Let G be a finite cyclic group and g € G one of its genera-
tors. Let |G| = m.

Let h € G. Then there exists a unique =z € {0,...,m — 1},
such that g* = h.

This z is the (discrete) logarithm of A to the base g. Denote
z = log, h.

If g 1s clear from the context then we do not mention it:
log h 1s the discrete logarithm of A.

We can also define log, if g is not a generator of G, but
then log, 1s a partial function.



A particular instance: G = Z;, for p € "
e Operation — multiplication.
Supposedly discrete logarithm 1s hard for this instance.
e if p is a randomly generated prime of sufficient length.

In the following, if we speak about a group GG, we assume
that multiplication, taking inverses and finding the unit
element are simple operations.



Example: Z7;. A generator of it 1s 2.

1 0 1 2 3 45 6 7 8 9 10 11
2»modl13|1 2 4 8 3 6 12 11 9 5 10 7

Inverting this table gives us

R |1 2 3 4 5 6 7 8 9 10 11 12| € Zi,

log,h |0 1 4 2 9 5 11 3 8 10 7 6| €4



On the other hand, 3 is not a generator of Z];.

1 01 2 3 45 6 7 8 9 10 11
3modi13|1 3 9 1 3 9 1 3 9 1 3 9

Hence log; 1 = 0, log; 3 = 1 and log; 9 = 2. The function

log, 1s undefined for other values.

Exercise. Give an example of a (family of) cyclic group(s)
where finding the discrete logarithms is an easy problem.



Hybrid usage of asymmetric and symmetric cryptosystems
to encrypt a plaintext z:

Let a symmetric cryptosystem be fixed. It may be a block
cipher with a fixed mode of operation.

1. Generate a new key k; of the symmetric cryptosystem.
2. Let y = B ().

/ __ riasymm
3. Let k' = B (ks).

4. The cryptotext is (K, y).



In a bit more general terms:

If A wants to send a message = to B then

e A and B somehow agree on the key k; for the symmet-
ric cryptosystem.

— The eavesdropper must not learn k;.

o A sends to B the message E; " (z).



Using an asymmetric cryptosystem, the agreement on k;
is achieved with the following steps:

e B generates a new asymmetric keypair (kpup, Ksec) and
sends kpyp to A.

o A generates k, and sends k' = E, 7" (k;) to B.

kou

e B decrypts ks = D" "7 (K').



Diffie-Hellman key agreement protocol:

e Let a cyclic group G and its generator g be fixed. Let
|G| =m.
— They may be fixed globally, or be chosen at each
run of the protocol.

e A randomly chooses a € {0,...,m — 1}. B randomly
chooses b € {0,...,m — 1}.

e A sends g° to B. B sends ¢° to A.

e Both A and B compute ky; = g*°.
— A computes (¢°)*. B computes (g%)°.

e A hash of kj 1s taken as the key k;.

— kg 1s distributed differently than the keys for typical
symmetric cryptosystems.



The adversary sees (the description of) G, g, g% and ¢°.
The adversary wants to compute g%.

This problem is the Diffie-Hellman problem.

It 1s no harder than discrete logarithm.

It 1s also presumed to be hard for Z;.



BExample: let G = Z3;. Let g = 2.
Let A generate a = 7. Let B generate b = 4.

Then A sends to B g* = 2" = 11 (mod 13). And B sends
to A g° = 2* =3 (mod 13).
A computes 3" = 729 = 3 (mod 13). And B computes
114 = 14641 = 3 (mod 13).

The adversary only sees 11 and 4 and has to solve the
Diffie-Hellman problem.



ElGamal public key cryptosystem:
Let a cyclic group G, |G| = m and its generator g be fixed.

e Key generation: randomly choose a € {0,...,m — 1}.
Let h = g°.
— Public key: h. Secret key: a.

x If G and g are not global, then they are part of
the public (and secret) key.

e Set of possible plaintexts: G.
e Encryption of z € G: randomly generate r € {0,...,m — 1}.

En(z,7) = (9", 2 - h")

e Decryption:
D,(c1,¢c0) =¢co - ci®



Decryption works:

We had Ej(z,7) = (9",z-h") and g* = h.

D,g",z-h")=z-hW- (") *=z-h"-(g*) "=z-h° ==



Example. Let G = Zj, and g = 2.
Let the secret key be 13. The public key i1s then 3.

Let the message be 8. To encrypt, we generate r € {0,...,17}.
Let r be 10.

The cryptotext is (g", zh") = (2'°,8 - 319) = (17, 14).

To decrypt we compute ¢¢ = 17" = 16. We invert it and
obtain ¢; “* = 6. The plaintext is ¢y - c;* =14 -6 = 8.



If we can solve the Diffie-Hellman problem then we can

break ElGamal cryptosystem.

Let cyclic G, m = |G| and generator g be fixed. Let h € G
be an ElGamal public key.

We are given a ciphertext (c1,c2) = (g", z-h") where r and

z are unknown. We want to find z.

We solve the DH problem instance (G, g,c1,h). Here ¢; =
g" and h = g®. We obtain y = ¢*" = h".

We findz=zh"-h™ " =c, -y~ .



If we can break ElGamal cryptosystem then we can solve
the Diffie-Hellman problem.

Let the problem instance (G, g, ¢, g") need solving, where
g’ = g% and ¢" = ¢° but a and b are unknown to us.

Let ElGamal cryptosystem use the same G and g.

Let the public key be (¢”) ' and the message be (¢',1). We
break the system and find the plaintext = satisfying

(9',1) =(g%z-(97°)%) =(¢%z-9g°%)

hence z = g% is the solution to the Diffie-Hellman problem.



Assume that ElGamal cryptosystem is used to create se-
veral different ciphertexts using the same key.

What do we have to keep in mind when choosing 77
Can we reuse a random 77

Given (¢",z1h") and (g", z2h") we can find z,/z,. Hence a
r should not be reused.



Property ElGamal RSA

Encryption two modular expo- | one modular ex-

complexity nentiations ponentiation (with
small modulus)

Decryption one modular expo- | one modular expo-

complexity nentiation nentiation

Randomized? yes no

Message expan- | twice none (i.e. once)

sion

Genericity applicable to any | usable in a single

cyclic group

structure



Given a cyclic G with m = |G|, how do we verify that
g € G is a generator?

Assume that we can factor m: m = p* - - - pi*.
e If we cannot, pick some other G.

e To generate p € IP, such that we can factor |Z;| = p—1,
we can let p be a strong prime.



The order of g must divide m.

If the order of g 1s not m then i1t must divide one of the

numbers m/p;, where ¢ € {1,...,k}.

We verify whether ¢™/? = 1 for some ¢ € {1,...,k}. If
not, then g is a generator.

e Fortunately, we do not have to create groups/generators

ourselves.

e Several have been standardized by IETF, ITU-T, NIST,
etc.



Given a cyclic G with m = |G| and a generator g € G, how
do we compute log, h for some h € G7

Simplest method — enumeration. Compute ¢°, ¢, ¢2,...
until g" = h for some n. Then log, h = n.

Time complexity: O(m). Space complexity: O(1).



Shanks’ baby-step giant-step algorithm (“meet-in-the-middle”):

Let I = [/m]. Then log, h = ql + r for some

ge{0,...,l—1}and r € {0,...,l —1}. Let
S={(hg,m)|0<r <1}

be organized as a hash table with Ag™" as the key.
If (1,7) € S then log, h = .

Otherwise compute ¢', g%, g%, ... until (¢%,r) € S for some
g and 7. Then log h =gl + 7.

Time complexity: O(y/m). Space complexity: O(/m).
Still infeasible if |G| > 21°°.



Exercise. Suppose that we know that
log,h € {a,a +1,...,b} for some a,b. How can we modi-
fy Shanks’s algorithm in order to take advantage of that

information?

Exercise. Is the group size m necessary information for
Shanks’ algorithm? What impact does this have on the
choosing of the secret exponent in RSA?



Birthday paradox: let there be 23 random people in the
same room. The probability that two of them have the
same birthday is more than 50%.

In general, let X be a set, | X| = n. Let z,...,z; be mu-
tually independent uniformly distributed random variables
over X. The probability that z4,...,z; are all different is

k k—1

' . k-1 ,
Hn+i—z :Hn;z :E(l_%> <‘v’w€R:1—|—m<em

_ k—1
k-1 1/n

~ -2
He—z/n — e X1 _ e—k(k—l)/(Zn)
i=1
If K > (1 + +/1+ 8nln2) then this probability is at most
1/2.




Pollards p-algorithm: partition the group G into three parts
G1,Gq, G3, such that membership tests for all parts are
easy. Let 1 € Gs.

Define f : G — G by

v

gr, =€ Gy
f(z) =< 22 €@,
\ha:, 33€G3

Define f%(z) = z and f*(z) = f(f* (z)).



Let z € {0,...,m—1} be randomly chosen. Let z; = f*(g*).
There exist a; and 3;, such that z; = g**h®, where o = 2,
Bo = 0 and

.

a; +1, z;, € Gy G, z; € Gy
A;41 = 2042', T, C Gg IBH—l — < 2162: T; € G2
o, z; € G Gi +1, z; € Gs

(all computations are modulo m).



Suppose that we have found such 2 and 7, where 7 = 7 but
Ly = Ty. Then
gaih,@i — gaj hﬁj

meaning that

hﬁj—ﬁz‘ — gai—aj
Hence
a. —_— a .
log. h=—— (mod m) .
7 B; — B; ( )

If (B, — B;)~' (mod m) does not exist then we try again
with a different z.

Or. . .there definitely exists such &k that k(8,—8;) = o, —;
(take k = log, h). If there are not too many such k-s then
we can try them all out.



Consider the values {z; };cn. If the values z; were mutually
independent uniformly distributed random variables then
two equal values exist among O(+/m) first ones with high
probability.

They are not independent, but for the purpose of our

analysis, we do not care.

To find log, h: compute zo, 24, . . ., &, @1, ... and Bo, B, - - -

until z; = z, for ¢ # 7. Then proceed as in the previous
slide.

Time complexity: O(1/m). Space complexity: O(y/m). (both
expected)



This gives the name p

Note: z; = z; 1mplies ;11 = T,44

Length of tail: O(4/m). Length of cycle: O(y/m).



Floyd’s cycle-finding algorithm: compute the sextuples

(azi)ai):B’i)x%)a%nBZi)
(here : = 0,1,2,...) until z; = ;.

Here (513z'+1, Ait1y Oit1, L2(i4+1)) a2(i+1))132(z'+1)) can be compu-
ted from (z;, a;, Bi, T2i, A2i, Boi), Which can then be discar-
ded.

T; = To; 18 reached while z; 1s making the first round on
the cycle. Hence 1 = O(4/m) at that moment.

Discrete logarithm’s algorithm’s time complexity: O(1/m)
(expected). Space complexity: O(1).



Example: let G = Zjy,. Let g = 2. Then g 1s a generator.
Indeed, m = |G| = 196 = 2% - 72. We have

196

22 =_land 27 =104 (mod 197) .

Let us find log, 133 in Z7,,.

Partition: G; = {1,...,65}, Gy = {66,...,131}, G3 =
{132,...,196}.

Randomly pick z = 20. Then zy = 66, ag = 20, Gy = 0.



1 T; | Q; | Bi || Toi | Qo | Po
0] 142 | 20| O | 142 | 20 0
117120 | 1 88 | 20 2
2 88 | 20| 2| 122 | 41 4
3 61 | 40 | 4 61 | 164 | 16
Hence 40 — 164
log, 133 = T (mod 196)

1271 (mod 196) does not exist. We have to consider all k-s
satisfying the following congruence as possible values for

log, 133:

12k = —124

(mod 196) .



Dividing everything by gcd(12, 196) = 4 gives us
3k =—-31=18 (mod 49)

I.e. k =6 (mod 49). The possible values for £ modulo 196
are 6, 55, 104 and 153. We try all of them:

2° =64 (mod 197) 2'% =133 (mod 197)
2°° =89 (mod 197) 2" =108 (mod 197) .

Hence log, 133 = 104 1n Z3,,.



Suppose that we know the factorization of |G| = m: let
m = p;'---p;*. Pohlig-Hellman algorithm lets us to re-
duce the computation of discrete logarithms in G to the
computation of discrete logarithms in groups of order p;.

Let g be a generator of G and let us look for log, A.
For each 72 € {1,...,k} define

z 9i=9g "  hi=h"T.



g; generates of subgroup of G of order p;* and h; belongs
to that subgroup.

Let z; = log, h;. Then z = log, h satisfies the system of
congruences

{z==; (mod p;)}i<is

which has a unique solution modulo m (use chinese re-
mainder theorem to find it).



Indeed, for all 7z € {1,...,k},
—T 3\ M m;\—T 1, M; —z —(! fz z; sy
(g h) Z:(g 7') h ‘=0, hi:gi(p—I_ )hi:gz- h, =1

for some [ € 7.

Hence the order of g %h divides m,; for all 2. Then i1t also
divides gcd(my, ..., mg) = 1. Hence the order of g~ *h is 1,
1.e. g*h =1 and g* = h.

We have reduced the finding of discrete logarithms in G
to the finding of discrete logarithms in the subgroups of G

whose orders are prime powers.



Assume now that |G| = p® for some p € P. We want to find
log, h in G where g is a generator of G.

Denote z = log, h. Then £ = zo+z1p+zop° +- - - +Te_10° "
for some zg,...,z.1 € {0,...,p — 1}. Our task is to find
these z;.

e—1 e—1

We are going to have g* = h. Then also g* % = h? . But

e—1 e—1 —1

p° 'z = p* oo+t (21 +pTat. . AP T 1) = p° T2y (mod p°)

—1 —1
“T%o — RP°7" Hence

o can be found be solving a discrete logarithm in the

As gP" = 1, the value z, must satisfy g?

subgroup generated by g?° . Its order is p.



Assume that we have already found zo,...,z,_;. To find
z,; we note that we must have

gagjpj_l_..._l_age_lpe_l — hg_a;o_aglp_..._agj_lpj_l

Denote the right hand side by h;. Then we must also have

mjpe_1+$j+1pe+---+$e—1p2€_j_2 L hpe_j_l

g — %
Here the left hand side equals g“’jpe_l. We find z; from the

e—j7—1

equation (g )% = h?



Example: let G = Z%,,s;. Then |G| = 64152 = 2% - 3° - 11.
Let g = 5. Then g is a generator of G. Indeed,

64152

2 = 64152 (mod 64153)

64152

5
5 s = 58563 (mod 64153)
5

64152

11 = 57412 (mod 64153)

Let us find log, 43210 in G.



Reduce finding that discrete logarithm to finding discrete

logarithms modulo prime powers:

64152
=1
26

64152
= =

64152
mg = ———— = b832
11

m, — 8019 my =

g, = 5% = 6899 g, = 5% = 45332 g5 = 5°°%% = 57412
h, = 43210%°"° = 5325  h, = 43210% = 60946
hs = 43210°%°% = 37326
(all powers modulo 64153).



We must find z; = log, A1 = logggge 5325 in G. We know
that this logarithm must belong to {0,...,7}. By trying
all possibilities we find that z; = 6.

We must find z3 = log,, hs = logg,y;, 37326. We know that
this logarithm must belong to {0,...,10}. By trying all
possibilities we find that z3 = 9.

We must find z; = log,, ho = log,ss3, 60946. We know that
this logarithm must belong to {0,...,3° — 1}. We reduce
finding this logarithm to finding logarithms in the group
of three elements.



We have

To = Yo + 3y1 + 9y, + 27ys + 81y, + 243ys,

where y; € {0,1,2}.

We find vy, from g2 =% = h2%3. Ie.
58563Y° = (45332°*°)%° = (go*)% = hZ* = 60946°*° = 5589

By trying all three possibilities we find vy, = 2.
In the following we need g, = = 4533271 = 29774 (mod 64153).



As next, we have g5 % = (hag, 2)%!. Le.
58563Y1 = 45332°*%Y1 — (60946 - 453327 %)% = 5589

and y; = 2.

Then we have ¢2**% = (hyg, *°?)?7 Le.
58563Y> = (60946 - 453327°)%" = 58563

and y, = 1.

Then we have g5 % = (hog, 273%79)%. Le.

58563Y = (60946 - 453327 !7)° = 5589

and ys; = 2.



Then we have g2**%* = (hyg, “T321912T2)s e

58563% = (60946 - 453327 1)° = 58563

and y, = 1.

Finally, 93433,5 = hyg, (243:249+27-2481) 1 o
58563Y5 — 60946 - 453327 1°% = 5589

and ys = 2.
Thus z, = > .., ¥:3" = 638.



We have the system of congruences

v

r=1z; (mod pi') r=6 (mod 2?)
r=z, (mod p5?) or ¢ =638 (mod 3°)
r=2z3 (mod p3®) | =9 (mod 11)

Using the chinese remainder theorem we find = 58958.
This is the discrete logarithm of 43210 to the base 5 in

*
Z64153 :



Let G = Z,, let g be a generator of G, let h € G. We are
looking for log, h.

In index calculus, first a factor base B = {p1,...,pr} of
small primes is chosen.

First step. Look for such elements z € Z,_; that all prime
factors of g* mod p are in B. (Generate random z-s)

This gives us an equality

aB

g*=pi'---pg (mod p)

or
z=alog,p; +--+aglog,pg (mod p—1)

(we know z,ay,...,a5).



Let us have a sufficient number of equalities of the form
T; = ay;log,p1 + -+ +apjlog,pg (mod p—1) .

Then we can find log, pi,...,log, pp from this system of

linear equations.

Second step. Look for an s € Z,_1, such that all prime
factors of hg® mod p are in B. (Generate random s-s)

hg® =pt---p¥ (mod p)
or

log,h =bylog,p; + -+ +bplog,pg —s (mod p—1).



First step can be faster.

Let H=[,/p]. Let J = H* mod p. If 0 < ¢1,¢c; < H, then
(H4+ci1)(H+c)=J+ (1 +c)H +cicz (mod p) (*)

If (*) factors over B, then we have an equation involving
log,(H + c1), log,(H + c;) and logarithms of primes in B.

For a fixed c¢;, many values of ¢, can be tried in parallel

using sieving.

We're introducing new unknowns — log (H + ¢;) —, but
slower than equations.



Z;| = p — 1. It has some small factors (e.g. 2).

Disc. log. based cryptosystems are typically used in a
group G < Zj, such that |G| = p’ € IP is large.

We need p = kp' + 1. We also need an element g € Z;
with order p'.

Typically
_ p 1024

x Index calculus is too difficult
— p A Q160

¥ O(4/m) algorithms are too difficult



An elliptic curve E,, over Z, 1s the set of pairs
{(2,y) € Z, |y? = @° + az + b} U {0}

where a,b € Z, and 4a® + 27b* # 0. O is an “extra point”.

We can define a binary operation + on the points of E,,,
such that F,; becomes an Abelian group.

e O is the zero element;

e —(z,y) = (z,—v);

e addition is defined as follows. ..



Consider y? = z° 4+ az + b over R. ..

(see the blackboard)



e T'wo points P, Q) € E,;, determine a straight line.
— If P = () then consider the tangent of E,; at P.

e Let R be the third point where this line intersects E, .
— If the line 1s vertical then let R = O.

e Then P + () is defined as —R.



Let P = (z1,%1),Q = (Z2,¥2) € Eup. If P = —Q then
P+ @ =0, otherwise P + Q = (z3,y3) where

$3:)\2—$1—$2

Yz = )\(5131 — 333) — Y

)
2oV if P £ Q
= mn
o if P=Q

'The operation + turns out to make E,; into an Abelian
group.

Now use the same formulae for E,; defined over Z,.



In general, (E,p, +) is not a cyclic group.

We have to work in a large cyclic subgroup of E,;. We
need an element of F,;, with a large prime order.

|E, 5| must have a large prime factor.
Theorem. ||Eqp| —p — 1| < 2,/p.

There exist efficient algorithms for computing |E, ;| in ge-
neral case (O(log’ p)).

Theorem. E = 7Z,, X Z,, with n, | n; and ny | (p — 1).
Theorem. If p =5 (mod 6) then Egp = Zp11.

Theorem. If p =3 (mod 4) then E,2 mod po = Zp+1-



Given g € E,, with a large order, we can perform Diffie-
Hellman key exchange in (g).

ElGamal cryptosystem is not so suitable for using with
elliptic curves.

In ElGamal cryptosystem, the message has to be an ele-
ment of the group.

Defining a suitable mapping from bit-strings to the points
of the elliptic curve is not so trivial.



Menezes-Vanstone cryptosystem: Let E be an elliptic
curve over Z,. Let g € E have a large prime order.

o Secret key: k € Zjg.
e Public key: h = k- g (in the group (E, +)).
e Plaintext space: Z, X Z,.

o Ciphertext space: B X Z; X Zj.



To encrypt (z1,z2), generate a random r € Z g and com-
pute

® yo=7-g,(c1,c2) =7-h (in E);
e Y1 = ¢;z; mod p; Y2 = CZp mod p;
the ciphertext is (yo, y1, ¥2)-

Exercise. How to decrypt? How is this similar to the El-
Gamal system?



Exercise. Consider the discrete logarithm problem in Z7.

Let g generate Z; and let z € Z, ;.
e Show that g* does not hide the least significant bit of

Z.

e Show that if p = 3 (mod 4), then finding the second
least significant bit of = is as hard as the discrete lo-

garithm problem.



