
A cryptosystem is unconditionally secure (absoluutselt turvaline) (wrt.

a class of attacks) if no adversary (no matter what resources it has)

can break it with the help of these attacks.



Let X be a random variable over the set X and Y a random variable

over the set Y .Pr[X = x℄ denotes the probability that X gets the value x 2 X.Pr[X = x;Y = y℄ denotes the probability that X gets the value x 2 X

and simultaneously Y gets the value y 2 Y .Pr[X = xjY = y℄ denotes the probability that X gets the value x, given

that Y got the value y.Pr[X = x;Y = y℄ = Pr[Y = y℄ � Pr[X = xjY = y℄= Pr[X = x℄ � Pr[Y = yjX = x℄

Bayes’ theorem: if Pr[Y = y℄ > 0, thenPr[X = xjY = y℄ = Pr[X = x℄ � Pr[Y = yjX = x℄Pr[Y = y℄ :

X ja Y are independent, if Pr[X = xjY = y℄ = Pr[X = x℄ for all x 2X, y 2 Y .



Let P, K ja C be random variables over sets P, K ja C, describing the

distribution of plaintexts, keys and ciphertexts. ThenPr[C = y℄ = Xx2Pk2Kek(x)=yPr[P = x;K = k℄ =

Xk2KPr[P = dk(y);K = k℄ = Xk2KPr[P = dk(y)℄ � Pr[K = k℄ :

Pr[C = yjP = x℄ = Xk2Ky=ek(x)Pr[K = k℄

Pr[P = xjC = y℄ = Pr[P = x℄ � Pk2Ky=ek(x)Pr[K = k℄Pk2KPr[P = dk(y)℄ � Pr[K = k℄



An encryption system has perfect secrecy, if Pr[P = xjC = y℄ = Pr[P = x℄

for all x 2 P, y 2 C.

Equivalently: Pr[C = yjP = x℄ = Pr[C = y℄ for all x 2 P, y 2 C.

Perfect secrecy is unconditional security wrt. ciphertext-only attacks.

Theorem. Shift cipher has perfect secrecy if its key is chosen with

uniform probability and a key is used to encrypt a single character.

Proof. P = C = K = Z26.� Pr[K = k℄ = 1=26 for all k 2 Z26.� Pr[C = y℄ = 1=26 for all y 2 Z26, because y = x+ k, x and k are

independent and k is uniformly distributed.� Pr[C = yjP = x℄ = Pr[K = y � x℄ = 1=26.Pr[P = xjC = y℄ = Pr[P = x℄ � (1=26)1=26 = Pr[P = x℄ :



Assume that Pr[C = y℄ > 0 for all y 2 C. If not, then remove this y

from C.

Lemma. If a cryptosystem has perfect secrecy then for all x 2 P andy 2 C there exists k 2 K, such that ek(x) = y.
Proof. Assume the contrary, i.e. there exist x and y, such that ek(x) =y for no k. Then Pr[C = yjP = x℄ = 0, but Pr[C = y℄ > 0. Hence

there is no perfect secrecy.



Exercise

We have independent random variables P and K and the derived ran-

dom variable C.

The definition of perfect secrecy uses P and K.

K is defined by the encryption system. So it’s natural to use it.

But does perfect secrecy actually depend on P?



Theorem. Let (P;C;K;E;D) be an encryption system where jPj =jKj = jCj. This encryption system has perfect secrecy iff the key is

chosen uniformly and for all x 2 P, y 2 C exists a unique k 2 K, such

that ek(x) = y.
Proof. ). Let the system have perfect secrecy. Then for all x 2 P

and y 2 C there is at least one k 2 K, such that ek(x) = y. Because

the same key is usable for at most jPj pairs of (x; y), there cannot be

more than one.

Fix y 2 C. Let P = fx1; : : : ; xng. Denote the elements of K in such a

way: let ki 2 K be the key for which eki(xi) = y. From the perfect

secrecy:Pr[P = xi℄ = Pr[P = xijC = y℄ =Pr[P = xi℄ � Pr[C = yjP = xi℄Pr[C = y℄ = Pr[P = xi℄ � Pr[K = ki℄Pr[C = y℄ ;

i.e. Pr[K = ki℄ = Pr[C = y℄ for all i, i.e. the probabilities of all keys

must be equal.(: like the proof of perfect secrecy for the shift cipher.



Vernam’s cipher or one-time pad (ühekordne šifriblokk):� P = C = K = f0; 1gn;� ek1:::kn(x1 : : : xn) = dk1:::kn(x1 : : : xn) = (x1 � k1) : : : (xn � kn).
– ki; xi 2 f0; 1g.

Vernam’s cipher has perfect secrecy (if the key is uniformly distributed

and each key is used only once).



Exercises
� A latin square M is a n � n square filled with numbers 1; : : : ; n,

such that each i occurs exactly once in each row and column.

Define an encryption system:

– P = C = K = f1; : : : ; ng;
– ei(j) = M [i; j℄.
Show that this encryption system has perfect secrecy.� Show that affine cipher has perfect secrecy (if it is used to encrypt

a single letter).� Show that if an encryption system with perfect secrecy has jPj =jKj = jCj, then all ciphertexts are equiprobable.



If we do not have perfect secrecy, then how much information about

the key is leaked into the ciphertext? When can we determine the key

(and the plaintext) with near-absolute certainty?

Let X be a random variable over the (finite) set X. The entropy of X

is H(X) = �Xx2X Pr[X = x℄ � log2 Pr[X = x℄ :

Define 0 � log2 0 = 0, because limx!0x log x = 0.H(X) (more or less) corresponds to the average number of bits neces-

sary to encode the value of X.H(X) = 0 if and only if X always gets the same value. Then one of

the probabilities is 1 and the rest are 0.



A prefix-free encoding of the set X is a mapping � : X ! f0; 1g�, such

that none of �(x)-s is a prefix of another.

Given X, the average length `(�) of � is`(�) = E[j�(X)j℄ = Xx2X Pr[X = x℄ � j�(x)j :

Theorem. For all prefix-free �, H(X) � `(�).
Theorem. There exists a �, such that `(�) < H(X) + 1.
(One such � is the Huffman code of X, where Pr[X = x℄ is the weight

of the element x 2 X.)



H(X;Y) = �Xx2Xy2Y Pr[X = x;Y = y℄ � log2 Pr[X = x;Y = y℄ :

Conditional entropy of X wrt. Y:H(XjY) = �Xy2Y Xx2X Pr[Y = y℄Pr[X = xjY = y℄ log2 Pr[X = xjY = y℄ :

How many bits are necessary to encode X if everybody knows Y?



A function f is concave (kumer ) in an interval [a; b℄ if for all x1; x2 2[a; b℄ and � 2 [0; 1℄:� � f(x1) + (1� �) � f(x2) � f(� � x1 + (1� �) � x2) :

I.e. the graph of the function (in the interval [a; b℄) is above any

straight line segment between two points of that graph.

Concavity is strict (range) if equality holds only for � 2 f0; 1g (when-

ever x1 6= x2).
Logarithm is a strictly concave function in [0;1). . .
Jensen’s inequality: let f be strictly concave function in the interval I.
Let x1; : : : ; xn 2 I and let a1; : : : ; an 2 (0; 1℄, such that a1+ � � �+an =1. Then nXi=1 aif(xi) � f� nXi=1 aixi�
and equality holds iff x1 = � � � = xn.

Proof: induction over n. n = 2 is the def. of concavity.



Theorem. The maximum value of H(X) is log2 jXj. It is attained

only if X is uniformly distributed.

Proof. Let X = fx1; : : : ; xng and denote pi = Pr[X = xi℄ Assume thatpi > 0 (otherwise remove xi from X). Then jXj = n.H(X) = � nXi=1 pi log2 pi = nXi=1 pi log2 1pi � log2 nXi=1 pi � 1pi = log2 n :

We used Jensen’s inequality with ai = pi and xi = 1=pi. The equality

holds only if 1=p1 = � � � = 1=pn, i.e. p1 = � � � = pn.



Theorem. H(X;Y) � H(X)+H(Y) with equality holding iff X and

Y are independent.

Proof. Let X = fx1; : : : ; xng, Y = fy1; : : : ; ymg and denote� pi = Pr[X = xi℄;� qi = Pr[Y = yi℄;� rij = Pr[X = xi;Y = yi℄. Then

– pi =Pmj=1 rij ,
– qj =Pni=1 rij .

X and Y are independent iff rij = piqj for all i; j.



H(X;Y) = � nXi=1 mXj=1 rij log2 rij = nXi=1 mXj=1 rij log2 1rij

H(X) +H(Y) = � nXi=1 pi log2 pi � mXj=1 qj log2 qj =�� nXi=1 mXj=1 rij log2 pi + mXj=1 nXi=1 rij log2 qj� =

� nXi=1 mXj=1 rij(log2 pi + log2 qj) = � nXi=1 mXj=1 rij log2(piqj)



H(X;Y)�H(X)�H(Y) = nXi=1 mXj=1 rij log2 1rij+ nXi=1 mXj=1 rij log2(piqj) =nXi=1 mXj=1 rij�log2 1rij + log2(piqj)� = nXi=1 mXj=1 rij log2 piqjrij �

log2 nXi=1 mXj=1 rij �piqjrij = log2 nXi=1 mXj=1 piqj = log2� nXi=1 pi��� mXj=1 qj�= log2 1 = 0

We used Jensen’s inequality with aij = rij and xij = piqj=rij .
Equality holds only if 9 8i 8j : piqj=rij = . Then also

nPi=1 mPj=1 piqj = nPi=1 mPj=1 rij . Both sums are equal to 1, hence  = 1, piqj = rij , and X

and Y are independent.



Theorem. H(X;Y) = H(Y) +H(XjY).
Proof. Let pi, qj , rij have the same meaning as before. ThenPr[X = xijY = yj ℄ = Pr[X = xi;Y = yj ℄Pr[Y = yj ℄ = rijqj :

H(Y) +H(XjY) = � mXj=1 qj log2 qj � nXi=1 mXj=1 qj rijqj log2 rijqj =

�� nXi=1 mXj=1 rij log2 qj + nXi=1 mXj=1 rij log2 rijqj � =

� nXi=1 mXj=1 rij log2 rij = H(X;Y)

Corollary. H(XjY) � H(X) with equality iff X and Y are indepen-

dent.



Theorem. In an encryption system, H(KjC) = H(K)+H(P)�H(C).
Proof.H(KjC) = H(K;C)�H(C) = H(P;K;C)�H(PjK;C)�H(C) =1)H(P;K;C)�H(C) = H(P;K) +H(CjP;K)�H(C) =2)H(P;K)�H(C) =3) H(P) +H(K)�H(C)

1. Ciphertext and key uniquely determine the plaintext,

hence H(PjK;C) = 0.
2. Similarly, H(CjP;K) = 0.
3. Plaintext and key are independent — the key has been chosen

beforehand and it should not influence the choice of the plaintext.



Exercises

� Show that the encryption system has perfect secrecy iffH(PjC) = H(P).� Show that H(PjC) � H(KjC).� Compute H(KjC) and H(KjP;C) for the affine cipher.



We know how to compute H(K). But what is H(P)? How to estimate

it? The possible values of P are meaningful texts. P is the set of strings

over an alphabet (of, say, 26 letters).

The entropy of a random string of letters (uniformly chosen) is log2 26 �4:70 per letter.

The entropy of a random string of letters (with probabilities of letters

as in English) is � 4:17 per letter.

But in a meaningful text, successive letters are not independent.

Let P

n be a random variable that ranges over plaintexts of length n

with probabilities of the natural language L.

If we have a large enough corpus of texts then we can compute Pr[Pn = s℄

for all s 2 �n, and also compute H(Pn).
Let C

n be the random variable ranging over n-letter ciphertexts.



The entropy HL and the redundancy RL of L (per letter) areHL = limn!1 H(Pn)n RL = 1� HLlog2 j�j

The limit exists because (H(Pn)=n)n is a decreasing sequence bounded

below by 0.
Various experiments estimate that 1:0 � HEnglish � 1:5.



We have H(Pn) � nHL = n(1�RL) log2 j�j and H(Cn) � n log2 j�j.
HenceH(KjCn) = H(K) +H(Pn)�H(Cn) � H(K)� nRL log2 j�j :

If the encryption key is chosen uniformly thenH(KjCn) � log2 jKj � nRL log2 j�j = log2 jKjj�jnRL

This inequality gives us some guarantees regarding the impossibility

of completely determining the key from a ciphertexts. This guarantee

vanishes iflog2 jKjj�jnRL � 0, jKj � j�jnRL , n � log2 jKjRL log2 j�j

If we take j�j = 26, jKj = 26! (substitution cipher) and RL = 0:75

(corresponding to HL � 1:18) then the last fraction is � 25:07. I.e.

a ciphertext created using the substitution cipher should be uniquely

decryptable if its length is at least 25.



Block ciphers

� We defined a cryptosystem as a tuple (P;C;K;E;D).� Our examples divided the plaintext to relatively short blocks and

applied ek to each of them.

– Exception: text autokey, skytale� There really were two things:

– a block cipher;

– a mode of operation.



Block ciphers

� Let � be an alphabet.� Let n 2 N be the block size/length.� A block cipher is an encryption system (P;C;K;E;D) where P =

C = �n.� Example: Shift cipher and substitution cipher: � = Z26 and n =1.



A mode of operation: Electronic Codebook (ECB)

x1 x2 x3

eK eK eK

1 2 3
In our examples, this has been the mode we used.



Properties of ECB-mode

1. Equal blocks of plaintext are encoded to equal blocks of ciphertext.

2. Reordering the ciphertext blocks still yields a something that can

be decoded without errors.

3. Bit errors in some ciphertext block do not affect the decoding of

other blocks.

4. Encoding and decoding are doable in parallel.



Cipher Block Chaining (CBC) mode

Let a binary operation � be defined on blocks. Usually it is bit-wise

XOR.
IV x1 x2 x3

eK eK eK

1 2 30



Properties of CBC-mode

1. Encoding the same plaintext twice with different values of the IV

yields different ciphertexts.

2. Reordering the blocks yields garbage as decoded plaintext after

the point of reordering. Deleting a number of blocks from the end

of the ciphertext does not yield garbage.

3. Bit errors in the i-th block affect the decoding of i-th and (i+1)-st
blocks.

Exercise: how parallelizable are encoding and decoding?



Exercise. Consider Vigenère cipher that has been employed in the

CBC-mode. How to perform a ciphertext-only attack against it?� Block length = key length.� Let � be addition modulo 26.



Cipher Feedback (CFB) mode

�
�
�
�

�
�
�
�

IV eK eK

O1
t1

x1

1
1

O2
t2

x2
20



Output feedback (OFB) mode

����

IV eK eK

O1
t1

x1
1

O2
t2

x2
20



Counter (CTR) mode

IV
y0

IV + 1
x1 y1

IV + 2
ek

x2 y2
IV + 3

ek
x3 y3

IV + 4
ek

x4 y4

ek



Properties of CFB-, OFB- and CTR-modes

Exercise: What can be said about the� determinism� resiliency to reordering of ciphertext blocks� propagation of bit errors� parallelizability of encryption and decryption

for CFB, OFB and CTR modes?



Product of encryption systems
� Given two encryption systems Si = (Pi;Ci;Ki;Ei;Di) (i 2 f1; 2g)

with the key distributed according to Ki.� We require C1 = P2.� Their product is an encryption system S1 � S2 = (P1;C2;K1 �

K2;E;D), where

– probability of getting the key (k1; k2) is Pr[K1 = k1℄ �Pr[K2 =k2℄;
– e(k1;k2)(x) = ek2(ek1(x));
– d(k1;k2)(y) = dk1(dk2(y)).



Exercises

Let: N — shift cipher; M — multiplicative shift cipher; A — affine

cipher. Show that� N�N = N;� M�M = M;� M�N = N�M = A;� A�A = A.

Let Vn be the Vigenère cipher with the key length n. What can be

said about� Vn �Vn;� Vm �Vn where m j n;� Vm �Vn in general?



More exercises
� Let N
0 be shift cipher with some skewed distribution of keys.

What is N�N

0?� Let G be group and g a uniformly chosen element of g. Show that

– g�1 is uniformly distributed;

– for a random h 2 G (with any distribution), g � h is uniformly

distributed.� Let a and b be two independently uniformly chosen elements of

some finite ring R. Is a � b uniformly distributed? What if a were

uniformly chosen from the multiplicative group R�?



“Block cipher” and Estonian language:

Rasked sõnad on plokk ja blokk. Esimese taga on inglise ja

prantsuse block ning eesti ploki tähendused on: ühtne rist-

tahukakujuline tervik, nt ehitusplokk; märkmik; otstarbelt

kokkukuuluv kogum, nt reklaamiplokk, uudisteplokk; hoonete

või ruumide rühm, nt haigla köögiplokk, operatsiooniplokk;

tõsteseadme osa; konstruktsioonilt terviklik seadiste, detailide

vm kogum, nt toiteplokk. Bloki taga on prantsuse ja inglise

sõna bloc ja tema tähendus on riikide, parteide, ühenduste

liit.

Tiiu Erelt. Need rasked võõrsõnad. Oma Keel 2001(2):38–46

Hence “plokkšiffer”.



Modern block ciphers. . .

S1;1

P1
S1;2 S1;3 S1;k

S2;1

P2
S2;2 S2;3 S2;k

Sn;1

Pn
Sn;2 Sn;3 Sn;k

K



� One round consists of

– Mixing in the key;

– Substitution on short bit-strings;

– Permutation of the entire block.� A round has to be a permutation on the entire set �n.� The entire block cipher is the product of rounds.

– though usually the round keys are not independent.



Feistel’s constructionL0 R0f K1
L1 R1f K2

L2 R2
Lr Rr

Rr Lr
� A way to specify the round functions for the

block cipher.� The definition of the block cipher must specify

the function f and the number of rounds r.
– f does not have to be a permutation.� K1,. . . ,Kr are round keys, they’re found some-

how from the key of the block cipher K.

– The key of the block cipher is usually notK1 � � �Kr, but something shorter.

Exercise. How to decrypt?



DES (Data Encryption Standard) (January 15th, 1977).� P = C = f0; 1g64.� K = f0; 1g56.� Encoding bit-string x with the key K:

1. Let x0 = IP(x), where IP is a certain permutation of bits. Let L0

[R0] be the first [last] 32 bits of x.

2. 16 rounds of Feistel construction:Li = Ri�1 Ri = Li�1 � f(Ri�1; Ki)

Here 1 � i � 16, Ki 2 f0; 1g48 consist of certain 48 bits of K.

3. Let y = IP�1(R16L16). y is the ciphertext.



f : f0; 1g32 � f0; 1g48 ! f0; 1g32. f(A; J) works as follows:

1. “Expand” A to E(A) of length 48. The function E outputs the

bits of its argument in certain order (16 bit positions occur once

and 16 occur twice).

2. Let B1 � � �B8 = E(A)� J , where Bi 2 f0; 1g6.
3. Let Ci = Si(Bi), where Si : f0; 1g6 ! f0; 1g4 is a fixed mapping.

(the S-box )

4. return P (C1 � � �C8) where P is a certain permutation of bits.



S1 S2 S3 S4 S5 S6 S7 S8

B1 B2 B3 B4 B5 B7 B8B6

C1 C2 C3 C4 C5 C6 C7 C8

A J

E(A)
P (C)

E
P



Decryption: like encryption, but round keys taken in orderK16; K15; : : : ; K1.
In the standard, the encryption key is actually 8 bytes long.� The least significant bit in each byte is a parity check bit. Not

used in actual encryption.� The number of 1-s in each byte is odd.



Exercises

� Show that DES(K;X) = �DES(�K;�X). How does that sim-

plify brute-force attacks?

– �X — bitwise complement of X.� Because of the short key length of DES, triple-DES finds use in

practice. Why isn’t double-DES used? What is the “effective key

length” of triple-DES?� Keys k1 and k2 are dual if ek1 = dk2 . Show that keys 00 � � � 0 and11 � � � 1 are both self-dual.



Differential cryptanalysis — a chosen-plaintext attack.

For reduced-round DES, it is more efficient than brute-force search.n-round DES — L0R0 7! LnRn. We ignore the bit-permutationsIP ; IP�1, nor do we swap Ln and Rn.

Idea, given two bit-strings L0R0 and L�0R�0 with a fixed xor L00R00 =L0R0 � L�0R�0, we compare the xor-s of their encryptions. This will

help us to exclude certain values for the key.

We attempt to reconstruct the xor-s of the intermediate computations.



Example: three-round DES. We’ll attack the last round.

If the plaintext is L0R0 and ciphertext is L3R3 thenR3 = L2 � f(R2; K3) = L0 � f(R0; K1)� f(R2; K3)L3 = R2 = L1 � f(R1; K2) = R0 � f(R1; K2)

Pick another plaintext L�0R�0. Then R03 = R3 �R�3 equalsR03 = L00 � f(R0; K1)� f(R�0; K1)� f(R2; K3)� f(R�2; K3)

We choose R�0 = R0. Then R00 = 0

32 andR03 = L00 � f(R2; K3)� f(R�2; K3) :



We know L00 and R03. Hence we can computef(R2; K3)� f(R�2; K3) = R03 � L00 :f(R2; K3) = P (C) and f(R�2; K3) = P (C�) for some S-box outputs C

and C�. We have C 0 = C � C� = P�1(R03 � L00).
We know R2 = L3 and R�2 = L�3. The inputs to the S-box are E(R2)�K3 and E(R�2)�K3.



R2
E(R2)

J R2 �R02

B B � E(R02)

S
P P= P (C 0)

S

E =

C 0
E(R2)� E(R02)= E�

C C�



We know E;E�; C 0 for the third round. Consider a single S-box, for

example S4.

S4
PC

R2 K3

19 20 21 22 23 24

151413 16

19 20 21 22 23 24171615141312

26 20 10 1



� R42 := R2[12; : : : ; 17℄; R�42 := R�2[12; : : : ; 17℄� K43 := K3[19; : : : ; 24℄� C 04 := C 0[26; 20; 10; 1℄K43 must be such that S4(R42 �K43 )� S4(R�42 �K43) = C 04.test i(Ei; E�i; C 0i) := fKi 2 f0; 1g6 jSi(Ei�Ki)�Si(E�i�Ki) = C 0ig

All such sets test i(Ei; E�i; C 0i) will be precomputed.

Exercise. How many such sets are there? How much memory will

they need?

Exercise. If Ki 2 test i(Ei; E�i; C 0i) then a certain �Ki is definitely

also a member of test i(Ei; E�i; C 0i). Which one?



We have excluded certain 6-bit strings from the values of Ki3 for i 2f1; : : : ; 8g.
By considering more pairs L0R0 and L�0R�0 we’ll exclude more. Even-

tually we’ll converge on a single value.

The subkey K3 consists of 48 bits. We’ll brute-force the remaining 8.



We chose L0R0 and L�0R�0 so, that R0 � R�0 = 0000000016.
What if we had chosen differently, say R0 � R�0 = 2000000016?R03 = L00 � f(R0; K1)� f(R�0; K1)� f(R2; K3)� f(R�2; K3)

Before we had f(R0; K1)� f(R�0; K1) = 0000000016. What is its value

now?

Only the inputs to the first S-box are different. Only the outputs of

the first S-box are different, too.

The permutation P maps 4 first bits to positions [9; 17; 23; 31℄.f(R0; K1)� f(R�0; K1) = 00000000?0000000?00000?0000000?02P (C 0) = f(R2; K3) � f(R�2; K3) still equals R03 � L00, except for bits9; 17; 23; 31.C 0 still equals P�1(R03 � L00), except for bits 1; 2; 3; 4.
We cannot argue about K13 . We still can argue about K23 ; : : : ; K83 .



Example: six-round DES.R6 = R4 � f(R5; K6) = L3 � f(R3; K4)� f(R5; K6)R06 = L03 � f(R3; K4)� f(R�3; K4)� f(R5; K6)� f(R�5; K6)

We try to find K6.
We do not know L03 nor R03. But we can choose L00R00 so that certain

values are highly likely.

We try to make so, that this highly likely value for R03 has just a few

bits equal to 1.



A one-round characteristic is a quantityL00R00 p1! L01R01

where� L01 = R00;� For any choice of L0; R0, the quantity p1 is the probability that

(taken over uniformly chosen J 2 f0; 1g48)�L0 � f(R0; J)�� �(L0 � L00)� f(R0 �R00; J)� = R01

or that f(R0; J)� f(R0 �R00; J) = R01 � L00 :
That probability does not depend on R0 either.



R0
E(R0)

J R0 �R00

B B �E(R00)

S
P P?= R01 � L00

S
E(R0)�E(R00)



R0
E(R0)

J R0 �R00

B B �E(R00)

S
P P?= R01 � L00

S
E(R0)�E(R00)

Pr[f(R0; J)� f(R0 �R00; J) = R01 � L00 j J 2R f0; 1g48℄ =Pr[P (S(B))�P (S(B�E(R00))) = R01�L00 jB 2R f0; 1g48℄



An n-round characteristic isL00R00 p1! L01R01 p2! � � � pn! L0nR0n

where each L0i�1R0i�1 pi! L0iR0i is a one-round characteristic.

The probability of such a characteristic is p1 � � � pn.



Some one-round characteristics:xxxxxxxx 16j0000000016 1! 0000000016jxxxxxxxx 160000000016j6000000016 14=64! 6000000016j0080820016

Second example: E(R00) = 001100 � � � 02. Hence the inputs to S-boxesS2; : : : ; S8 are equal, but the inputs to S1 differ by 001100.
The probability that the outputs to S1 differ by x 2 f0; 1g4 isjfB 2 f0; 1g6 jS1(B)� S1(B � 0011002) = xgj64 :

If x = 11102 then this quantity equals 14=64.
The output difference of S-boxes is 111000 � � � 02 with probability 14=64.
The bit-permutation P brings those three 1-s to the positions shown

above.



Example: six-round DES.R6 = R4 � f(R5; K6) = L3 � f(R3; K4)� f(R5; K6)R06 = L03 � f(R3; K4)� f(R�3; K4)� f(R5; K6)� f(R�5; K6)

We try to find K6.
A three-round characteristic:4008000016j0400000016 1=4! 0400000016j0000000016 1!0000000016j0400000016 1=4! 0400000016j4008000016

If L00R00 = 4008000016j0400000016 thenL03R03 = 0400000016j4008000016 with probability 1=16.
Assume that this happens, i.e. we know L03 and R03. We also know R06

and R05 = L06.



E(R03) = 001000j000000j000001j010000j0 � � � 0. I.e. the input (and also

output) xor-s to S2; S5; S6; S7; S8 in the fourth round are zero. We try

to find the corresponding 30 bits of K6.
R06 = L03 � f(R3; K4)� f(R�3; K4)� f(R5; K6)� f(R�5; K6)

and certain 20 bits of f(R3; K4) and f(R�3; K4) are equal. These 20

bits in f(R5; K6)� f(R�5; K6) are equal to the same bits in R06.
We know the output xor-s of S2; S5; S6; S7; S8 in the sixth round. We

also know the inputs to these S-boxes (as we know R5 = L6 andR�5 = L�6).



We know the triplesEi; E�i ; C 0i for the sixth round, where i 2 f2; 5; 6; 7; 8g.
We can compute the sets test i and find the candidate keys.

We also get noise (because our certainty in L03R03 was only 1=16), but

the right key should stick out.

To find the right key more quickly:

We have the plaintext pairs (x1; x�1); : : : ; (xN ; x�N) with xi�x�i = L00R00.
Each of these pairs defines a quintuple of sets(test (i)2 ; test (i)5 ; test (i)6 ; test (i)7 ; test (i)8 ).
For each i: if this quintuple of sets contains the empty set, then discard

it.



A set fi1; : : : ; ing � f1; : : : ; Ng is allowable ifn\k=1 test (ik)j 6= ; for all j 2 f2; 5; 6; 7; 8g :

We search for an allowable set of maximum cardinality (using back-

tracking).

We have found 30 bits of the key. The characteristic0020000816j0000040016 1=4! 0000040016j0000000016 1!0000000016j0000040016 1=4! 0000040016j0020000816

allows us to find further 12 (those corresponding to the inputs of S1

and S4). The remaining 14 bits can be brute-forced.



A two-round characteristic:1960000016j0000000016 1! 0000000016j196000001614�8�10=(64)3��������! 1960000016j0000000016

The second fraction is about 1=234. Iterating this characteristic 6.5

times gives a 13-round characteristic of probability 1=2346. This is the

best-known characteristic for cryptanalysing full 16-round DES.



Linear cryptanalysis.

Let the key K be fixed. What is the probability p ofPi1 � � � � � Pir � Cj1 � � � � � Cjs �Kk1 � � � � �Kkt = 1

where P and C are the plaintext and ciphertext and Xi is the i-th bit

of X? The indices i?; j?; k? are fixed. The plaintext P is uniformly

distributed.� For an “ideal” cipher: 1=2.� If (say) p > 1=2, then there is a known-plaintext attack:

– Obtain sufficiently many pairs (P;C).
– Compute Pi1 � � � � � Pir � Cj1 � � � � � Cjs .
– If the computed bit is 1 for more than half of pairs (P;C), thenKk1 � � � � �Kkt = 0. Otherwise Kk1 � � � � �Kkt = 1.



� From the construction of the cipher we find the indicesi1; : : : ; ir; j1; : : : ; js; k1; : : : ; kt for which the probability p is as far

from 1=2 as possible.� We need several such tuples to determine several bits of the key.� To break the cipher, we need O(jp � 1=2j2) plaintext-ciphertext

pairs.


