Block ciphers

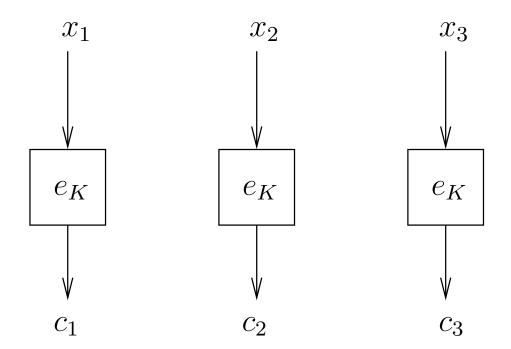
Block ciphers

- We defined a cryptosystem as a tuple (𝒫, 𝔅, 𝔅, 𝔅, 𝔅).
 Our examples divided the plaintext to relatively short blocks and applied e_k to each of them.
 - Exception: text autokey, skytale
- There really were two things:
 - ♦ a block cipher;
 - ♦ a mode of operation.

Block ciphers

- Let Σ be an alphabet.
- Let $n \in \mathbb{N}$ be the block size/length.
- A block cipher is an encryption system $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ where $\mathcal{P} = \mathcal{C} = \Sigma^n$.
 - Example: Shift cipher and substitution cipher: $\Sigma = \mathbb{Z}_{26}$ and n = 1.

A mode of operation: Electronic Codebook (ECB)



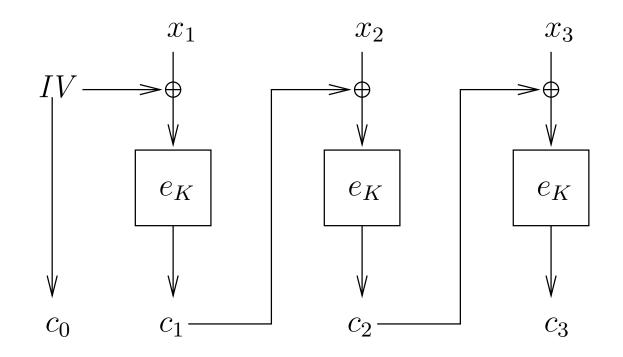
In our examples, this has been the mode we used.

Properties of ECB-mode

- 1. Equal blocks of plaintext are encoded to equal blocks of ciphertext.
- 2. Reordering the ciphertext blocks still yields a something that can be decoded without errors.
- 3. Bit errors in some ciphertext block do not affect the decoding of other blocks.
- 4. Encoding and decoding are doable in parallel.

Cipher Block Chaining (CBC) mode

Let a binary operation \oplus be defined on blocks. Usually it is bit-wise XOR.



Properties of CBC-mode

- 1. Encoding the same plaintext twice with different values of the IV yields different ciphertexts.
- 2. Reordering the blocks yields garbage as decoded plaintext after the point of reordering. Deleting a number of blocks from the end of the ciphertext does not yield garbage.
- 3. Bit errors in the *i*-th block affect the decoding of *i*-th and (i + 1)-st blocks.

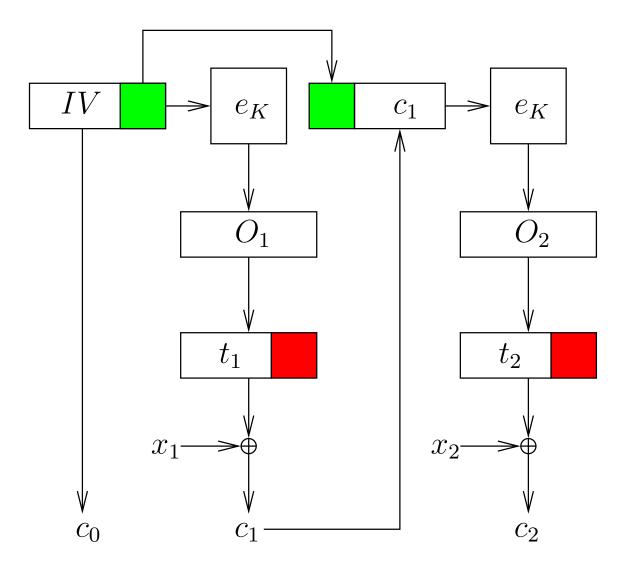
Exercise: how parallelizable are encoding and decoding?

Exercise

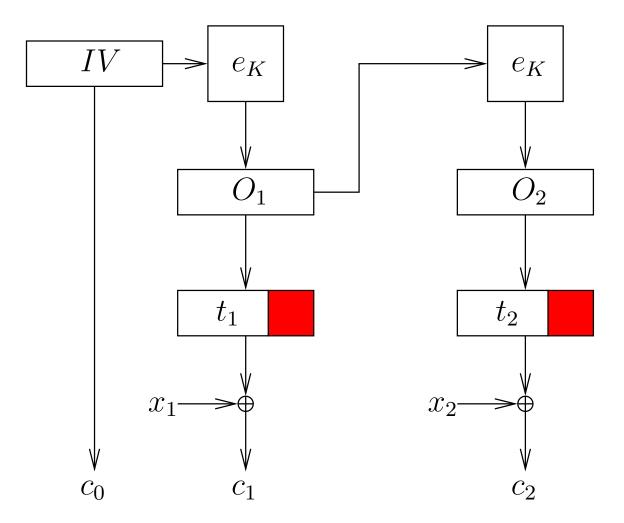
Consider Vigenère cipher that has been employed in the CBC-mode. How to perform a ciphertext-only attack against it?

- Block length = key length.
- Let \oplus be addition *modulo* 26.

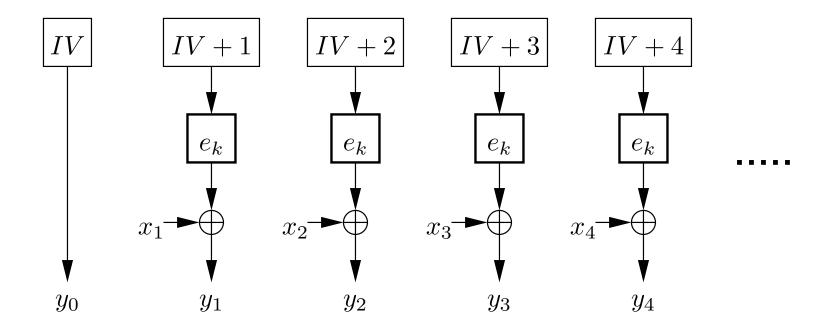
Cipher Feedback (CFB) mode



Output feedback (OFB) mode



Counter (CTR) mode



Properties of CFB-, OFB- and CTR-modes

Exercise: What can be said about the

- determinism
- resiliency to reordering of ciphertext blocks
- propagation of bit errors
- parallelizability of encryption and decryption

for CFB, OFB and CTR modes?

Product of encryption systems

- Given two encryption systems $\mathbf{S}_i = (\mathcal{P}_i, \mathcal{C}_i, \mathcal{K}_i, \mathcal{E}_i, \mathcal{D}_i)$ $(i \in \{1, 2\})$ with the key distributed according to \mathbf{K}_i .
- We require $\mathfrak{C}_1 = \mathfrak{P}_2$.
- Their product is an encryption system

 $\mathbf{S}_1 imes \mathbf{S}_2 = (\mathcal{P}_1, \mathcal{C}_2, \mathcal{K}_1 imes \mathcal{K}_2, \mathcal{E}, \mathcal{D})$, where

• probability of getting the key (k_1, k_2) is $\Pr[\mathbf{K}_1 = k_1] \cdot \Pr[\mathbf{K}_2 = k_2];$

•
$$e_{(k_1,k_2)}(x) = e_{k_2}(e_{k_1}(x));$$

•
$$d_{(k_1,k_2)}(y) = d_{k_1}(d_{k_2}(y)).$$

Exercises

Let: N — shift cipher; M — multiplicative shift cipher; A — affine cipher. Show that

- $\blacksquare \mathbf{N} \times \mathbf{N} = \mathbf{N};$
- $\blacksquare \quad \mathbf{M} \times \mathbf{M} = \mathbf{M};$
- $\blacksquare \mathbf{M} \times \mathbf{N} = \mathbf{N} \times \mathbf{M} = \mathbf{A};$
- $\blacksquare \quad \mathbf{A} \times \mathbf{A} = \mathbf{A}.$

Let \mathbf{V}_n be the Vigenère cipher with the key length n. What can be said about

 $\mathbf{V}_n \times \mathbf{V}_n$; $\mathbf{V}_m \times \mathbf{V}_n$ where $m \mid n$; $\mathbf{V}_m \times \mathbf{V}_n$ in general?

More exercises

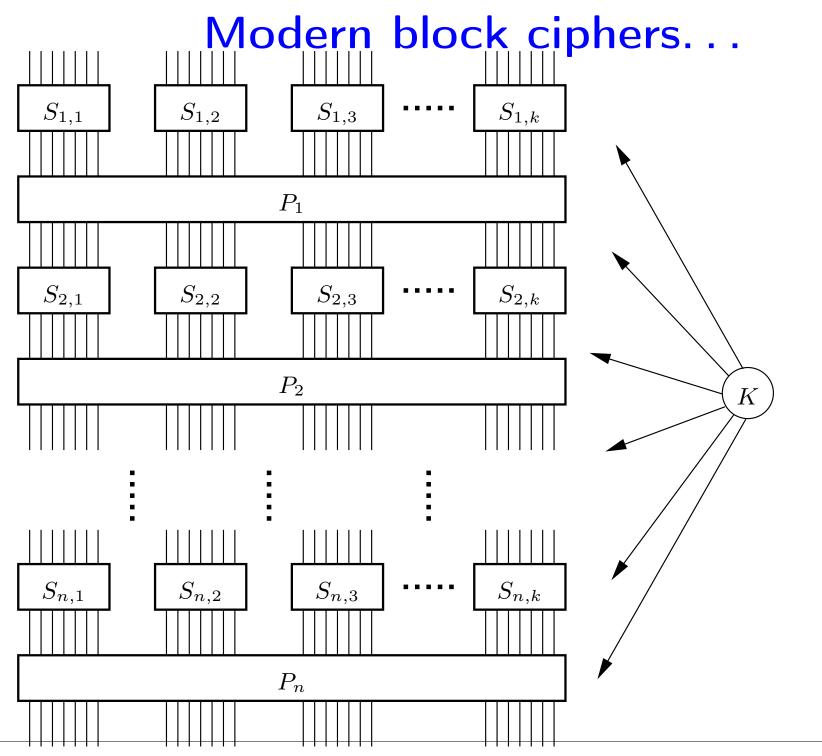
- Let \mathbf{N}' be shift cipher with some skewed distribution of keys. What is $\mathbf{N}\times\mathbf{N}'?$
- Let G be group and g a uniformly chosen element of g. Show that
 - g^{-1} is uniformly distributed;
 - for a random $h \in G$ (with any distribution), $g \cdot h$ is uniformly distributed.
 - Let a and b be two independently uniformly chosen elements of some finite ring R. Is $a \cdot b$ uniformly distributed? What if a were uniformly chosen from the multiplicative group R^* ?

"Block cipher" and Estonian language

Rasked sõnad on plokk ja blokk. Esimese taga on inglise ja prantsuse *block* ning eesti ploki tähendused on: ühtne risttahukakujuline tervik, nt ehitusplokk; märkmik; otstarbelt kokkukuuluv kogum, nt reklaamiplokk, uudisteplokk; hoonete või ruumide rühm, nt haigla köögiplokk, operatsiooniplokk; tõsteseadme osa; konstruktsioonilt terviklik seadiste, detailide vm kogum, nt toiteplokk. Bloki taga on prantsuse ja inglise sõna *bloc* ja tema tähendus on riikide, parteide, ühenduste liit.

Tiiu Erelt. Need rasked võõrsõnad. Oma Keel 2001(2):38–46

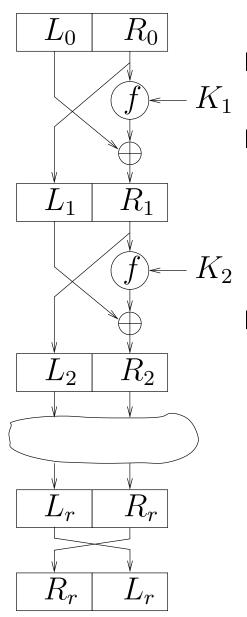
Hence "plokkšiffer".



Substitution-Permutation network

- One round consists of
 - Mixing in the key;
 - Substitution on short bit-strings;
 - Permutation of the entire block.
- A round has to be a permutation on the entire set ∑ⁿ.
 The entire block cipher is the product of rounds.
 - though usually the round keys are not independent.

Feistel's construction



A way to specify the round functions for $-K_1$ the block cipher.

- The definition of the block cipher must specify the function f and the number of rounds r.
 - \bullet f does not have to be a permutation.
- *K*₁,...,*K_r* are round keys, they're found somehow from the key of the block cipher *K*.
 - The key of the block cipher is usually not $K_1 \cdots K_r$, but something shorter.

Exercise. How to decrypt?

DES

DES (Data Encryption Standard) (January 15th, 1977).

$$\mathcal{K} = \{0, 1\}^{56}.$$

Encoding bit-string x with the key K:

- 1. Let $x_0 = IP(x)$, where IP is a certain permutation of bits. Let L_0 $[R_0]$ be the first [last] 32 bits of x.
- 2. 16 rounds of Feistel construction:

$$L_i = R_{i-1}$$
 $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$

Here $1 \le i \le 16$, $K_i \in \{0, 1\}^{48}$ consist of certain 48 bits of K. 3. Let $y = IP^{-1}(R_{16}L_{16})$. y is the ciphertext.

Key schedule

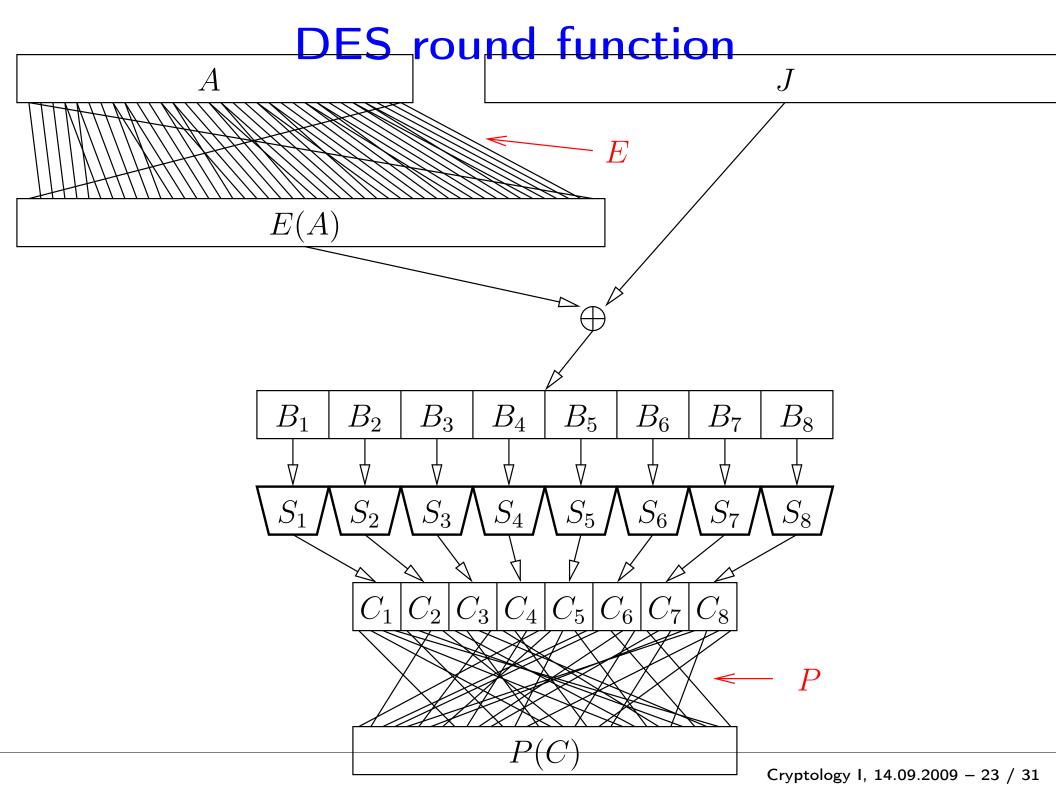
16 rounds \times 48 bits/round = 768 bits.

- Too large to conveniently manage.
- But a single round should also use a relatively large key.
 - Exercise. Why?
- All round-based block ciphers expand the master key into the sequence of round keys.
 - The complexity of expansion is different for different ciphers.
 - DES's is about the easiest possible.
 - At least if we consider hardware implementations.

DES round function

 $f: \{0,1\}^{32} \times \{0,1\}^{48} \rightarrow \{0,1\}^{32}$. f(A,J) works as follows:

- 1. "Expand" A to E(A) of length 48. The function E outputs the bits of its argument in certain order (16 bit positions occur once and 16 occur twice).
- 2. Let $B_1 \cdots B_8 = E(A) \oplus J$, where $B_i \in \{0, 1\}^6$.
- 3. Let $C_i = S_i(B_i)$, where $S_i : \{0, 1\}^6 \rightarrow \{0, 1\}^4$ is a fixed mapping. (the *S*-box)
- 4. return $P(C_1 \cdots C_8)$ where P is a certain permutation of bits.



DES: details

Decryption: like encryption, but round keys taken in order $K_{16}, K_{15}, \ldots, K_1$.

In the standard, the encryption key is actually 8 bytes long.

- The least significant bit in each byte is a parity check bit. Not used in actual encryption.
- The number of 1-s in each byte is odd.

Exercises

- Show that $DES(K, X) = \sim DES(\sim K, \sim X)$. How does that simplify brute-force attacks?
 - $\sim X$ bitwise complement of X.
- Because of the short key length of DES, triple-DES finds use in practice. Why isn't double-DES used? What is the "effective key length" of triple-DES?
- Keys k_1 and k_2 are dual if $e_{k_1} = d_{k_2}$. Show that keys $00 \cdots 0$ and $11 \cdots 1$ are both self-dual.

AES

128-, 192-, or 256-bit key, 128-bit blocks.

- A block a vector of 16 bytes.
- All operations are byte-oriented.
- 10, 12, or 14 rounds.
- Complex key schedule.
 - Slightly different for different key-lengths.
- A round consists of the following steps:
 - *SubBytes* apply the *S*-box to each byte.
 - ShiftRows and MixColumns linear transformations of the 16-element vector.
 - *AddRoundKey* XOR with the 128-bit round key.

Recent attacks against AES

- By Alex Biryukov, Dmitry Khovratovich, et al.
 Against AES-192 and AES-256.
 - Do not work against AES-128.
 - Exploit weaknesses in key schedules.
 - Break 9 or 10 rounds of AES-256 in practical time.
- related-key attacks.
 - Encryption with several different keys is available, with the attacker choosing (or at least knowing) the relation between them.

Linear cryptanalysis

- Let x_1, \ldots, x_n be the bits of the plaintext, k_1, \ldots, k_m the bits of the key, y_1, \ldots, y_n the bits of the ciphertext.
- Let E be a linear expression over $x_1, \ldots, x_n, k_1, \ldots, k_m, y_1, \ldots, y_n$.
 - Denote E(x, k, y).
 - E picks a subset E_{supp} of those bits and XOR-s them together.
 - Possibly also negates them, but this is not important for us...
- What is the probability of E(x, k, y) = 0 if x and k are chosen randomly?
- The bias of *E* (away from 1/2) can be computed by analysing the cipher.
- Given a large number of plaintext-ciphertext pairs, we compute E for all of them and get an idea what the XOR of key bits in E_{supp} should be.
- Such known-plaintext attack gives a single bit of information about the key.

Linear cryptanalysis

- Consider a cipher that works in r rounds.
- Let key K be fixed.
- Let x_1, \ldots, x_n be the bits of the plaintext, and v_1, \ldots, v_n be the bits of the result of applying r-1 rounds.
- Let E be a linear expression over $x_1, \ldots, x_n, v_1, \ldots, v_n$.
- If x is randomly chosen then what is the the probability of E(x, v) = 0?

Linear cryptanalysis

- Let E have a relatively large bias ε .
- Let us have plaintext-ciphertext pairs $(x^1, y^1), (x^2, y^2), \ldots$
- The bits v_i in E_{supp} will map to certain bits of y with the help of certain bits of the last round key K_r .
- For all possible values k of those bits of K_r :
 - For all pairs (x^i, y^i) :
 - Do partial one-round decryption of y^i , using the key bits k_r .
 - Let the resulting bits be a subsequence of v'_1, \ldots, v'_n .
 - Compute E(x, v').
 - Let B_k be the bias of E(x, v').
- Likely value k of the interesting bits of K_r is such, where the bias B_k is large.
- Needs $O(1/\varepsilon^2)$ plaintext-ciphertext pairs.

Differential cryptanalysis

- Consider pairs of plaintexts x, x^* with a fixed $\bar{x} = x \oplus x^*$.
 - Chosen-plaintext attack, because \bar{x} is given.
- Given \bar{x} , consider the possible values $\bar{v} = v \oplus v^*$. Suppose one of the \bar{v} -s has a significant probability.
- Such \bar{x} and \bar{v} are found by analysing the cipher.
- Consider all possible values k of the last round key K_r .
- A likely value for k is such, that one-round decrypting y and y^* with k gives intermediate values with XOR \overline{v} .