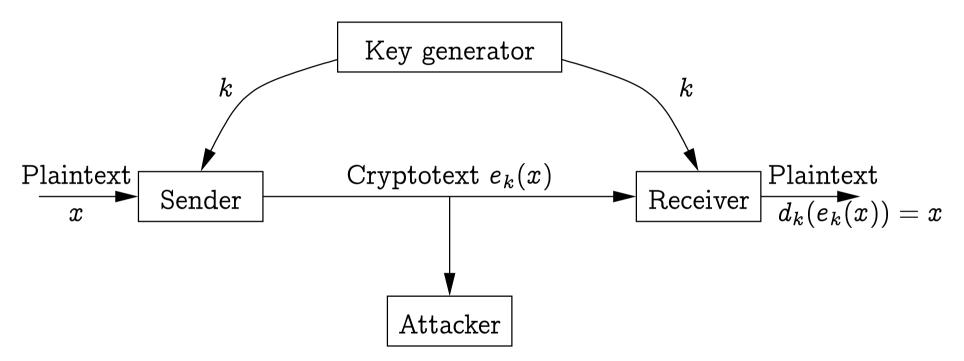
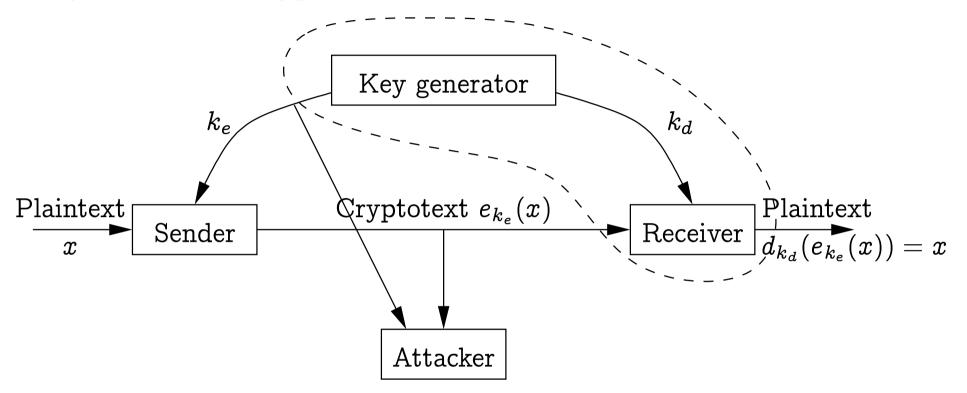
Symmetric encryption:



The rules for encoding and decoding are both given using the same secret k.

Asymmetric encryption:



The rules for encoding and decoding are given by different bit-strings. The bit-string k_e giving the encoding rule is not sensitive.

Finding k_d from k_e should be infeasible.

A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is one-way if

- computing f(x) from x is easy (for almost all x);
- given y, finding an x such that f(x) = y, is infeasible on average.
- A family of functions $\{f_i\}_{i \in I}$ is one-way if
 - computing $f_i(x)$ from x is easy for almost all i and x;
 - given y and i, finding an x such that $f_i(x) = y$, is infeasible (averaged over y and i).

The encoding function must be a one-way family (parametrized by the public keys) of functions. If e is one way, then how does one decode?

A family of functions $\{f_i\}_{i \in I}$ is trapdoor (*tagauksega*) oneway if

- $\{f_i\}_{i\in I}$ is one-way;
- for each i exists i_t , such that given y, i and i_t , it is easy to find an x, such that $f_i(x) = y$.
- Pairs (i, i_t) are easily generated together.

i is the public key. The trapdoor i_t is (a part of) the secret key.

A hard (NP-complete) problem: SUBSET-SUM. Given: a vector of integers (a_1, \ldots, a_n) and $s \in \mathbb{Z}$. Determine whether there exist such x_1, \ldots, x_n , that $x_i \in \{0, 1\}$ and $\sum_{i=1}^n x_i a_i = s$.

Computational version: find those x_i , if they exist.

The vector (a_1, \ldots, a_n) is called the *knapsack*.

Consider the knapsack

a = (143, 125, 67, 85, 201, 98, 46, 176, 128, 54, 83).

Then

- a, 646 has a solution because 646 = 125 + 201 + 98 + 46 + 176.
- *a*, 589 has no solutions.
- a, 833 has two solutions:
 833 = 125 + 67 + 85 + 201 + 98 + 46 + 128 + 83 = 143 + 85 + 201 + 46 + 176 + 128 + 54.

To solve the instance (a_1, \ldots, a_n) , s of SUBSET-SUM: Generate all possible vectors $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and check whether $\sum_{i=1}^n x_i a_i = s$.

Time complexity: $O(2^n)$. Space complexity: O(n).

A faster, "meet-in-the-middle" algorithm:

Let n = 2m. Define the sets

$$egin{aligned} S_1 &= \{\sum_{i=1}^m x_i a_i \, | \, (x_1, \dots, x_m) \in \{0,1\}^m \} \ S_2 &= \{s - \sum_{i=m+1}^n x_i a_i \, | \, (x_{m+1}, \dots, x_n) \in \{0,1\}^m \} \end{aligned}$$

Sort both S_1 and S_2 and check whether some value occurs in both sets.

Time complexity: $O(n2^{n/2})$. Space complexity: $O(2^{n/2})$.

Fastest known algorithm for solving general instances of SUBSET-SUM.

Suppose that (a_1, \ldots, a_n) are such, that all 2^n possible sums are different.

We can define an encoding function

$$e_{(a_1,...,a_n)}:\{0,1\}^n
ightarrow\mathbb{Z}$$

$$e_{(a_1,...,a_n)}(x_1\cdots x_n) = \sum_{i=1}^n x_i a_i \;\;.$$

The function family *e* might be one-way...

Where is the trapdoor?

A knapsack (a_1, \ldots, a_n) is superincreasing if $a_i > \sum_{j=1}^{i-1} a_j$ for all $i \in \{1, \ldots, n\}$.

Instances of SUBSET-SUM, where the knapsack is superincreasing, can be easily solved with a greedy algorithm.

In Merkle-Hellman singly-iterated knapsack cryptosystem, the main part of the secret key is a superincreasing knapsack (b_1, \ldots, b_n) .

The public key is a transformed version of that knapsack, such that it "looks like a general instance of a knapsack".

Transformation: pick $M \in \mathbb{N}$ such, that $M > \sum_{i=1}^{n} b_i$. Also pick $W \in \mathbb{Z}_M^*$.

Let $a_i = Wb_i \mod M$. Public key: (a_1, \ldots, a_n) .

And the secret key was $((b_1, \ldots, b_n), M, U)$ where $U = W^{-1}$ (mod M).

Decoding: when we recieve $s \in \mathbb{Z}$ then compute $s' = s \cdot U \mod M$. Then solve the SUBSET-SUM instance $((b_1, \ldots, b_n), s')$.

Theorem. If the SUBSET-SUM instance $((a_1, \ldots, a_n), s)$ has a solution then the instance $((b_1, \ldots, b_n), s \cdot U \mod M)$ also has a unique solution. Moreover, these two solutions are equal.

Example: let n = 10 and consider the superincreasing knapsack

(1, 2, 5, 9, 20, 39, 81, 159, 318, 643).

Then M must be greater than 1277. Pick M = 1301 and W = 517. Then U = 765.

To construct the public knapsack, multiply the elements of the secret knapsack by 517 (mod 1301), giving

(517, 1034, 1284, 750, 1233, 648, 245, 240, 480, 676).

Public key:

(517, 1034, 1284, 750, 1233, 648, 245, 240, 480, 676)

To encode the bit-string 0110011010 compute

 $\begin{aligned} 0\cdot 517 + 1\cdot 1034 + 1\cdot 1284 + 0\cdot 750 + 0\cdot 1233 + 1\cdot 648 \\ &\quad + 1\cdot 245 + 0\cdot 240 + 1\cdot 480 + 0\cdot 676 = 3691 \ . \end{aligned}$

The cryptotext is 3691.

Secret key:

(1, 2, 5, 9, 20, 39, 81, 159, 318, 643), 1301, 765

To decode 3691, compute $3691 \cdot 765 \mod 1301 = 445$. Solve the superincreasing knapsack:

445 < 643	445 - 0. 643 = 445	7 < 20	7 - 0.20 = 7
$445 \geqslant 318$	445 - 1.318 = 127	7 < 9	$7 - 0 \cdot 9 = 7$
127 < 159	127 - 0.159 = 127	$7 \geqslant 5$	$7-1\cdot 5=2$
$127 \geqslant 81$	$127 - 1 \cdot 81 = 46$		$2 - 1 \cdot 2 = 0$
$46 \geqslant 39$	$46 - 1 \cdot 39 = 7$	0 < 1	$0 - 0 \cdot 1 = 0$

The plaintext was 0110011010.

The cryptosystem is insecure because (a_1, \ldots, a_n) does not quite "look like a general instance of a knapsack".

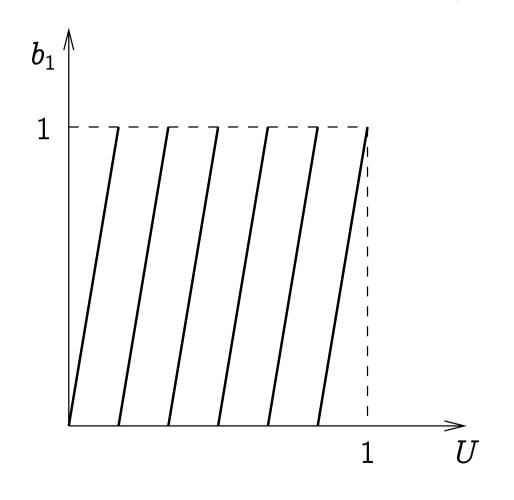
We are given (a_1, \ldots, a_n) . We want to find a superincreasing (b_1, \ldots, b_n) , U and M, such that $b_i = a_i \cdot U \mod M$ and the previous theorem holds.

For $x, y \in \mathbb{R}, \ y > 0$ we can define $x \mod y = x - y \cdot \lfloor x/y \rfloor$. We also have $(cx) \mod (cy) = c(x \mod y)$ for all c > 0.

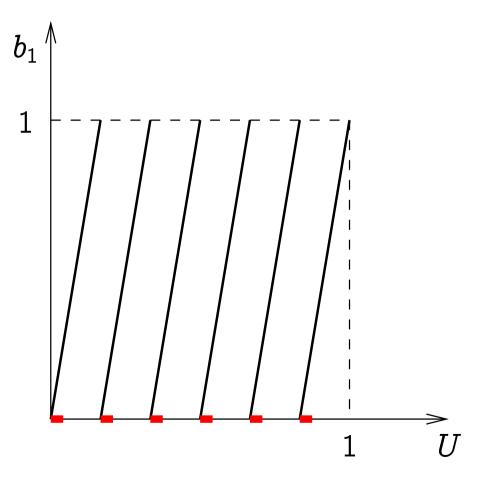
If (b_1, \ldots, b_n) , U, M suits us, then (cb_1, \ldots, cb_n) , cU, cM suits us as well.

We take M = 1. Now our task is to find a suitable $(b_1, \ldots, b_n), U$.

Consider the graph of $b_1 = a_1 \cdot U \mod 1$. It maps the value of a_1 to the value of b_1 , depending on the (unknown) U.



 b_1 is the smallest of the knapsack elements (very small compared to $1 = M > \sum_{i=1}^{n} b_i$). Hence U must belong to the marked region.



Also, $b_i = a_i \cdot U \mod 1$ must be very small if *i* is small.

The correct U is close to the discontinuation points of both $a_1 \cdot U \mod 1$ and $a_i \cdot U \mod 1$.

The discontinuation points of $a_1 \cdot U \mod 1$ are p/a_1 , where $1 \leqslant p \leqslant a_1 - 1$.

The discontinuation points of $a_i \cdot U \mod 1$ are q/a_i , where $1 \leqslant q \leqslant a_i - 1$.

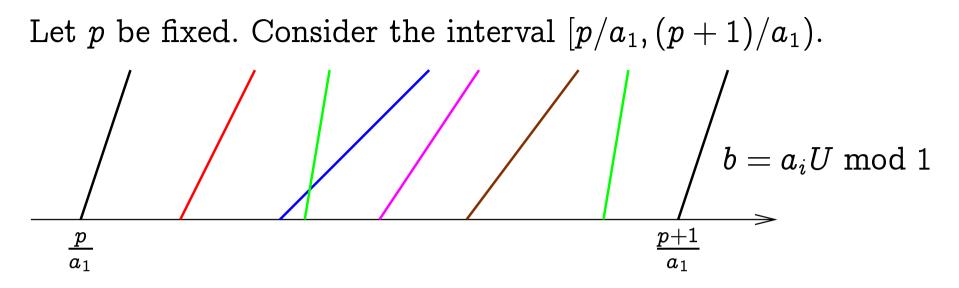
We are looking for discontinuation points that are close to each other.

$$arepsilon < arepsilon rac{p}{a_1} - rac{q}{a_i} < arepsilon \qquad 1 \leqslant p \leqslant a_1 - 1 \qquad 1 \leqslant q \leqslant a_i - 1 \ -\delta < pa_i - qa_1 < \delta \qquad 1 \leqslant p \leqslant a_1 - 1 \qquad 1 \leqslant q \leqslant a_i - 1$$
This system of equations gives us candidate *p*-s. We'll test

This system of equations gives us candidate p-s. We'll test their suitability.

[Adi Shamir, A poly.-time algo. for breaking the basic MH cryptosystem, Proc. of 32nd Symp. on Foundations of CS, 1982] suggests that $i \in \{2, 3, 4\}$ and $\delta \approx \sqrt{a_1/2}$.

 δ may be adjusting depending on the number of candidate *p*-s. The system above is solvable in polynomial time (if we treat *i* as a constant).



The discontinuation points of $b_i = a_i U \mod 1$ partition it to sub-intervals $[x_j, x_{j+1})$ for $j \in \{0, \ldots, m\}$ for some m. Here $x_0 = p/a_1$ and $x_m = (p+1)/a_1$.

In each interval $[x_j, x_{j+1})$ the graph of $b_i = a_i U \mod 1$ is just a straight line $b_i = a_i U - c_i^j$.

The values x_j and c_i^j are straightforward to find.

The expected number of intervals is O(n).

Consider an interval $[x_j, x_{j+1})$. We are looking for some U in that interval that would make (b_1, \ldots, b_n) superincreasing. We have the linear inequalities

$$x_j < U < x_{j+1}$$

$$\sum_{i=1}^n (a_i U - c_i^j) < 1$$

$$orall k \in \{2,\ldots,n\}: \sum_{i=1}^{k-1}a_iU-c_i^j < a_kU-c_k^j$$

If these inequalities have a common solution then it is the suitable U.

 $\begin{array}{l} {\rm Example: \ public \ key \ is \ (141, 68, 136, 199, 106, 66, 54).} \\ {\rm We \ have \ the \ following \ inequalities \ for \ p, q_2, q_3, q_4:} \\ {\rm 1} \leqslant p \leqslant 140 \quad 1 \leqslant q_2 \leqslant 67 \quad 1 \leqslant q_3 \leqslant 135 \quad 1 \leqslant q_4 \leqslant 198 \\ {\rm -} \delta < 68p - 141q_2 < \delta \quad - \delta < 136p - 141q_3 < \delta \\ {\rm -} \delta < 199p - 141q_4 < \delta \end{array}$

Shamir suggests $\delta \approx 8$.

•
$$-8 < 68p - 141q_2 < 8$$
 gives

 $p \in \{2, 27, 29, 31, 54, 56, 58, 83, 85, 87, 110, 112, 114, 139\}$

•
$$-8 < 136p - 141q_3 < 8$$
 gives
 $p \in \{1, 27, 28, 29, 55, 56, 57, 84, 85, 86, 112, 113, 114, 140\}$

•
$$-8 < 199p - 141q_4 < 8$$
 gives
 $p \in \{17, 22, 34, 39, 51, 56, 68, 73, 85, 90, 102, 107, 119, 124\}$

Intersection:

$$p\in\{56,85\}$$

See [H.W. Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research 8(4):538–548, 1983] for how these system can actually be solved.

Consider the interval $I = \begin{bmatrix} \frac{56}{141}, \frac{57}{141} \end{bmatrix}$. If $U \in I$ then

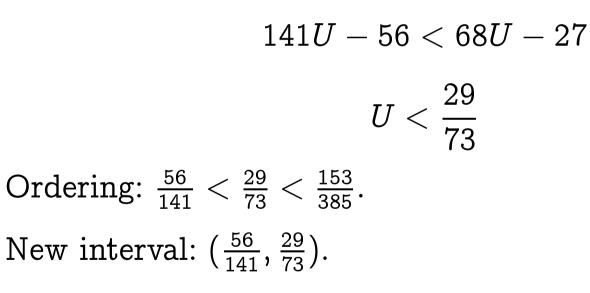
- $a_2U \mod 1$ has no discontinuation points.
- $a_3U \mod 1$ has no discontinuation points.
- $a_4U \in \mathbb{Z}$ if U = 80/199.
- $a_5U \mod 1$ has no discontinuation points.
- $a_6U \mod 1$ has no discontinuation points.
- $a_7U \mod 1$ has no discontinuation points.

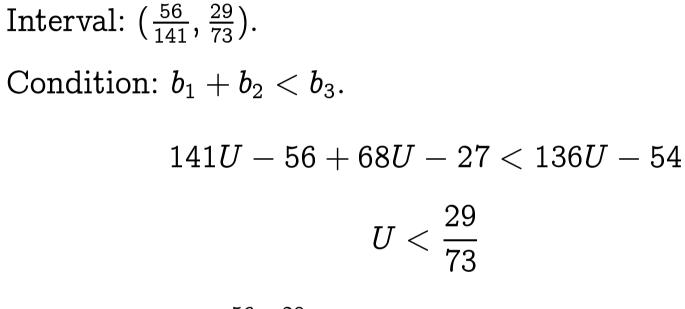
Hence $x_0 = \frac{56}{141}$, $x_1 = \frac{80}{199}$, $x_2 = \frac{57}{141}$.

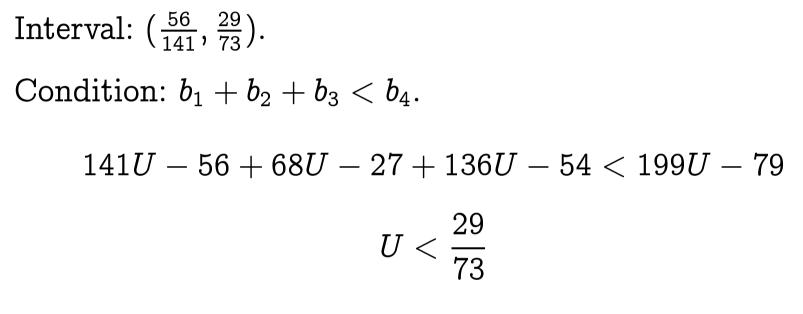
In $\left(\frac{56}{141}, \frac{80}{199}\right)$ we have $b_1 = 141U - 56$ $b_2 = 68U - 27$ $b_3 = 136U - 54$ $b_4 = 199U - 79$ $b_5 = 106U - 42$ $b_6 = 66U - 26$ $b_7 = 54U - 21$

The inequality $\sum_{i=1}^{n} b_i < 1$ gives 770U - 305 < 1 or $U < \frac{153}{385}$. The allowed interval for U reduces to $(\frac{56}{141}, \frac{153}{385})$.

Consider the inequalities stating the superincreasing condition. Interval: $(\frac{56}{141}, \frac{153}{385})$. Condition: $b_1 < b_2$.







Interval: $(\frac{56}{141}, \frac{29}{73})$. Condition: $b_1 + b_2 + b_3 + b_4 < b_5$. 141U - 56 + 68U - 27 + 136U - 54 + 199U - 79 < 106U - 42 $U < \frac{29}{73}$

Interval: $(\frac{56}{141}, \frac{29}{73})$. Condition: $b_1 + b_2 + b_3 + b_4 + b_5 < b_6$. 141U - 56 + 68U - 27 + 136U - 54 + 199U - 79 + 106U - 42 < 66U - 26

$$U < \frac{29}{73}$$

Interval: $(\frac{56}{141}, \frac{29}{73})$. Condition: $b_1 + b_2 + b_3 + b_4 + b_5 + b_6 < b_7$. 141U - 56 + 68U - 27 + 136U - 54 + 199U - 79 + 106U - 42 + 66U - 26 < 54U - 21

$$U < rac{263}{662}$$

Ordering: $\frac{29}{73} < \frac{263}{662}$. New interval: $(\frac{56}{141}, \frac{29}{73})$.

Any element of this interval is a suitable U.

For example, pick $U = \frac{85}{214}$. I.e. pick U = 85 and M = 214. Computing $b_i = a_i U \mod M$ gives us the secret knapsack (1, 2, 4, 9, 22, 46, 96). In the construction of this example I used U = 114 and

M = 287. Their ratio also lies in this interval. They give the knapsack

(2, 3, 6, 13, 30, 62, 129).

A variation of the MH knapsack system permutes the elements of the public knapsack (a_1, \ldots, a_n) . The permutation is part of the secret key.

We can no longer choose the components of a corresponding to b_1, \ldots, b_4 , but we can guess them.

We don't really need four smallest b_i-s. Four small b_i-s suffices.

When verifying the superincreasing condition, we do not know the ordering of elements b_1, \ldots, b_n .

To overcome this, when we partition $[p/a_1, (p+1)/a_1)$ to smaller intervals, we also consider the intersection points of the graphs of some $a_iU \mod 1$ and $a_jU \mod 1$.

In all such intervals the ordering of b_1, \ldots, b_n is fixed.

The density of a knapsack (a_1, \ldots, a_n) is

$$R = \frac{n}{\lceil \log \max_i a_i \rceil}$$

The densities of the knapsacks that we have seen:

- (141, 68, 136, 199, 106, 66, 54): $\frac{7}{8}$;
- (1, 2, 4, 9, 22, 46, 96): 1;
- (2, 3, 6, 13, 30, 62, 129): $\frac{7}{8}$.

The knapsacks with densities > 1 usually have multiple decodings of messages.

The public key usually has density less than 1.

When using the parameters suggested by Merkle and Hellman, the public key has the density ≈ 0.5 .

Almost all instances of SUBSET-SUM, where the density of the knapsack is less than 0.9408..., are easily solvable. Let $\mathbf{b}_1, \ldots, \mathbf{b}_n$ be a basis of the vector space \mathbb{R}^n .

The integer lattice determined by this basis is the set of vectors

$$\{m_1\mathbf{b}_1+\ldots+m_n\mathbf{b}_n\,|\,m_1,\ldots,m_n\in\mathbb{Z}\}$$
 .

Shortest vector problem (SVP): given the basis, determine the shortest non-zero vector (according to the Euclidean norm) of the lattice thus defined.

There exist polynomial-time algorithms for approximating the solution to the SVP.

The LLL-algorithm finds a vector in the lattice that is no more than $2^{(n-1)/2}$ times longer than the shortest vector.

In practice, it often works even better.

The SVP in lattices may be easy on average.

Given a SUBSET-SUM instance $(a_1, \ldots, a_n), s$, consider the integer lattice with the basis

$$egin{aligned} {f b}_1 &= (1,0,\ldots,0,Na_1) \ {f b}_2 &= (0,1,\ldots,0,Na_2) \end{aligned}$$

$$\mathbf{b}_n = ig(0,0,\ldots,1,Na_nig)$$
 $\mathbf{b}_{n+1} = ig(rac{1}{2},rac{1}{2},\ldots,rac{1}{2},Nsig)$

where $N \in \mathbb{Z}$, $N > \frac{1}{2}\sqrt{n}$.

Let x_1, \ldots, x_n be the solution to the given instance. Then $\left(\sum_{i=1}^n x_i \mathbf{b}_i\right) - \mathbf{b}_{n+1} = (x_1 - \frac{1}{2}, \ldots, x_n - \frac{1}{2}, 0)$ is a short vector in that lattice. With high probability, it is a solution to the SVP.

Algorithm for solving SUBSET-SUM instances $(a_1, \ldots, a_n), s$:

- 1. Construct the basis $\mathbf{b}_1, \ldots, \mathbf{b}_{n+1}$;
- 2. Solve the SVP for the lattice determined by this basis. Let $\mathbf{e} = (e_1, \dots, e_{n+1})$ be the result.
- 3. Check that $e_{n+1} = 0$ and $e_1, \ldots, e_n \in \{\frac{1}{2}, -\frac{1}{2}\}$. If not, then fail.
- 4. Let $x_i = e_i + \frac{1}{2}$. If $\sum_{i=1}^n x_i a_i = s$ then return (x_1, \ldots, x_n) .
- 5. Let $x_i = \frac{1}{2} e_i$. If $\sum_{i=1}^n x_i a_i = s$ then return (x_1, \dots, x_n) . 6. Fail.

When creating the key for the knapsack cryptosystem, we transform a knapsack (b_1, \ldots, b_n) to another one (a_1, \ldots, a_n) . We could iterate this transformation multiple times.

Each time, we must save $U = W^{-1}$ and M in the secret key.

This gives rise to the multiply-iterated knapsack cryptosystem.

In general, multiple iteration makes the elements of the knapsack larger and thus reduces density.