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■ We defined a cryptosystem as a tuple (P,C,K,E,D).
■ Our examples divided the plaintext to relatively short blocks and

applied ek to each of them.

◆ Exception: text autokey, skytale

■ There really were two things:

◆ a block cipher;
◆ a mode of operation.



Block ciphers
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■ Let Σ be an alphabet.
■ Let n ∈ N be the block size/length.
■ A block cipher is an encryption system (P,C,K,E,D) where

P = C = Σn.
■ Example: Shift cipher and substitution cipher: Σ = Z26 and n = 1.



A mode of operation: Electronic
Codebook (ECB)
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PSfrag

x1 x2 x3

eK eK eK

c1 c2 c3

In our examples, this has been the mode we used.



Properties of ECB-mode

Cryptology I, 14.09.2009 – 5 / 31

1. Equal blocks of plaintext are encoded to equal blocks of ciphertext.
2. Reordering the ciphertext blocks still yields a something that can be

decoded without errors.
3. Bit errors in some ciphertext block do not affect the decoding of

other blocks.
4. Encoding and decoding are doable in parallel.



Cipher Block Chaining (CBC) mode
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Let a binary operation ⊕ be defined on blocks. Usually it is bit-wise
XOR.

IV

x1 x2 x3

eK eK eK

c1 c2 c3c0



Properties of CBC-mode
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1. Encoding the same plaintext twice with different values of the IV

yields different ciphertexts.
2. Reordering the blocks yields garbage as decoded plaintext after the

point of reordering. Deleting a number of blocks from the end of the
ciphertext does not yield garbage.

3. Bit errors in the i-th block affect the decoding of i-th and (i + 1)-st
blocks.

Exercise: how parallelizable are encoding and decoding?



Exercise
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Consider Vigenère cipher that has been employed in the CBC-mode.
How to perform a ciphertext-only attack against it?

■ Block length = key length.
■ Let ⊕ be addition modulo 26.



Cipher Feedback (CFB) mode
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Output feedback (OFB) mode
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Counter (CTR) mode
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Properties of CFB-, OFB- and CTR-modes
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Exercise: What can be said about the

■ determinism
■ resiliency to reordering of ciphertext blocks
■ propagation of bit errors
■ parallelizability of encryption and decryption

for CFB, OFB and CTR modes?



Product of encryption systems
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■ Given two encryption systems Si = (Pi,Ci,Ki,Ei,Di) (i ∈ {1, 2})
with the key distributed according to Ki.

■ We require C1 = P2.
■ Their product is an encryption system

S1 × S2 = (P1,C2,K1 × K2,E,D), where

◆ probability of getting the key (k1, k2) is
Pr[K1 = k1] · Pr[K2 = k2];

◆ e(k1,k2)(x) = ek2
(ek1

(x));
◆ d(k1,k2)(y) = dk1

(dk2
(y)).



Exercises
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Let: N — shift cipher; M — multiplicative shift cipher; A — affine
cipher. Show that

■ N × N = N;
■ M × M = M;
■ M × N = N × M = A;
■ A × A = A.

Let Vn be the Vigenère cipher with the key length n. What can be said
about

■ Vn × Vn;
■ Vm × Vn where m | n;
■ Vm × Vn in general?



More exercises
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■ Let N
′ be shift cipher with some skewed distribution of keys. What

is N × N
′?

■ Let G be group and g a uniformly chosen element of g. Show that

◆ g−1 is uniformly distributed;
◆ for a random h ∈ G (with any distribution), g · h is uniformly

distributed.

■ Let a and b be two independently uniformly chosen elements of some
finite ring R. Is a · b uniformly distributed? What if a were uniformly
chosen from the multiplicative group R∗?



“Block cipher” and Estonian language
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Rasked sõnad on plokk ja blokk. Esimese taga on inglise
ja prantsuse block ning eesti ploki tähendused on: ühtne
risttahukakujuline tervik, nt ehitusplokk; märkmik; otstarbelt
kokkukuuluv kogum, nt reklaamiplokk, uudisteplokk; hoonete
või ruumide rühm, nt haigla köögiplokk, operatsiooniplokk;
tõsteseadme osa; konstruktsioonilt terviklik seadiste, detailide
vm kogum, nt toiteplokk. Bloki taga on prantsuse ja inglise
sõna bloc ja tema tähendus on riikide, parteide, ühenduste liit.

Tiiu Erelt. Need rasked võõrsõnad. Oma Keel 2001(2):38–46

Hence “plokkšiffer”.



Modern block ciphers. . .
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Substitution-Permutation network
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■ One round consists of

◆ Mixing in the key;
◆ Substitution on short bit-strings;
◆ Permutation of the entire block.

■ A round has to be a permutation on the entire set Σn.
■ The entire block cipher is the product of rounds.

◆ though usually the round keys are not independent.



Feistel’s construction
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L0 R0

f K1

L1 R1

f K2

L2 R2

Lr Rr

Rr Lr

■ A way to specify the round functions for
the block cipher.

■ The definition of the block cipher must
specify the function f and the number of
rounds r.

◆ f does not have to be a permutation.

■ K1,. . . ,Kr are round keys, they’re found
somehow from the key of the block cipher
K.

◆ The key of the block cipher is usually
not K1 · · ·Kr, but something shorter.

Exercise. How to decrypt?



DES
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DES (Data Encryption Standard) (January 15th, 1977).

■ P = C = {0, 1}64.
■ K = {0, 1}56.
■ Encoding bit-string x with the key K:

1. Let x0 = IP(x), where IP is a certain permutation of bits. Let L0

[R0] be the first [last] 32 bits of x.
2. 16 rounds of Feistel construction:

Li = Ri−1 Ri = Li−1 ⊕ f(Ri−1,Ki)

Here 1 ≤ i ≤ 16, Ki ∈ {0, 1}48 consist of certain 48 bits of K.
3. Let y = IP

−1(R16L16). y is the ciphertext.



Key schedule
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■ 16 rounds × 48 bits/round = 768 bits.

◆ Too large to conveniently manage.
◆ But a single round should also use a relatively large key.

■ Exercise. Why?

■ All round-based block ciphers expand the master key into the
sequence of round keys.

■ The complexity of expansion is different for different ciphers.

◆ DES’s is about the easiest possible.

■ At least if we consider hardware implementations.



DES round function
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f : {0, 1}32 × {0, 1}48 → {0, 1}32. f(A, J) works as follows:

1. “Expand” A to E(A) of length 48. The function E outputs the bits
of its argument in certain order (16 bit positions occur once and 16
occur twice).

2. Let B1 · · ·B8 = E(A) ⊕ J , where Bi ∈ {0, 1}6.
3. Let Ci = Si(Bi), where Si : {0, 1}6 → {0, 1}4 is a fixed mapping.

(the S-box)
4. return P (C1 · · ·C8) where P is a certain permutation of bits.



DES round function
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DES: details
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Decryption: like encryption, but round keys taken in order
K16,K15, . . . ,K1.
In the standard, the encryption key is actually 8 bytes long.

■ The least significant bit in each byte is a parity check bit. Not used
in actual encryption.

■ The number of 1-s in each byte is odd.



Exercises
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■ Show that DES(K,X) = ∼DES(∼K,∼X). How does that simplify
brute-force attacks?

◆ ∼X — bitwise complement of X.

■ Because of the short key length of DES, triple-DES finds use in
practice. Why isn’t double-DES used? What is the “effective key
length” of triple-DES?

■ Keys k1 and k2 are dual if ek1
= dk2

. Show that keys 00 · · · 0 and
11 · · · 1 are both self-dual.



AES
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■ 128-, 192-, or 256-bit key, 128-bit blocks.

◆ A block — a vector of 16 bytes.
◆ All operations are byte-oriented.

■ 10, 12, or 14 rounds.
■ Complex key schedule.

◆ Slightly different for different key-lengths.

■ A round consists of the following steps:

◆ SubBytes — apply the S-box to each byte.
◆ ShiftRows and MixColumns — linear transformations of the

16-element vector.
◆ AddRoundKey — XOR with the 128-bit round key.



Recent attacks against AES
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■ By Alex Biryukov, Dmitry Khovratovich, et al.
■ Against AES-192 and AES-256.

◆ Do not work against AES-128.

■ Exploit weaknesses in key schedules.
■ Break 9 or 10 rounds of AES-256 in practical time.
■ related-key attacks.

◆ Encryption with several different keys is available, with the
attacker choosing (or at least knowing) the relation between
them.



Linear cryptanalysis
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■ Let x1, . . . , xn be the bits of the plaintext, k1, . . . , km the bits of the
key, y1, . . . , yn the bits of the ciphertext.

■ Let E be a linear expression over x1, . . . , xn, k1, . . . , km, y1, . . . , yn.

◆ Denote E(x, k, y).
◆ E picks a subset Esupp of those bits and XOR-s them together.
◆ Possibly also negates them, but this is not important for us. . .

■ What is the probability of E(x, k, y) = 0 if x and k are chosen
randomly?

■ The bias of E (away from 1/2) can be computed by analysing the
cipher.

■ Given a large number of plaintext-ciphertext pairs, we compute E for
all of them and get an idea what the XOR of key bits in Esupp should
be.

■ Such known-plaintext attack gives a single bit of information about
the key.



Linear cryptanalysis
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■ Consider a cipher that works in r rounds.
■ Let key K be fixed.
■ Let x1, . . . , xn be the bits of the plaintext, and v1, . . . , vn be the bits

of the result of applying r − 1 rounds.
■ Let E be a linear expression over x1, . . . , xn, v1, . . . , vn.
■ If x is randomly chosen then what is the the probability of

E(x, v) = 0?



Linear cryptanalysis
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■ Let E have a relatively large bias ε.
■ Let us have plaintext-ciphertext pairs (x1, y1), (x2, y2), . . ..
■ The bits vi in Esupp will map to certain bits of y with the help of

certain bits of the last round key Kr.
■ For all possible values k of those bits of Kr:

◆ For all pairs (xi, yi):

■ Do partial one-round decryption of yi, using the key bits kr.
■ Let the resulting bits be a subsequence of v′

1, . . . , v
′

n.
■ Compute E(x, v′).

◆ Let Bk be the bias of E(x, v′).

■ Likely value k of the interesting bits of Kr is such, where the bias Bk

is large.
■ Needs O(1/ε2) plaintext-ciphertext pairs.



Differential cryptanalysis
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■ Consider pairs of plaintexts x, x∗ with a fixed x̄ = x ⊕ x∗.

◆ Chosen-plaintext attack, because x̄ is given.

■ Given x̄, consider the possible values v̄ = v ⊕ v∗. Suppose one of the
v̄-s has a significant probability.

■ Such x̄ and v̄ are found by analysing the cipher.
■ Consider all possible values k of the last round key Kr.
■ A likely value for k is such, that one-round decrypting y and y∗ with

k gives intermediate values with XOR v̄.
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