DES (Data Encryption Standard) (January 15th, 1977).

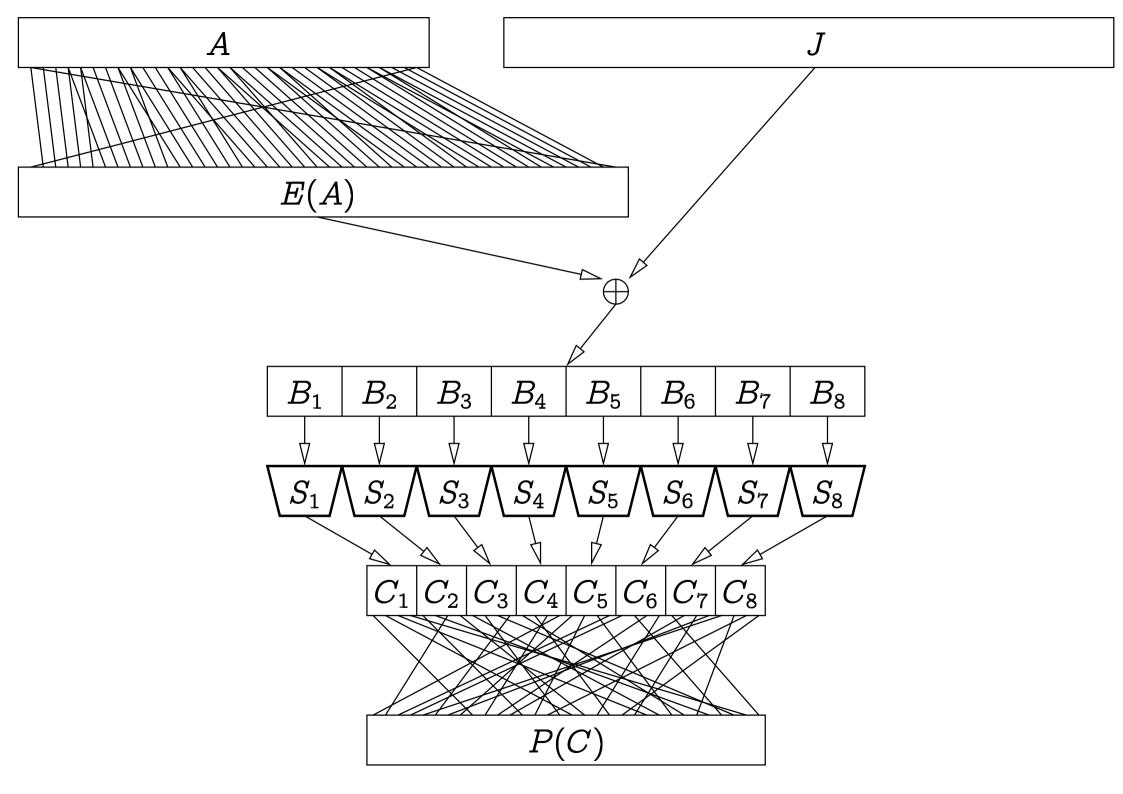
- $\mathcal{P} = \mathcal{C} = \{0, 1\}^{64}$.
- $\mathcal{K} = \{0, 1\}^{56}$.
- Encoding bit-string x with the key K:
 - 1. Let $x_0 = IP(x)$, where IP is a certain permutation of bits. Let $L_0[R_0]$ be the first [last] 32 bits of x.
 - 2. 16 rounds of Feistel construction:

$$L_i=R_{i-1} \qquad R_i=L_{i-1}\oplus f(R_{i-1},K_i)$$

Here $1 \le i \le 16$, $K_i \in \{0, 1\}^{48}$ consist of certain 48 bits of K.

3. Let $y = IP^{-1}(R_{16}L_{16})$. y is the ciphertext.

- $f: \{0,1\}^{32} \times \{0,1\}^{48} \rightarrow \{0,1\}^{32}$. f(A,J) works as follows:
 - 1. "Expand" A to E(A) of length 48. The function E outputs the bits of its argument in certain order (16 bit positions occur once and 16 occur twice).
 - 2. Let $B_1 \cdots B_8 = E(A) \oplus J$, where $B_i \in \{0, 1\}^6$.
 - 3. Let $C_i = S_i(B_i)$, where $S_i : \{0,1\}^6 \to \{0,1\}^4$ is a fixed mapping. (the S-box)
 - 4. return $P(C_1 \cdots C_8)$ where P is a certain permutation of bits.



Decryption: like encryption, but round keys taken in order $K_{16}, K_{15}, \ldots, K_1$.

In the standard, the encryption key is actually 8 bytes long.

- The least significant bit in each byte is a parity check bit. Not used in actual encryption.
- The number of 1-s in each byte is odd.

Differential cryptanalysis — a chosen-plaintext attack.

For reduced-round DES, it is more efficient than bruteforce search.

n-round DES — $L_0R_0 \mapsto L_nR_n$. We ignore the bit-permutations IP, IP^{-1} , nor do we swap L_n and R_n .

Idea, given two bit-strings L_0R_0 and $L_0^*R_0^*$ with a fixed xor $L_0'R_0' = L_0R_0 \oplus L_0^*R_0^*$, we compare the xor-s of their encryptions. This will help us to exclude certain values for the key.

We attempt to reconstruct the xor-s of the intermediate computations.

Let $B' \in \{0,1\}^6$ and $1 \le j \le 8$. For all $B \in \{0,1\}^6$ consider the value $S_j(B) \oplus S_j(B \oplus B')$.

- The pairs $(B, B \oplus B')$ range over all possible pairs of six-bit strings with xor B'.
- The bit-strings $S_j(B) \oplus S_j(B \oplus B')$ range over four-bit strings.
 - Typically, not all four-bit strings are achieved.
 - If the output xor of an S-box is C' then certain input xor-s are excluded.

For
$$B'\in\{0,1\}^6,\,C'\in\{0,1\}^4 \text{ and } j\in\{1,\ldots,8\} \text{ define}$$
 $IN_j(B',C')=\{B\in\{0,1\}^6\,|\,S_j(B)\oplus S_j(B\oplus B')=C'\}$ $N_j(B',C')=|IN_j(B',C')|$

The sets $IN_j(B', C')$ can be computed from the definition of S-boxes. There are 8192 such sets — not too many.

About a fifth of the sets $IN_j(B', C')$ is empty.

Let now $B, B^* \in \{0, 1\}^{48}$ be two inputs to (all) S-boxes in a computation of f with $B' = B \oplus B^*$. Then

$$B' = B \oplus B^* = E(A) \oplus J \oplus E(A^*) \oplus J = E(A) \oplus E(A^*)$$

Denote E(A) by E and $E(A^*)$ by E^* . We see that B' does not depend on J. If C = S(B) and $C^* = S(B^*)$ then $C' = C \oplus C^*$ depends on J.

Let

$$test_j(E_j,E_j^*,C_j')=\{B_j\oplus E_j\,|\,B_j\in IN_j(E_j',C_j')\}$$

where $E_j, E_j^* \in \{0,1\}^6$, $C_j' \in \{0,1\}^4$ and $E_j' = E_j \oplus E_j^*$.

Theorem. Let E_j, E_j^* be two inputs to the S-box S_j (before being xor-ed with the key bits J_j). Let C_j' be the output xor of these inputs. Then $J_j \in test_j(E_j, E_j^*, C_j')$.

To obtain a unique result, use several triples E, E^*, C' .

Example: three-round DES. If the plaintext is L_0R_0 and ciphertext is L_3R_3 then

$$R_3 = L_2 \oplus f(R_2, K_3) = L_0 \oplus f(R_0, K_1) \oplus f(R_2, K_3)$$
 $L_3 = R_2 = L_1 \oplus f(R_1, K_2) = R_0 \oplus f(R_1, K_2)$

Pick another plaintext $L_0^*R_0^*$. Then $R_3'=R_3\oplus R_3^*$ equals

$$R_3' = L_0' \oplus f(R_0, K_1) \oplus f(R_0^*, K_1) \oplus f(R_2, K_3) \oplus f(R_2^*, K_3)$$

We choose $R_0^* = R_0$. Then $R_0' = 0^{32}$ and

$$R_3' = L_0' \oplus f(R_2, K_3) \oplus f(R_2^*, K_3)$$
.

We know L'_0 and R'_3 . Hence we can compute

$$f(R_2,K_3) \oplus f(R_2^*,K_3) = R_3' \oplus L_0'$$
.

 $f(R_2, K_3) = P(C)$ and $f(R_2^*, K_3) = P(C^*)$ for some S-box outputs C and C^* . We have $C' = C \oplus C^* = P^{-1}(R_3' \oplus L_0')$.

We know $R_2 = L_3$ and $R_2^* = L_3^*$. The inputs to the S-box are $E(R_2) \oplus K_3$ and $E(R_2^*) \oplus K_3$.

We know E, E^*, C' for the third round. We can compute the sets $test_1, \ldots, test_8$ and construct candidate round keys K_3 .

Using several such triples E, E^*, C' we narrow down the set of candidate round keys K_3 .

A one-round characteristic is a quantity

$$L_0'R_0'\stackrel{p_1}{
ightarrow}L_1'R_1'$$

where

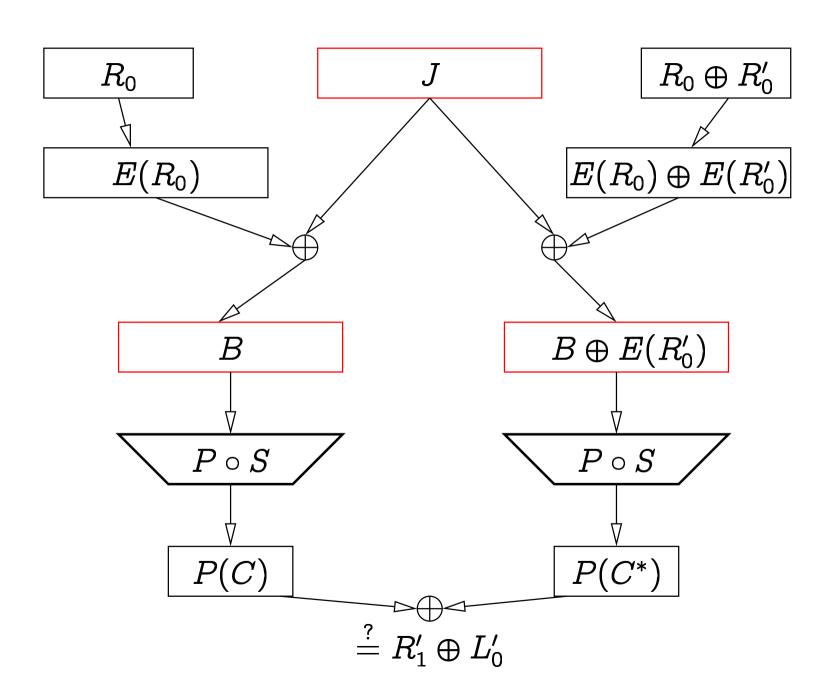
- $L'_1 = R'_0$;
- For any choice of L_0 , R_0 , the quantity p_1 is the probability that (taken over uniformly chosen $J \in \{0, 1\}^{48}$)

$$\big(L_0 \oplus f(R_0,J)\big) \oplus \big((L_0 \oplus L_0') \oplus f(R_0 \oplus R_0',J)\big) = R_1'$$

or that

$$f(R_0,J)\oplus f(R_0\oplus R_0',J)=R_1'\oplus L_0'.$$

That probability does not depend on R_0 either.



 p_1 is the probability that

$$S(B) \oplus S(B \oplus E(R'_0)) = P^{-1}(R'_1) \oplus P^{-1}(L'_0)$$

where $B \in \{0, 1\}^{48}$ has been uniformly chosen.

An *n*-round characteristic is

$$L_0'R_0' \stackrel{p_1}{
ightarrow} L_1'R_1' \stackrel{p_2}{
ightarrow} \cdots \stackrel{p_n}{
ightarrow} L_n'R_n'$$

where each $L'_{i-1}R'_{i-1} \stackrel{p_i}{\to} L'_iR'_i$ is a one-round characteristic.

The probability of such a characteristic is $p_1 \cdots p_n$.

Some one-round characteristics:

Second example: $E(R'_0) = 001100 \cdots 0_2$. Hence the inputs to S-boxes S_2, \ldots, S_8 are equal, but the inputs to S_1 differ by 001100.

The probability that the outputs to S_1 differ by $x \in \{0, 1\}^4$ is $N_1(001100_2, x)/64$. In particular, $N_1(001100_2, 1110_2) = 14$.

The output difference of S-boxes is $111000 \cdots 0_2$ with probability 14/64. The bit-permutation P brings those three 1-s to the positions shown above.

Example: six-round DES.

$$R_6 = R_4 \oplus f(R_5, K_6) = L_3 \oplus f(R_3, K_4) \oplus f(R_5, K_6)$$
 $R_6' = L_3' \oplus f(R_3, K_4) \oplus f(R_3^*, K_4) \oplus f(R_5, K_6) \oplus f(R_5^*, K_6)$ We try to find K_6 .

A three-round characteristic:

$$40080000_{16}|04000000_{16}\stackrel{1/4}{\to}04000000_{16}|00000000_{16}\stackrel{1}{\to}$$

$$00000000_{16}|04000000_{16}\stackrel{1/4}{\to}04000000_{16}|40080000_{16}$$

If $L'_0R'_0 = 40080000_{16}|04000000_{16}|$ then $L'_3R'_3 = 04000000_{16}|40080000_{16}|$ with probability 1/16.

Assume that this happens, i.e. we know L'_3 and R'_3 . We also know R'_6 and $R'_5 = L'_6$.

 $E(R_3') = 001000|000000|000001|010000|0 \cdots 0$. I.e. the input (and also output) xor-s to S_2, S_5, S_6, S_7, S_8 in the fourth round are zero. We try to find the corresponding 30 bits of K_6 .

$$R_6' = L_3' \oplus f(R_3, K_4) \oplus f(R_3^*, K_4) \oplus f(R_5, K_6) \oplus f(R_5^*, K_6)$$

and certain 20 bits of $f(R_3, K_4)$ and $f(R_3^*, K_4)$ are equal. These 20 bits in $f(R_5, K_6) \oplus f(R_5^*, K_6)$ are equal to the same bits in R_6' .

We know the output xor-s of S_2 , S_5 , S_6 , S_7 , S_8 in the sixth round. We also know the inputs to these S-boxes (as we know $R_5 = L_6$ and $R_5^* = L_6^*$).

We know the triples E_i, E_i^*, C_i' for the sixth round, where $i \in \{2, 5, 6, 7, 8\}$. We can compute the sets $test_i$ and find the candidate keys.

We also get noise (because our certainty in $L'_3R'_3$ was only 1/16), but the right key should stick out.

To find the right key more quickly:

We have the plaintext pairs $(x_1, x_1^*), \ldots, (x_N, x_N^*)$ with $x_i \oplus x_i^* = L_0' R_0'$.

Each of these pairs defines a quintuple of sets $(test_2^{(i)}, test_5^{(i)}, test_6^{(i)}, test_7^{(i)}, test_8^{(i)}).$

For each i: if this quintuple of sets contains the empty set, then discard it.

A set
$$\{i_1,\ldots,i_n\}\subseteq\{1,\ldots,N\}$$
 is allowable if $\bigcap_{k=1}^n test_j^{(i_k)}
eq \emptyset$ for all $j\in\{2,5,6,7,8\}$.

We search for an allowable set of maximum cardinality (using backtracking).

We have found 30 bits of the key. The characteristic

$$00200008_{16}|00000400_{16}\stackrel{1/4}{\to}00000400_{16}|00000000_{16}\stackrel{1}{\to}$$

$$0000000_{16}|00000400_{16}\stackrel{1/4}{\to}00000400_{16}|00200008_{16}$$

allows us to find further 12 (those corresponding to the inputs of S_1 and S_4). The remaining 14 bits can be brute-forced.

A two-round characteristic:

$$\begin{array}{c} 19600000_{16}|0000000_{16} \stackrel{1}{\to} 00000000_{16}|19600000_{16}| \\ \\ \stackrel{14\cdot 8\cdot 10/(64)^3}{\longrightarrow} 19600000_{16}|00000000_{16}| \end{array}$$

The second fraction is about 1/234. Iterating this characteristic 6.5 times gives a 13-round characteristic of probability $1/234^6$. This is the best-known characteristic for cryptanalysing full 16-round DES.