Primer on finitary probability theory

Events and probabilities

- A random experiment is any activity whose outcome is not uniquely determined by the preconditions.
 - Encompasses all things happening that we are interested in.
 - An elementary event is a possible outcome of the random experiment.
 - The sample space Ω is the set of all elementary events.
 - We assume Ω is finite or countable.
 - An event is a subset of Ω .
 - The probability is a function $pr: \Omega \to [0,1]$, s.t. $\sum_{\omega \in \Omega} pr(\omega) = 1$.
 - Should be thought as a fixed function. There aren't several different probabilities.
 - The probability of an event $A \subseteq \Omega$ is $Pr(A) = \sum_{\omega \in A} pr(\omega)$.

Some elementary theorems

- $\Pr(\emptyset) = 0$ $\Pr(\Omega) = 1$ $\Pr(\Omega \setminus A) = 1 - \Pr(A)$ If $|\Omega| = n$ and $\operatorname{pr}(\omega) = 1/n$ for all $\omega \in \Omega$ then $\operatorname{Pr}(A) = |A|/n$ In this case, finding Pr(A) reduces to finding |A|. If $A \cap B = \emptyset$ then $\Pr(A \cup B) = \Pr(A) + \Pr(B)$ Also holds for a countable number of mutually exclusive events $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$ • If $Pr(A \cap B) = Pr(A) \cdot Pr(B)$ then A and B are independent.
 - (11+D) = 11(11) + 11(D) then 11 and D are independent.

Conditional probability

- Let $\Pr(B) > 0$.
- Definition: $Pr(A|B) = Pr(A \cap B)/Pr(B)$.
- Bayes' formula: $Pr(A|B) \cdot Pr(B) = Pr(B|A) \cdot Pr(A)$.
- $\blacksquare \quad \Pr(\cdot|B) \text{ could also serve as a probability measure.}$
 - $Pr(\cdot|B)$ satisfies the same theorems as $Pr(\cdot)$.

Random variables

- A random variable is a function $\mathbf{X} : \Omega \to X$ for any set X.
- If P is a predicate on X then $P(\mathbf{X})$ is a random event.
- Assume now $X = \mathbb{R}$.
 - The average of X is $\mathbf{E}(\mathbf{X}) = \sum_{\omega \in \Omega} \operatorname{pr}(\omega) \cdot \mathbf{X}(\omega)$.

I Theorems:

- $\mathbf{E}(\mathbf{X} + \mathbf{Y}) = \mathbf{E}(\mathbf{X}) + \mathbf{E}(\mathbf{Y})$. $\mathbf{E}(\lambda \cdot \mathbf{X}) = \lambda \cdot \mathbf{E}(\mathbf{X})$.
 - \bullet Even if ${\bf X}$ and ${\bf Y}$ are dependent.
- If $Pr(\mathbf{X} \leq \mathbf{Y}) = 1$ then $\mathbf{E}(\mathbf{X}) \leq \mathbf{E}(\mathbf{Y})$.

Two random variables X and Y are independent if for all x and y, $Pr(\mathbf{X} = x, \mathbf{Y} = y) = Pr(\mathbf{X} = x) \cdot Pr(\mathbf{Y} = y).$

If X and Y are independent then $E(X \cdot Y) = E(X) \cdot E(Y)$.