 = 5589

By trying all three possibilities we find y0 = 2.
In the following we need g�12 = 45332�1 = 29774 (mod 64153).



As next, we have g243y12 = (h2g�22 )81. I.e.58563y1 = 45332243y1 = (60946 � 45332�2)81 = 5589

and y1 = 2.
Then we have g243y22 = (h2g�(2+3�2)2 )27. I.e.58563y2 = (60946 � 45332�8)27 = 58563

and y2 = 1.
Then we have g243y32 = (h2g�2+3�2+92 )9. I.e.58563y3 = (60946 � 45332�17)9 = 5589
and y3 = 2.



Then we have g243y42 = (h2g�(2+3�2+9+27�2)2 )3. I.e.58563y4 = (60946 � 45332�71)3 = 58563

and y4 = 1.
Finally, g243y52 = h2g�(2+3�2+9+27�2+81)2 . I.e.58563y5 = 60946 � 45332�152 = 5589

and y5 = 2.
Thus x2 =P5i=0 yi3i = 638.



We have the system of congruences8>><>>:
x�x1 (mod pe11 )x�x2 (mod pe22 )x�x3 (mod pe33 ) or

8>><>>:
x� 6 (mod 23)x� 638 (mod 36)x� 9 (mod 11)

Using the chinese remainder theorem we find x = 58958.
This is the discrete logarithm of 43210 to the base 5 inZ�64153.



Let G = Z�p, let g be a generator of G, let h 2 G. We are

looking for logg h.

In index calculus, first a factor base B = fp1; : : : ; pBg of

small primes is chosen.

First step. Look for such elements x 2 Zp�1 that all prime

factors of gx mod p are in B. (Generate random x-s)

This gives us an equalitygx � pa11 � � � paBB (mod p)
or x � a1 logg p1 + � � �+ aB logg pB (mod p� 1)
(we know x; a1; : : : ; aB).



Let us have a sufficient number of equalities of the formxj � a1j logg p1 + � � �+ aBj logg pB (mod p� 1) :

Then we can find logg p1; : : : ; logg pB from this system of

linear equations.

Second step. Look for an s 2 Zp�1, such that all prime

factors of hgs mod p are in B. (Generate random s-s)hgs � pb11 � � � pbBB (mod p)
orlogg h � b1 logg p1 + � � �+ bB logg pB � s (mod p� 1):



First step can be faster.

Let H = dppe. Let J = H2 mod p. If 0 < 
1; 
2 � H, then(H + 
1)(H + 
2) � J + (
1 + 
2)H + 
1
2 (mod p) (*)

If (*) factors over B, then we have an equation involvinglogg(H + 
1), logg(H + 
2) and logarithms of primes in B.

For a fixed 
1, many values of 
2 can be tried in parallel

using sieving.

We’re introducing new unknowns — logg(H + 
i) —, but

slower than equations.



� jZ�pj = p� 1. It has some small factors (e.g. 2).� Disc. log. based cryptosystems are typically used in a

group G 6 Z�p, such that jGj = p0 2 P is large.� We need p = kp0 + 1. We also need an element g 2 Z�p

with order p0.� Typically

– p � 21024� Index calculus is too difficult

– p0 � 2160� O(pm) algorithms are too difficult



An elliptic curve Ea;b over Zp is the set of pairsf(x; y) 2 Zp j y2 = x3 + ax+ bg [ fOg

where a; b 2 Zp and 4a3 + 27b2 6= 0. O is an “extra point”.

We can define a binary operation + on the points of Ea;b,
such that Ea;b becomes an Abelian group.� O is the zero element;� �(x; y) = (x;�y);� addition is defined as follows. . .



Consider y2 = x3 + ax+ b over R . . .

(see the blackboard)



� Two points P;Q 2 Ea;b determine a straight line.

– If P = Q then consider the tangent of Ea;b at P .� Let R be the third point where this line intersects Ea;b.
– If the line is vertical then let R = O.� Then P +Q is defined as �R.



Let P = (x1; y1); Q = (x2; y2) 2 Ea;b. If P = �Q thenP +Q = O, otherwise P +Q = (x3; y3) wherex3 = �2 � x1 � x2y3 = �(x1 � x3)� y1

� = 8<: y2�y1x2�x1 ; if P 6= Q3x21+a2y1 ; if P = Q
The operation + turns out to make Ea;b into an Abelian

group.

Now use the same formulae for Ea;b defined over Zp.



In general, (Ea;b;+) is not a cyclic group.

We have to work in a large cyclic subgroup of Ea;b. We

need an element of Ea;b with a large prime order.jEa;bj must have a large prime factor.

Theorem.

��jEa;bj � p� 1�� 6 2pp.
There exist efficient algorithms for computing jEa;bj in ge-

neral case (O(log5 p)).
Theorem. E �= Zn1 � Zn2 with n2 j n1 and n2 j (p� 1).
Theorem. If p � 5 (mod 6) then E0;b �= Zp+1.
Theorem. If p � 3 (mod 4) then Ea2 mod p;0 �= Zp+1.



Given g 2 Ea;b with a large order, we can perform Diffie-

Hellman key exchange in hgi.
ElGamal cryptosystem is not so suitable for using with

elliptic curves.

In ElGamal cryptosystem, the message has to be an ele-

ment of the group.

Defining a suitable mapping from bit-strings to the points

of the elliptic curve is not so trivial.



Menezes-Vanstone cryptosystem: Let E be an elliptic

curve over Zp. Let g 2 E have a large prime order.� Secret key: k 2 Z jEj.� Public key: h = k � g (in the group (E;+)).� Plaintext space: Z�p � Z�p.� Ciphertext space: E � Z�p � Z�p.



To encrypt (x1; x2), generate a random r 2 Z jEj and com-

pute� y0 = r � g, (
1; 
2) = r � h (in E);� y1 = 
1x1 mod p; y2 = 
2x2 mod p;
the ciphertext is (y0; y1; y2).
Exercise. How to decrypt? How is this similar to the El-

Gamal system?



Exercise. Consider the discrete logarithm problem in Z�p.
Let g generate Z�p and let x 2 Zp�1.� Show that gx does not hide the least significant bit ofx.� Show that if p � 3 (mod 4), then finding the second

least significant bit of x is as hard as the discrete lo-

garithm problem.


