
Block vs. Stream cipher

Idea of a block cipher: partition the text into relatively large (e.g.

128 bits) blocks and encode each block separately. The encoding of

each block generally depends on at most one of the previous blocks.� the same “key” is used at each block.

Idea of a stream cipher: partition the text into small (e.g. 1 bit)

blocks and let the encoding of each block depend on many previous

blocks.� for each block, a different “key” is generated.



Examples of stream ciphers
� One-time pad.� Block cipher in OFB or CTR mode.IV
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Synchronous stream ciphers

Definition 1. A stream cipher is synchronous if its key sequence does

not depend on the plain- and ciphertexts but only on the previous

elements of the key sequence and the initial key.

zi = f(zi�1; zi�2; : : : ; zi�t; k);yi = g(xi; zi):

replacements

k

z�1 z0 f z1 f z2 f z3g y1 g y2 g y3x1 x2 x3



Properties of the synchronous stream cipher

1. The encoder and decoder must be synchronized, i.e. the decoder

must always make sure that it applies the right element of the key

sequence to the given element of the ciphertext sequence.

2. If an element of the ciphertext sequence has been changed (but not

deleted) then only the corresponding plaintext element is affected.

One-time pad is a synchronous stream cipher.

Other synchronous stream ciphers could be called “pseudo one-time

pads”.

They are as secure as hard it is to distinguish (zi) from a truly random

sequence.



Self-synchronizing stream ciphers

Definition 2. A stream cipher is self-synchronizing if its keystream

depends on the plain- or ciphertext.zi = f(yi�1; yi�2; : : : ; yi�t; k);yi = g(xi; zi):k
y�1 y0f z1 f z2 f z3g y1 g y2 g y3x1 x2 x3



Properties of a self-synchronizing stream cipher

1. If a ciphertext block is changed somehow (either randomly or adve-

rently) then only the decryptions of the next t blocks are affected.

Hence the decoding process synchronizes itself.

2. The rather quick reappearance of the correct decoding means that

the tampering of some ciphertext blocks may remain unnoticed.

3. As the cryptotext blocks depend on all preceeding plaintext blocks,

the statistical analysis of the cryptotext is hopefully more difficult.



Linear keystream generator

Let 1; : : : ; t 2 f0; 1g certain fixed bits and z0; : : : ; zt�1 the initial

keystream bits. The subsequent bits zi of the keystream (zn), wherei � t, are generated using the rulezi = f(zi�1; zi�2; : : : ; zi�t) == (1 � zi�1 + 2 � zi�2 + : : :+ t � zi�t) mod 2:

Example: let t = 4, 1 = 2 = 0 ja 3 = 4 = 1 and (z0; z1; z2; z3) =(0; 1; 0; 0). The output of the generator is then0; 1; 0; 0; 1; 1; 0; 1; 0; 1; 1; 1; 1; 0; 0; 0; : : : :



Linear feedback shift register

(Lineaarse tagasisidega nihkeregister)

. . . is an electronic gadget for generating a linear keystream. The LFSR

corresponding to the previous example is

R4 R3 R2 R1 output



LFSR works like this. . .

step R4 R3 R2 R1

0 0 0 1 0

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 1 0 1 1

5 0 1 0 1

6 1 0 1 0

7 1 1 0 1

step R4 R3 R2 R1

8 1 1 1 0

9 1 1 1 1

10 0 1 1 1

11 0 0 1 1

12 0 0 0 1

13 1 0 0 0

14 0 1 0 0

15 0 0 1 0

R4 R3 R2 R1 output



Periodic sequences

Definition 3. A sequence z0; z1; z2; : : : is periodic if there exists ad � 1, such that zi = zi+d for all i � 0. The smallest such d is called

the period of that sequence.

If zi = zi+d holds only for all sufficiently large i-s, then z is called

eventually periodic.

Exercise. Show that the sequence of bits generated by any LFSR is

eventually periodic. Show that the period of a sequence generated by

a t-register LFSR is at most 2t� 1. Show that if this bound is reached

then each period contains 2t�1 bits 1 and 2t�1 � 1 bits 0.
Exercise. Show that any (eventually) periodic sequence can be gene-

rated by an LFSR.

The linear complexity L(z) of a sequence z is the minimal number of

registers that a LFSR needs to output this sequence.



LFSR as a stream cipher
� P = C = f0; 1g�.� A key k 2 K consists of

– t 2 N ;

– 1; : : : ; t 2 f0; 1g;
– z0; : : : ; zt�1 2 f0; 1g.� To encode or decode x 2 f0; 1gn: compute zi = 1zi�1+: : : tzi�t mod2 for t � i � n� 1 and output x� z.

A synchronous stream cipher. . . how difficult it is to distinguish (zi)

from a truly random sequence of bits?

I.e. if we know a part of the sequence (zi), how difficult it is to predict

the next element(s)?



If we know the linear complexity

Let L(z) = t.
We need to find out 2t consequtive keystream bits zr; : : : ; zr+2t�1.
Known-plaintext attack can provide them.

The following equations hold:8>>>>><>>>>>:
zr+t�1 � 1 + zr+t�2 � 2 + � � �+ zr � t = zr+tzr+t � 1 + zr+t�1 � 2 + � � �+ zr+1 � t = zr+t+1: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :zr+2t�2 � 1+ zr+2t�3 � 2+ � � �+ zr+t�1 � t= zr+2t�1

Solve this system over Z2 for (1; : : : ; t).
It has a solution — the coefficients of the LFSR generating this sequence.



If we do not know the linear complexity

Then we must (over)estimate it. Let us know t � L(z) = t0.
We need 2t consequtive keystream bits; solve the same system of equa-

tions.

It has a solution: if (01; : : : ; 0t0) are the coefficients of a minimal LFSR

generating z then� i = 0i if 1 � i � t0;� i = 0 if t0 + 1 � i � t
is a solution to the system of equations.

There are other solutions as well.

We can even determine the linear compexity.



Polynomials over a ring R

Formally, a polynomial p is a mapping N ! R (here N = f0; 1; 2; : : :g)
with only finitely many non-zero entries. Denote p(i) by pi.
The values of p are called its coefficients.p is usually written as p0 + p1x + p2x2 + � � � + pmxm where pm+1 =pm+2 = � � � = 0.
Polynomials can be� added, multiplied, divided (with remainder),

– division p=q is possible if the leading coefficient of q is inver-

tible.� multiplied with a scalar� used as arguments to Euclid’s algorithm, giving their gcd.

The set of all polynomials over R, denoted R[x℄, is a ring.



Formal series over a ring R

A formal series f is a mapping N ! R. The values of f are called its

coefficients. f is usually written as

P1i=0 fixi.
Formal series can be added, multiplied, multiplied with a scalar:(f + g)i = fi + gi (f � g)i = iXj=0 fj � gi�j (kf)i = k � fi

If f0 is invertible then f�1 exists and is given by(f�1)0 = f�10 (f�1)i = �f�10 � �i�1Xj=0(f�1)jfi�j�

The set of all formal series over R, denoted R[[x℄℄, is a ring.

A sequence (zi) can also be seen as a formal series (over Z2).



Rational formal series

A formal series f is rational if it can be expressed as pq�1, where p

and q are polynomials. Then f0 = p0q�10 and

fi = iXj=0 pi�j(q�1)j = q�10 �pi � iXj=1 jXk=1 pi�j(q�1)j�kqk� =

q�10 �pi� iXk=1 qk iXj=k pi�j(q�1)j�k� = q�10 �pi� iXk=1 qk i�kXj=0 pi�k�j(q�1)j� =

q�10 �pi � iXk=1 qkfi�k� :

I.e. the coefficients of a rational formal series satisfy a linear recurrence.

If R is finite then the coefficients of f are eventually periodic.



Theorem 1. Let the coefficients of f 2 R[[x℄℄ be eventually perio-

dic. Then f is rational.

Proof. Let f0; : : : ; fr�1 be the non-periodic part of f ’s coefficients and

let fi = fi+t for all i � r. Let

p(0) = r�1Xi=0 fixi and p = t�1Xi=0 fr+ixi :

Thenf = p(0)+p�xr+p�xr+t+p�xr+2t+� � � = p(0)+(1+xt+x2t+� � � )�p�xr =p(0) + (1� xt)�1 � p � xr = p(0) � (1� xt) + p � xr1� xt

Corollary. If f ’s coefficients are periodic (i.e. r = 0) then f = pq wheredeg p < deg q.



Rational formal series over Z2 vs. LFSRs

Let 1; : : : ; t and z1; : : : ; zt be given. Compare:
fi = pi + iXk=1 qkfi�k and zi = tXk=1 kzi�k

Take� q0 = 1, deg q = t and qi = i for 1 � i � t.� pi = zi + iPk=1 kzi�k for 1 � i � t.
Then f = z.q is the characteristic polynomial of the LFSR generating z.
If L(z) = t then q is the characteristic polynomial of z.



Finding the characteristic polynomial

Given: zr; : : : ; zr+2t�1, such that t � L(z). Assume r = 1.� Compute 1; : : : ; t by solving a system of linear equations.� Find q and p as in the previous slide.� Return q=gd(p; q).
Berlekamp-Massey algorithm is faster. . .O(t2).
Exercise: if we know L(z) and solve the system of equations contai-

ning exactly L(z) unknowns, then is it possible to get more than one

solution?

Exercise: Let z and z0 be two eventually periodic sequences of bits.

Let z00 be a sequence defined by z00i = zi � z0i. Find an upper bound

for L(z00) in terms of L(z) and L(z0).



Berlekamp-Massey algorithm

B-M algorithm reads the coefficients f0; f1; f2; : : : one by one.

At the i-th stage of the algorithm (having read f0; : : : ; fi�1) it has

computed polynomials p(i), q(i), such that� f � q(i) = p(i) (mod xi)� The size �(p(i); q(i)) = maxfdeg q(i); (deg p(i))+1g of the LFSR is

minimal.

Step of the algorithm: read fi. If f � q(i) = p(i) (mod xi+1) thenq(i+1) = q(i), p(i+1) = p(i).
Otherwise we have a discrepancy.



Recomputing p and q

We have f � q(i) = p(i) + b(i)xi (mod xi+1) for some b(i) 6= 0.
Let j be some earlier discrepancy: f � q(j) = p(j) + b(j)xj (mod xj+1).

Take p(i+1) = p(i) � b(i)b(j) xi�jp(j) and q(i+1) = q(i) � b(i)b(j)xi�jq(j)

Exercise. Show that f � q(i+1) = p(i+1) (mod xi+1)
In the B-M algorithm, the last such j is used where�(p(j); q(j)) < �(p(j+1); q(j+1))



B-M algorithm: initialization

� If f0 = f1 = f2 = � � � = 0 then return (p = 0; q = 1).� Let m be such, that f0; : : : ; fm�1 = 0, fm 6= 0.� Let p(m) = 0, q(m) = 1, p(m+1) = fmxm,q(m+1) = 1 + xm, if m > 0 and q(m+1) = 1 if m = 0.� At step m, the linear complexity changed.



Proof of correctness

For a finite or infinite sequence s let L(s) be the length of the shortest

LFSR outputting it.

Linear complexity change lemma. Let s be a finite sequence of

length k + 1 and s0 the prefix of s of length k. Let G be an LFSR of

size L(s0) generating s0. If G does not generate s thenL(s) � maxfL(s0); k + 1� L(s0)g.
Proof. Obviously L(s) � L(s0).
Let 1 be the sequence 0k1. Then G generates s� 1 andk + 1 = L(1) = L((s� 1)� s) � L(s� 1) + L(s) � L(s0) + L(s) :

Hence L(s) � k + 1� L(s0) �



LFSR-s with long periods

We know that an LFSR with t registers can output a sequence with a

period at most 2t � 1. How to achieve this upper bound?

Definition 4. A polynomial p 2 R[x℄ is reducible if there exists a

polynomial q 2 R[x℄, such that 1 � deg q < deg p and q j p. Otherwise

we call p irreducible.



Residue classes modulo polynomials

Given p 2 R[x℄ with invertible leading coefficient we can consider the

set R[x℄=p of all residue classes of R[x℄ modulo p. We can define

addition and multiplication on this set.� R[x℄=p � fq j q 2 R[x℄;deg q < deg pg;� q1 + q2 = q1 + q2;� q1 � q2 = q1 � q2 mod p.
The structure (R[x℄=p;+; �) is a ring. If R is a field and p is irreducible

then R[x℄=p is a field.� Finding inverses in R[x℄=p — just like in Zq , where q 2 P.

– Main tool — Euclid’s algorithm.



Finite fields
� Let p be an irreducible polynomial of degree m over a finite fieldK. Then K[x℄=p is a field with pm elements.� Up to isomorphism, there exists only one field with pm elements.� If K is a finite field then K� is cyclic, i.e. it can be generated by

a single element of K�.
Definition 5. A polynomial p 2 K[x℄ is primitive if x is a generator

of (K[x℄=p)�.
Theorem 2. If a LFSR’s characteristic polynomial q is primitive

then the period of the sequence produced by this LFSR is 2deg q � 1

for any non-zero initialization vector.

Proof follows. . .



LFSRs in Galois configuration

R1 R2 R3 R4 R5 R6

Normal; characteristic polynomial: 1 + x3 + x5 + x6

R0 R1 R2 R3 R4 R5

Galois configuration; char. polynomial: 1 + x+ x3 + x6

Char. poly. of Galois conf: contains xi if there is extra input to Ri.
Also contains xt where t is the number of registers.



Evolution of state of a LFSR in Galois conf.

A state S of a t-register LFSR can be represented by a polynomialp(S) =Pt�1i=0 S(Ri)xi where S(Ri) is the contents of Ri in S.

The next state of LFSR in Galois conf. is then (x � p(S)) mod q whereq is the characteristic polynomial.

If q is primitive then the state of that LFSR in Galois conf. passes

through all 2t � 1 possible values.

We can define an isomorphism between the states of a normal LFSR

and its corresponding LFSR in Galois conf.

Hence the states of a LFSR pass through all 2t � 1 possible values if

the corresponding LFSR in Galois conf. has a primitive characteristic

polynomial. The period of the output sequence is then 2t � 1 as well.



Reciprocals of polynomials

For a polynomial q =Pki=0 qixi with q0 6= 0 6= qk define its reciprocal

by q� = xk � q(1=x) =Pki=0 qk�ixi.
If a (normal) LFSR has the characteristic polynomial q then the cor-

responding LFSR in Galois conf. has the characteristic polynomial q�.q� � (q0)� = (q � q0)�. Just compare the coefficients.

Hence q is irreducible iff q� is.q (of degree k) is primitive iff q� is. Indeed, suppose an irreducible q is

not primitive, then xi � 1 (mod q) for some i < pk�1. I.e. there exists

a polynomial q0, such that xi�1 = qq0. Then also (xi�1)� = q� � (q0)�.
But (xi � 1)� = �(xi � 1). Hence q� � (�(q0)�) = xi � 1 and q� is not

primitive.



Testing irreducibility

Theorem 3. An irreducible polynomial m of d-th degree dividesxpd � x in Zp[x℄.
Proof. Zp [x℄=m is a field with pd elements. Hence �pd � � = 0 inZp[x℄=m for all � 2 Zp[x℄=m (Fermat’s little theorem). The polynomialx is also a member Zp [x℄=m, hence xpd � x � 0 (mod m) in Zp [x℄.
Theorem 4. If an irreducible polynomial m of d-th degree dividesxpd0 � x then d j d0.
Proof. Let K be the field with pd0

elements; it contains exactly the roots

of xpd0 � x. K is a vector space over Zp with dimension d0. It contains

also the roots of m, let � be a root of m. Let S = fPd�1i=0 �i�i j�i 2Zpg. Then S is a field. We have K � S � Zp , hence d0 = dimZp K =(dimZp S) � (dimS K) = d � (dimS K) and d j d0.



Testing irreducibility

q 2 Zp[x℄ is irreducible if gd(q; xpi � x) = 1 for all i � (deg q)=2.
Here xpi may be computed modulo q.



Testing primitiveness

For q 2 Zp[x℄ to be primitive, it must first be irreducible. Let m =deg q.
We must have xi 6� 1 (mod q) for all i < pm� 1. It is sufficient to test

this only for the values i = (pm � 1)=p0 where p0 is a prime factor ofpm � 1.



Polynomials: exercise

Which of those polynomials are reducible, which are irreducible and

which are primitive over Z2?
1. x+ 1,
2. x2,
3. x2 + 1,
4. x2 + x+ 1

5. x3 + 1

6. x3 + x+ 1,
7. x4 + x+ 1,
8. x4 + x2 + 1.



Linear complexity: exercises

Exercise. Determine the linear complexities of the following sequences.

1. 1; 0; 1; 0; 1; 0; : : :
2. 1; 0; 0; 1; 0; 1; 1; 1; 0; 0; 1; 0; 1; 1; : : :
3. 1; 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; 0; : : :

Exercise.

1. Construct a sequence with infinite linear complexity (i.e. a sequence

that is generated by no LFSR).



LFSR-s in real cryptosystems

Use one or more LFSR-s and apply some non-linear function to their

outputs.



Shrinking generator

. . . is constructed from two LFSRs working synchronously. The shrin-

king generator produces up to one bit for each bit-pair generated by

these two LFSRs. It is defined as follows:

1. If the first LFSR outputs 1 then return the output of the second

LFSR.

2. If the first LFSR outputs 0 then return nothing (discard the output

of the second LFSR).

If the linear complexities of these two LFSR-s are L1 and L2 and their

periods are maximal, then the linear complexity L of the shrinking

generator satisfies L2 � 2L1�2 < L < L2 � 2L1�1:



Other non-linear combiners

� Self-shrinking generator:

– Generate two bits, b1; b2.
– If b1 = 1 then output b2. If b1 = 0 then output nothing.� Majority: use three LFSR-s clocked synchronously, output the ma-

jority of their bits.� Irregular clocking: use several LFSR-s, do not clock each of them

at each clock cycle, decide the clocked LFSR-s in a non-linear way.


