Universal ComposabilityaliasReactive Simulatability

Recap: secure MPC

We have seen:

- 2-party, computational, semi-honest, constant-round.
- ■ $\qquad \qquad \blacksquare \quad$ 2- or n -party, computational, semi-honest $(< n)$, linear-round.
	- n -party, unconditional, semi-honest $(< n/2)$, linear-round.
- n -party, computational, malicious $(< n/2)$, constant-round. ■
	- n -party, unconditional, malicious $(< n/3)$, linear-round.
		- ◆ \blacklozenge Possible to have less than $n/2$ malicious parties, using ZK-techniques to convince other parties that you behave asprescribed.
		- ◆Has exponentially small probability of failure.

What we have not seen

■ Secure MPC with malicious majority ($\ge n/2$ malicious parties)

- ◆Possible only in the computational setting
- ◆ In the beginning, commit to your randomness. During computation, prove (in ZK) that you are using the committedrandomness.
- ◆Malicious parties can interrupt the protocol.
- Asynchronous MPC
	- ◆ All messages arbitrarily delayed, but eventually delivered.
		- The delays are not controlled by the adversary.
	- ◆No difference in semi-honest case.
	- ◆ \blacklozenge With fail-stop adversary need $< n/3$ corrupted parties.
	- ◆ \blacklozenge With malicious adversary need $< n/4$ corrupted parties.
		- \blacksquare \ldots with unconditional security.

On security definitions

- Real vs. ideal functionality. . .
- \blacksquare The ideal functionality for computing the function f with n inputs and outputs:
	- ◆ \blacklozenge Parties P_1, \ldots, P_n hand their inputs x_1, \ldots, x_n $_n$ over to the functionality.
	- \blacklozenge The ideal functionality computes $(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)$.
		- \blacksquare \ldots tossing coins if f is randomized.
	- ◆ \blacklozenge The ideal functionality sends y_i to $P_i.$

Ideal functionality $MPC^{\textsf{Ideal}}_{n}$

- Has n input ports and n output ports.
- Initial state: x_1, \ldots, x_n are undefined.
- ■On input (input, v) from port in_i ?:
	- \blacklozenge If x_i is defined, then do nothing.
	- ◆ \blacklozenge If x_i is not defined, then set $x_i := v$.
- If x_1, \ldots, x_n are all defined then compute (y_1, \ldots, y_n) .
■ For all i , write u_i to port $\mathit{out}_i!$. For all i, write y_i to port $out_i!$.

Ideal functionality $MPC^{\textsf{Ideal}}_{n}$

- Has n input ports and n output ports.
- Initial state: x_1, \ldots, x_n are undefined.
- ■On input (input, v) from port in_i ?:
	- \blacklozenge If x_i is defined, then do nothing.
	- ◆ \blacklozenge If x_i is not defined, then set $x_i := v$.
- If x_1, \ldots, x_n are all defined then compute (y_1, \ldots, y_n) .
■ For all i , write u_i to port $\mathit{out}_i!$. For all i, write y_i to port $out_i!$.

How do we run it (connections, scheduling)? What it means for ^a partyto be corrupted?

Real functionality $MPC_{n}^{\textbf{Real}}$

- Conceptually made up of n identical machines P_i .
	- ◆Has ports in_i ?, out_i !, network ports...
- Initialization: P_i learns his name i.
- **On input** (input, v) from port in_i ? put $x_i := v$ and start executing the MPC protocol. . .
- ■If the protocol has finished execution then write y_i to $out_i!$.

Real functionality $MPC_{n}^{\textbf{Real}}$

- Conceptually made up of n identical machines P_i .
	- ◆Has ports $in_i?$, $out_i!$, network ports...
- Initialization: P_i learns his name i.
- **On input** (input, v) from port in_i ? put $x_i := v$ and start executing the MPC protocol. . .
- ■If the protocol has finished execution then write y_i to $out_i!$.
- ■Cannot speak about the indistinguishability of MPC^{Ideal} and MPC^{Real} because the set of ports is different.
	- ◆ We have to simulate something...

Reactive functionalities

- MPC ^{Ideal} worked like this:
	- ◆ Get the inputs

■

■

■

- ◆Give the outputs
- MPC ^{Ideal} is non-reactive.
- ^A reactive functionality gets some inputs, produces some outputs, gets some more inputs, produces some more outputs, etc.
	- ◆ \blacklozenge Example: secure channel from A to B .
	- Further inputs may depend on the previous outputs.
		- ◆Or on the messages sent during the processing of previous inputs.

Probabilistic I/O automata

 $\begin{array}{c} \mathsf{A}\ \mathsf{PIOA}\ M\ \mathsf{has} \end{array}$

- \blacksquare The set of possible states Q^M ;
- \blacksquare The initial state $q_0^M \in Q^M$ ■M $Q_0^M\in Q^M$ and final states Q_F^M $^{M}_{F}\subseteq Q^{M};$

,

,

- The sets of ports:
	- \bullet input ports \mathbf{IPorts}^M
	- \bullet output ports \mathbf{OPorts}^M
	- \blacklozenge clocking ports \mathbf{CPorts}^M ;

 \blacksquare A probabilistic transition function δ^M :

- ◆ domain: $Q^M \times \textbf{IPorts}^M \times \{0,1\}^*$;
- $\lambda = \frac{1}{2}$ ◆ \blacklozenge range: $Q^M \times (\mathbf{OPorts}^M)$ $\rightarrow(\{0,1\}^*$)∗ $^{\ast})\times(\mathbf{CPorts}^{M}\cup\{\perp\})$
- . . . in our examples implemented by ^a PPT algorithm.
- \blacklozenge Q^M parameter., Q_F^M $\,F$ $\mathop{F}\limits^M_{{\Gamma}}$ and q M0 $_0^{M}$ may (uniformly) depend on the security

^A transition of ^a PIOA

- \blacksquare The type of δ^M tells us some things about an execution step of a PIOA:
	- ◆Input: one message from one of the input ports.
	- ◆Output: ^a list of messages for each of the output ports.
	- ◆Also output: ^a choice of zero or one clocking ports.
	- The internal state may change, too.

■

Channels and collections

- ^A set Chans of channel names is ^given.
- There is a distinguished $\mathit{clk} \in \mathbf{Chans}$, representing global clock.
- ■ \blacksquare For a channel c , its input, output and clocking ports are $c?$, $c!$ and c^{\triangleleft} ⊴!.
- ■A closed collection C is a set of PIOAs, such that
	- ◆ no port is repeated;

■

- ◆ For each $c \in \mathbf{Chans} \backslash \{ \textit{clk} \}$ occurring in C : the ports c ?, c ! and c^{\triangleleft} $^\triangleleft$! are all present. !
- \blacklozenge $clk?$ is present. $clk!$ and clk^{\triangleleft} ! ! are not present.
- A collection C is a set of PIOAs that can be extended to a closed collection.
	- \blacklozenge Let freeports (C) be the set of ports that the machines in C' certainly must have for $C\cup C'$ to be a closed collection.

Example closed collection

Internal state of ^a closed collection

The state of a closed collection C consists of

- \blacksquare the states of all PIOA-s in $C;$
	- ◆ \blacklozenge Initially q $\,M$ 0 $_0^M$ for all $M \in C$.
- \blacksquare the message queues of all channels c in $C;$
	- ◆I.e. sequences of (still undelivered) messages.
	- ◆ \blacklozenge Initially the empty queues for all $c \in C$.
- \blacksquare the currently running PIOA M , its input message v and channel c .
	- ◆ \blacklozenge Initially X , ε and clk , where X is the machine with the port $clk?$.

Execution step of ^a closed collection

- \blacksquare Invoke the transition function of M with message v on input port c ?.
	- \blacklozenge Update the internal state of M .
	- \blacklozenge If (v_1, \ldots, v_k) was written to port c' the end of the message queue of $c^{\prime}.$!
! ! then append v_1, \ldots, v_k to
- \blacksquare If M is X and it reached the final state then stop the execution.
 \blacksquare Otherwise, if M picked a clock port c'^{\triangleleft} and the queue of c' is n ■ \blacksquare Otherwise, if M picked a clock port c
empty then define the new (M, v, c) : empty, then define the new (M, v, c) : ′⊳ ! ! and the queue of c^\prime is not
	- \bullet c is c' ;
;
	- $\blacklozenge\hspace{10pt} v$ is the first message in the queue of c' , which is removed from the queue;
	- \blacklozenge M is the machine with the port c' ?.
- **Otherwise set** $(M, v, c) := (X, \varepsilon, \text{clk}).$

Trace of the execution

Each execution step adds ^a tuple consisting of

- the machine that made the step;
- ■the incoming message and the channel;
- the random coins that were generated and the new state and messages that were produced.

to the end of the trace so far.

The semantics of ^a closed collection is ^a probability distribution over traces (for ^a ^given security parameter).

Trace of the execution

Each execution step adds ^a tuple consisting of

- the machine that made the step;
- ■the incoming message and the channel;
- the random coins that were generated and the new state and messages that were produced.

to the end of the trace so far.

The semantics of ^a closed collection is ^a probability distribution over traces (for ^a ^given security parameter).

Given trace tr and a set of machines ${\mathcal{M}}$, the restriction of the trace $tr|_{{\mathcal{M}}}$ consists of only those tuples where the machine belongs to $\mathcal M.$

Combining PIOAs

The combination of PIOAs M_1,\ldots,M_k is a PIOA M with

\n- the state space
$$
Q^M = Q^{M_1} \times \cdots \times Q^{M_k}
$$
;
\n- initial state $q_0^M = (q_0^{M_1}, \ldots, q^{M_k})$;
\n- final states $Q_F^M = \bigcup_i Q^{M_1} \times \cdots \times Q^{M_{i-1}} \times Q_F^{M_i} \times Q^{M_{i+1}} \times \cdots \times Q^{M_k}$;
\n- ports $\mathbf{XPorts}^M = \bigcup_i \mathbf{XPorts}^{M_i}$ with $\mathbf{X} \in \{\mathbf{I}, \mathbf{O}, \mathbf{C}\}$;
\n- Transition function δ^M , where $\delta^M((q_1, \ldots, q_k), c^2, v)$ is evaluated by
\n

• Let *i* be such that
$$
c
$$
? \in **IPorts** ^{M_i}

$$
\bullet \quad \text{Evaluate } (q'_i, f_i, p) \leftarrow \delta^{M_i}(q_i, c^2, v).
$$

◆ Output $((q_1, \ldots, q_{i-1}, q'_i, q_{i+1}, \ldots, q_k), f, p)$, where

$$
f(c') = \begin{cases} f'(c')', & \text{if } c' \in \textbf{OPorts}^{M_i} \\ \varepsilon, & \text{otherwise.} \end{cases}
$$

.

Exercise. How does the semantics of a closed collection change if we replace certain machines in this collection with their combination?

Security-oriented structures

- A structure consists of
- \bullet a collection C ;
- \blacklozenge a set of ports $\mathsf{S} \subseteq \mathsf{freeports}(C)$.
	- \blacksquare C offers the intended service on S.
	- \blacksquare The ports freeports $(C)\backslash {\sf S}$ are for the adversary.
- A system is a set of structures.
- ■A configuration consists of a structure (C, S) and two PIOA-s H and
A such that ^A, such that
	- \blacklozenge H has no ports in freeports $(C)\backslash S$,
	- ◆ $C \cup \{H, A\}$ is a closed collection.
- \blacksquare Let $\mathbf{Confs}(C, \mathsf{S})$ be the set of pairs (H, A) , such that (C, S, H, A) is ^a configuration.

Exercise. What parts of (C, S) determine $\mathbf{Confs}(C, \mathsf{S})$?

Reactive simulatability

- ■ \blacksquare Let (C_1, S) and (C_0, S) be two structures. \blacksquare (C_1, S) is at least as secure as (C_0, S) if \blacklozenge for all H , ◆◆ for all A, such that $(H, A) \in \text{Confs}(C_1, S)$ ◆ exists S, such that $(H, S) \in \text{Confs}(C_0, S)$ ◆such that $[\![C_{1}$ We also say that (C_0, S) simulates (C_1, S) . $[[\Box \cup \{H, A\}]]_H \approx [[C_0 \cup \{H, S\}]]_H.$ ■ The simulatability is universal if the order of quantifiers is $\forall A \exists S \forall H$. ■The simulatability is black-box if
	- ◆there exists a PIOA Sim , such that
	- ◆◆ for all $(H, A) \in \text{Confs}(C_1, S)$ holds

 $(H, A \| Sim) \in \mathbf{Confs}(C_0, S)$ and $[\![C_1]\!]$ $[[\mathcal{A} \cup \{H, A\}]]|_H \approx [[C_0 \cup \{H, A, Sim\}]]|_H.$

Exercise. Show that universal and black-box simulatability are equivalent (if the port names do not collide).

Simulatability for systems

 \blacksquare A system Sys 1 $\frac{1}{1}$ is at least as secure as a system Sys 0 $_{0}$ if for all structures $(C_1, \mathsf{S})\in Sys$ such that (C_1,S) is at least as secure as $(C_0,\mathsf{S}).$ 1 $_1$ there exists a structure $(C_0, \mathsf{S}) \in Sys$ 0,

Example: secure channels for \boldsymbol{n} n parties

- \blacksquare Ideal PIOA ${\mathfrak I}$ has ports $in_i?$ and $out_i!$ for communicating with the i -th party. !
- ■ $\qquad \qquad \blacksquare \quad \textsf{Input} \ (j,M) \ \textsf{on} \ \ in \ \ \blacksquare$ $_i?$ causes (i,M) to be written to $\mathit{out}_j!$.

■

 \blacksquare Should model API calls, hence it also has the ports out_i $\it i$ ⊳ $\triangleleft\mathsf{l}$.

Example: secure channels for \boldsymbol{n} n parties

- \blacksquare Ideal PIOA ${\mathfrak I}$ has ports $in_i?$ and $out_i!$ for communicating with the i -th party. !
- ■ $\qquad \qquad \blacksquare \quad \textsf{Input} \ (j,M) \ \textsf{on} \ \ in \ \ \blacksquare$ $_i?$ causes (i,M) to be written to $\mathit{out}_j!$.

■

- **Should model API calls, hence it also has the ports** out_i $\it i$ ⊳ $\triangleleft\mathsf{l}$.
- ■ Real structure uses public-key cryptography to provide confidentiality and authenticity.
	- ◆ \blacklozenge Message M from i to j encoded as $\mathcal{E}_j(\mathsf{sig}_i(M)).$
- \blacksquare Consists of PIOA-s $M_1,\ldots,M_n.$ M_i has ports $in_i?$ and $out_i!.$ M_i has ports $net_i^{\rightarrow}!$, $net_i^{\rightarrow\lhd}!$ and net_i^{\leftarrow} ? for (inse ■ \overrightarrow{i} !, net \overrightarrow{i} \blacksquare Public keys are distributed over authentic channels. $\it i$ ⊳ $\triangleleft!$ and net_i^{\leftarrow} ! \overleftarrow{i} ? for (insecure) networking.
	- ◆ M_i has ports $\mathit{aut}_{i,j}^\rightarrow$ $\overrightarrow{i,j}!$, au $t^{\mathbf{a}}_{i_j}$ communicating with party $M_j.$ $_{i,j}^{\mathrm{a}}!$ and $\mathit{aut}^{\mathrm{a}}_j$! j,i ? for authentically
	- M_i always writes identical messages to $\mathit{aut}_{i,j}^{\rightarrow}$ ◆ $\overrightarrow{i,j}!$ and $\overrightarrow{aut^a_{i,j}}$! i,j !.

Example: secure channels for \boldsymbol{n} n parties

- \blacksquare Ideal PIOA ${\mathfrak I}$ has ports $in_i?$ and $out_i!$ for communicating with the i -th party. !
- ■ $\qquad \qquad \blacksquare \quad \textsf{Input} \ (j,M) \ \textsf{on} \ \ in \ \ \blacksquare$ $_i?$ causes (i,M) to be written to $\mathit{out}_j!$.

■

- \blacksquare Should model API calls, hence it also has the ports out $\it i$ ⊳ $\triangleleft\mathsf{l}$.
- ■ Real structure uses public-key cryptography to provide confidentiality and authenticity.
	- ◆ \blacklozenge Message M from i to j encoded as $\mathcal{E}_j(\mathsf{sig}_i(M)).$
- \blacksquare Consists of PIOA-s $M_1,\ldots,M_n.$ M_i has ports $in_i?$ and $out_i!.$ M_i has ports $net_i^{\rightarrow}!$, $net_i^{\rightarrow\lhd}!$ and net_i^{\leftarrow} ? for (inse ■ \overrightarrow{i} !, net \overrightarrow{i} \blacksquare Public keys are distributed over authentic channels. $\it i$ ⊳ $\triangleleft!$ and net_i^{\leftarrow} ! \overleftarrow{i} ? for (insecure) networking.
	- ◆ M_i has ports $\mathit{aut}_{i,j}^\rightarrow$ $\overrightarrow{i,j}!$, au $t^{\mathbf{a}}_{i_j}$ communicating with party $M_j.$ $_{i,j}^{\mathrm{a}}!$ and $\mathit{aut}^{\mathrm{a}}_j$! j,i ? for authentically
	- M_i always writes identical messages to $\mathit{aut}_{i,j}^{\rightarrow}$ ◆ $\overrightarrow{i,j}!$ and $\overrightarrow{aut^a_{i,j}}$! i,j !
.

 \blacksquare S $=$ $\{ {\it in}_1!, \ldots , {\it in}_n!, {\it in}_1$ ⊳ $^{ \triangleleft}!, \ldots, in_n$ ⊳ $\{1, out_1?, \ldots, out_n?\}.$

$\mathfrak I$ is way too ideal

- Sending ^a message without initialization.
	- ◆ generating keys and distributing the public keys.
- Sending messages without delays. Guaranteed transmission. Traffic analysis.
- Concealing the length of messages.
- ■Transmitting only a number of messages polynomial to η .

$\mathfrak I$ is way too ideal

Sending ^a message without initialization.

- Sending messages without delays. Guaranteed transmission. Traffic analysis.
- Concealing the length of messages.
- ■Transmitting only a number of messages polynomial to η .

To simplify the presentation, we'll also

 Allow reordering and repetition of messages from one party to another.

The state of the PIOA J

- $\qquad \qquad \blacksquare \qquad \textsf{Boolean}\; init$ δ_i — "has M_i generated the keys?"
- $\qquad \qquad \blacksquare \quad$ Boolean $\mathit{init}_{i,j}$ "has M_j received the public keys of M_i ?"
- \blacksquare Sequence of bit-strings $D_{i,j}$ the messages party i has sent to ■party j .
- $\bullet \quad \ell_i$ the total length of messages party i has sent so far.

 $\textsf{Initial values} \boldsymbol{\mathit{---}} \ \texttt{false},\ \varepsilon,\ \texttt{or}\ 0.$

The state of the PIOA J

- $\qquad \qquad \blacksquare \qquad \textsf{Boolean}\; init$ δ_i — "has M_i generated the keys?"
- $\qquad \qquad \blacksquare \quad$ Boolean $\mathit{init}_{i,j}$ "has M_j received the public keys of M_i ?"
- \blacksquare Sequence of bit-strings $D_{i,j}$ the messages party i has sent to ■party j .
- $\bullet \quad \ell_i$ the total length of messages party i has sent so far.

```
\textsf{Initial values} \boldsymbol{\mathit{---}} \ \texttt{false},\ \varepsilon,\ \texttt{or}\ 0.
```
To set these values, $\mathfrak I$ has to communicate with the adversary, too. It has the ports $\mathit{adv}^{\rightarrow}!$, $\mathit{adv}^{\rightarrow\lhd}$ \triangleq ! and adv^{\leftarrow} ? for that. !

The transition function $\delta^{\mathcal{I}}$

- **On input** (init) from in $_i?$: Set init_i to true, write (init, i) to $\mathit{adv}^{\rightarrow}!$ and raise $\it{adv}^{\rightarrow\lhd}$ $^{\triangleleft}!$.
- On input (init, i, j) from adv^{\leftarrow} ?: Set $init_{i,j}$ to $init_i$.
- **On input** (send, j , M) from in_i ?: Do nothing if one $_i?$: Do nothing if one of the following holds:
	- \blacklozenge $|M| + \ell_i > p(\eta)$ for a fixed polynomial p ;

$$
\qquad \qquad \bullet \quad init_i \wedge init_{j,i} = \mathtt{false}.
$$

Otherwise add $|M|$ to ℓ_i and append M to $D_{i,j}$. Write
(sent i in $|M|$) to αdu^{\rightarrow} l and raise αdu^{\rightarrow} ll $(\mathsf{sent}, i, j, |M|)$ to $\mathit{adv}^{\rightarrow}!$ and raise $\mathit{adv}^{\rightarrow\lhd}$ $^{\triangleleft}!$.

■ On input (recv, i, j, x) from adv^{\leftarrow} ?: Do nothing if one of the following holds:

$$
\bullet \quad init_j \wedge init_{i,j} = \mathtt{false};
$$

$$
\quad \bullet \quad x \leq 0 \text{ or } |D_{i,j}| < x.
$$

■

Otherwise write (received, $i,$ $D_{i,j}[x])$ to $\mathit{out}_j!$ and raise out_j ! ⊳!.

The state of the PIOA M_i

- ■ \blacksquare The decryption key $K^{\rm d}_i$ i^{a} and signing key $K^{\mathrm{s}}_i.$
- \blacksquare The encryption keys K^{e}_j and verification ke $j^{\rm e}_j$ and verification keys $K_j^{\rm v}$ $_j^{\mathrm{v}}$ of all parties $j.$
- \blacksquare The length ℓ_i of the messages sent so far. ■

To operate, we have to fix

- IND-CCA-secure public key encryption system;
- ■EF-CMA-secure signature scheme.

The transition function δ^{M_i}

- ■ \blacksquare On input (init) from $\it in$ $_i?$: Generate keys $(K_i^{\mathrm{e}}$. . . $_i^{\rm e}, K_i^{\rm d}$ $\binom{\rm d}{i}$ and $(K_i^{\rm v})$ $_i^{\mathrm{v}}, K_i^{\mathrm{s}}$). Ignore further (init)-requests. Write $(K_i^{\mathrm{e}},K_i^{\mathrm{v}})$ to ports $\mathit{aut}_{i,j}^{\rightarrow}!$ a $i^{\rm e}, K_i^{\rm v}$ $\binom{\mathrm{v}}{i}$ to ports $\mathit{aut}^{\rightarrow}_{i,j}$ $\overrightarrow{i,j}!$ and ! $aut^{\rm a}_i$ i,j !.
- **On input** $(k^{\text{e}}, k^{\text{v}})$ $\binom{v}{j}$ from aut_j^a $_{j,i}^{\mathrm{a}}$?: Initialize K_{j}^{e} $j \atop j$ and K^{v}_j j .
- λ and λ **n** On input (send, j, M) from in_i ?: If $|M| + \ell_i \leq p(\eta)$ ■ $_i?$: If $|M|+\ell_i\leq p(\eta)$ and $K_i^{\mathrm{s}},K_j^{\mathrm{e}}$ $\int\limits_{j}^{\infty}$ are defined
	- \blacklozenge Let $v \leftarrow \mathcal{E}_{K_j^{\text{e}}}(\mathsf{sig}_{K_i^{\text{s}}}(i,j,M)).$
	- \bullet Add $|M|$ to ℓ_i .
	- \blacklozenge Write (sent, j, v) to net_i^{\rightarrow} \overrightarrow{i} and raise $net\overrightarrow{i}$! $\it i$ ⊳ $\triangleleft\mathsf{l}$.

On input (recv, j, v) from net_i^+ and decryption and verification succeed (giving message M) then $\stackrel{\leftarrow}{i}$?: If the necessary keys are initialized write (received, $j,M)$ to $\mathit{out}_i!$ and raise out_i ! ⊳ $\triangleleft\mathsf{l}$.

Ideal and real at ^a ^glance

I: (init) from user i : set init_i , notify adversary. (init, i, j) from adversary: set $\mathit{init}_{i,j}$, if init_i set. (send, j, M) from user i : store M in the sequence $D_{i,j}$
send (send i $\,$ i \mid M l) to adve send $(\mathsf{send}, i, j, |M|)$ to adversary. ;(only if $\mathit{init}_i \wedge \mathit{init}_{i,j})$ (recv, i, j, x) from adversary: send $(j,D_{i,j}[x])$ to user $j.$ (only if $\mathit{init}_j \wedge \mathit{init}_{j,i}$)

 M_i : :(init) from user: generate keys, send to adversaryand others. $(k^{\mathrm{e}},k^{\mathrm{v}}$ $\frac{\Gamma(\nu)}{\nu}$ from $\frac{aut_j^{\rm a}}{\nu}$ j,i ?:set the public keys of $j\text{-}\mathsf{th}$ party (send, j, M) from user: $\mathsf{Send}\ j$ and $c=\mathcal{E}_{K^{\mathrm{e}}_j}(\mathsf{sig}_{K^{\mathrm{s}}_i}(i,j,M))$ to the adversary(only if K^{e}_j and $j^{\rm e}_j$ and $K_i^{\rm s}$ present) (j, c) from adversary: decrypt with K^{d}_i with K_s^{v} , send $\mathbf{u}_i^{\mathrm{d}}$, check signature . I. . $_j^\mathrm{v}$, send plaintext to user if OK (only if K^{v}_j $_j^\mathrm{v}$ and K_i^d i^{d} present)

The simulator

- The simulator translates between the ideal structure $\mathcal I$ and the "real" adversary.
- ■It has the following ports:

■

- ◆ adv^{-2} , adv^{-1} , adv^{-1} for communicating with J.
- net_i^{→1}, net_i^{→ \triangleq}!, net_i[→]?, aut_{i,j}!, aut_{i,j}!, aut_{i,j}? for communicating with the "real" adversary.
	- \blacksquare Both ends of the channel $\mathit{aut}^{\rm a}_{i,j}$ are at $\mathit{Sim}.$
	- ■But the adversary schedules this channel.

Exercise. Construct the simulator.

Bisimulations

■ A transition system is a tuple (S, A, \rightarrow, s_0) , where

- ◆ \bullet S and A are the sets of states and transitions.
 \bullet $s_0 \in S$ is the starting state.
- $\bullet \quad s_0 \in S$ is the starting state.
 $\bullet \quad \rightarrow$ is a partial function from
- [→] is ^a partial function from ^S [×] ^A to ^S.
	- Write $s \stackrel{a}{\rightarrow} t$ for $\rightarrow (s, a) = t$.
- An equivalence relation R over S is a bisimulation, if for all s, s', a , such that $s \mathrel{\mathcal{R}} s'$:
	- ◆ If $s \stackrel{a}{\rightarrow} t$ then exists $t' \in S$, such that $s' \stackrel{a}{\rightarrow} t'$ and $t \stackrel{a}{\rightarrow} t'$.
- Two systems (S, A, \rightarrow, s_0) and $(T, A, \Rightarrow t_0)$ are bisimilar, if there
exists a bisimulation of $(S \cup T, A \rightarrow \cup \rightarrow ?)$ that relates s_0 and exists a bisimulation of $(S\mathbin{\dot\cup} T,A,\to\cup\Rightarrow,?)$ that relates s_0 and $t_0.$

Probabilistic bisimulations

 \blacksquare Let (S, A, \rightarrow, s_0) be a probabilistic transition system. I.e.

- \bullet S and A are the sets of states and transitions. s $_0\in S$.
- $\blacklozenge \rightarrow$ is a partial function from $S \times A$ to $\mathcal{D}(S)$ (probability distributions over S) distributions over $S).$
- An equivalence relation R over S is a probabilistic bisimulation if $s\mathrel{\mathcal{R}}s'$ implies
	- ◆ for each $a \in A$, s $s' \stackrel{a}{\rightarrow} D'$. a $\it a$ $\stackrel{a}{\rightarrow} D$ implies that there exists D' , such that $\it a$ $\stackrel{a}{\rightarrow} D'$, and
	- ◆ for each $t \in S$: $\sum_{t' \in t/\mathcal{R}} D(t') = \sum_{t' \in t/\mathcal{R}} D'(t')$).

■

■ Two probabilistic transition systems (S, A, \rightarrow, s_0) and (T, A, \Rightarrow, t_0) are bisimilar if there exists a probabilistic bisimulation $\mathcal R$ of $(S\mathbin{\dot\cup} T, A, \to \cup \Rightarrow)$ that relates s_0 $_0$ and t_0 .
Probabilistic bisimilarity

Bisimilarity of systems (S,A,\rightarrow,s_0) and (T,A,\Rightarrow,t_0) means that

 \blacksquare The sets S and T can be partitioned into S_1 $\mathcal{L}_1 \cup \cdots \cup S$ k κ and T_1 $\dot{\cup}$ \cdots $\dot{\cup}$ T_k , such that

• . . also define
$$
S_0 = T_0 = \emptyset
$$

 $\qquad \qquad \blacksquare$ there exists a permutation σ of $\{0,\ldots,k\}$, such that

 $\bullet \quad$ in other words, σ defines a relation $\mathcal{R} \subseteq S \times T$, such that $s \mathrel{\mathcal{R}} t$ iff $s\in S_i, t\in T_{\sigma(i)}$ for some $i.$

\n- **For all**
$$
s \in S_i
$$
, $t \in T_{\sigma(i)}$, $a \in A$:
\n- **If** $s \xrightarrow{a} D$ then $t \xrightarrow{a} E$. Also, for each j :
\n- $\sum_{s' \in S_j} D(s') = \sum_{t' \in T_j} E(t')$.
\n- **So** $\mathcal{R} t_0$.
\n

Composition

Let the structures $(C_1,\mathsf{S}_1),\ldots,(C_k,\mathsf{S}_k)$ be given. We say that (C,S) is the composition of those structures if

- ■ C_1, \ldots, C_k are pairwise disjunct;
- the sets of ports of C_1, \ldots, C_k are pairwise disjunct;
- ■ $C = C_1 \cup \cdots \cup C_k;$
- \blacksquare freeports $(C_i)\backslash {\sf S}_i\subseteq {\sf freeports}(C)\backslash S$ for all $i.$

Write $(C, S) = (C_1, S_1) \times \cdots \times (C_k, S_k)$.

Composition

Let the structures $(C_1,\mathsf{S}_1),\ldots,(C_k,\mathsf{S}_k)$ be given. We say that (C,S) is the composition of those structures if

- ■ C_1, \ldots, C_k are pairwise disjunct;
- the sets of ports of C_1, \ldots, C_k are pairwise disjunct;

$$
\blacksquare \quad C = C_1 \cup \dots \cup C_k;
$$

 \blacksquare freeports $(C_i)\backslash {\sf S}_i\subseteq {\sf freeports}(C)\backslash S$ for all $i.$

Write
$$
(C, S) = (C_1, S_1) \times \cdots \times (C_k, S_k)
$$
.

Theorem. Let

■ $(C, S) = (C_1, S_1) \times (C_0, S_0)$ and $(C', S) = (C_1, S_1) \times (C_0', S_0)$; ■ $(C_0, S_0) \geq (C'_0, S'_0).$ Then $(C, S) \geq (C', S)$.

Proof on the blackboard.

Power of composition

- The composition theorem ^gives the model its usefulness. One can construct ^a large system as follows:
	- ◆ Design it from the functionalities that have already been constructed.
		- $\quad \blacksquare \quad$ add some glue code, if necessary.
	- ◆ Prove that it satisfies the needed (security) properties.
		- Assume the ideal implementations of existing functionalities.
	- ◆ Implement the system.
		- Use the real implementations of existing functionalities.
- The proofs of properties will hold for the real system.

Simulation for secure messaging

- 1. Separate encryption; replace it with an ideal encryption machine.
	- ■Same for signatures.
- 2. Define ^a probabilistic bisimulation with error sets between the states of $M_1\|\cdots\|M_n$ and $\mathfrak{I} \| Sim.$
- 3. Show that error sets have negligible probability.
	- ■ The errors correspond to forging ^a signature or generating the same random value twice.
	- ■ The first case may also be handled by defining ^a separate signature machine.
	- ■ The second case may also be handled by defining the ideal machines in the appropriate way.

The PIOA $\mathcal{E}nc^n$

- Has ports ein_i ?, $eout_i!$, $eout_i^{\leq 1}$ for $1 \leq i \leq n$. ■ Has ports ein_i ', $eout_i$!, $eout_i$ [⊲]! for $1 \leq i \leq n$.
■ The machine M_i will get ports $ein_i!$. ein_i [⊲]!. e
- The machine M_i will get ports $ein_i!, \; ein_i^{\lhd!}, \; count_i?$. On input (gen) from $ein_i?$: generate a new kevpair
- On input (gen) from ein_i ?: generate a new keypair (k^+, k^-) , store $(i, k^+, k^-),$ write k^+ to $\mathit{eout}_i!$, clock.
- ■**On input** (\textsf{enc}, k^+, M) from ein_i ?: if k^+ has been stored as a public key, then compute $v \leftarrow$ $\leftarrow \mathcal{E}(k^+,M)$, write v to $eout_i!$, clock.
() from $ein ?$ if (i k^+ k-) has heen s
- ■■ On input (dec, k^+, M) from ein_i ?: if (i, k^+, k^-) has been stored, write $\mathcal{D}(k^-,M)$ to $\mathit{eout}_i!$, clock.

The PIOA $\mathcal{E}nc_{\rm s}^n$

- \blacksquare Has ports $ein_i?$, $eout_i!$, $eout_i^{\lhd}!$ for $1\leq i\leq n.$ \blacksquare The machine M_i will get ports $ein_i!$. $ein_i^{\lhd}!$. e The machine M_i will get ports $ein_i!, \, ein_i^{\triangleleft}!, \, count_i?$. ■ On input (gen) from ein_i ?: generate a new keypair (k^+, k^-) , store $(i, k^+, k^-),$ write k^+ to $\mathit{eout}_i!$, clock. **On input** (\textsf{enc}, k^+, M) from ein_i ?: if k^+ has been stored as a public key, then compute $v \leftarrow$ $\leftarrow \mathcal{E}(k^+, 0^{|M|})$, store (k^+, M, v) , write v to $eout_i!,$ clock.
	- ◆Recompute v until it differs from all previous v -s.
- On input (dec, k^+, v) from $ein_i?$: if (i, k^+, k^-) has been stored, then
	- \blacklozenge if (k^{+}, M, v) has been stored for some v , then write v to $eout_{i}!$, clock.
	- ◆otherwise write $D(k^-, M)$ to $eout_i!$, clock.

 $\mathcal{E}nc^n \geq \mathcal{E}nc_{\rm s}^n$ (black-box). **Exercise.** Describe the simulator.

The PIOA $\mathcal{E}nc_{\rm s}^n$

The PIOA $\mathcal{S}ig^n$

- Has ports sin_i ?, $sout_i$!, $sout_i$ ^{\triangleleft}! for $1 \leq i \leq n$. ■ Has ports sin_i '', $sout_i$!, $sout_i$ [⊲]! for $1 \leq i \leq n$.
■ The machine M_i will get necessary ports for <code>ι</code> \blacksquare The machine M_i will get necessary ports for using $\mathcal{S}ig^n$ as by API calls.
- On input (gen) from sin_i ?: generate a new keypair (k^+, k^-) , store $(i, k^+, k^-),$ write k^+ to $sout_i!$, clock.
- On input (sig, k^+, M) from sin_i ?: if (i, k^+, k^-) has been stored then compute $v \leftarrow \mathsf{sig}(k^-,M)$, write v to $sout_i!$, clock.
On input (ver k^+ s) from $sin\ 2^+$ if k^+ has been st
- On input (ver, k^+, s) from sin_i ?: if k^+ has been stored then write ver (k^+,s) to $sout_i!$, clock.

The PIOA $\mathcal{S}ig_{\rm s}^n$

- Has ports sin_i ?, $sout_i$!, $sout_i$ ^{\triangleleft}! for $1 \leq i \leq n$. ■ Has ports sin_i '', $sout_i$!, $sout_i$ [⊲]! for $1 \leq i \leq n$.
■ The machine M_i will get necessary ports for <code>ι</code> \blacksquare The machine M_i will get necessary ports for using $\mathcal{S}ig^n$ as by API calls.
- On input (gen) from sin_i ?: generate a new keypair (k^+, k^-) , store $(i, k^+, k^-),$ write k^+ to $sout_i!$, clock.
- On input (sig, k^+, M) from sin_i ?: if (i, k^+, k^-) has been stored then compute $v \leftarrow$ $s \leftarrow \textsf{sig}(k^-,M)$, store (k^+,M) , write v to $sout_i!$, clock.
Let k^+ s) from sin 2^+ if k^+ has heen stored then write
- **On input** (ver, k^+ , s) from sin_i ?: if k^+ has been stored then write ver $(k^{+},s)\wedge$ " (k^{+},M) has been stored" to $sout_{i}!$, clock.

Theorem. $\mathcal{S}ig^n \geq \mathcal{S}ig^n_{\mathrm{s}}$.

Modified real structure

- Instead of generating the encryption keys, and encrypting and decrypting themselves, machines M_i query the machine $\mathcal{E}nc^n$.
- \blacksquare We can then replace $\mathcal{E}nc^n$ with $\mathcal{E}nc_\mathrm{s}^n$. The original str ■ least as secure as the modified structure. $\frac{n}{\mathrm{s}}$. The original structure was at
- ■Same for signatures. . .
- \blacksquare Denote the modified machines by $\tilde{M}_i.$

This is at least as secure as...

. . . this

The state of the real structure

 $\qquad \qquad \blacksquare\quad \mathsf{State\ of\ } \tilde M_i \longrightarrow \mathsf{the\ keys\ } K_j^\mathsf{e}$ $_j^{\rm e}$ and $K_j^{\rm v}$ $j^{\mathrm{v}}(1\leq j\leq n).$

 \blacklozenge If some K is defined at several machines, then they are equal. \blacksquare State of $\mathcal{E}nc_{\rm s}^n$ s:

- ◆ key triples (i, k^+, k^-) , where k^+ is the same as K_i^e i .
- The contract of the contract \blacklozenge text triples (k^+, M, v) , where k^+ also occurs in a key triple. ◆
- \blacksquare State of $\mathcal{S}ig_{\rm s}^n$ s:

■

- ◆ key triples (i, k^+, k^-) , where k^+ is the same as $K_i^{\rm v}$ i .
- $\mathcal{L} = \mathcal{L} \mathcal{L}$ and $\mathcal{L} = \mathcal{L} \mathcal{L}$ and $\mathcal{L} = \mathcal{L} \mathcal{L}$. The contract of the contract of $\mathcal{L} = \mathcal{L} \mathcal{L}$ \blacklozenge text pairs (k^{+}, M) , where k^{+} also occurs in a key triple. ◆
- \blacksquare Possibly (during initialization) the keys in the buffers of the channels ■ $aut^{\rm a}_i$ i,j .
- \blacksquare No messages are in the buffers of newly introduced channels ein ■ $\it i$ etc.
- ■ \blacksquare The buffers of channels connected to H or A are not part of the state.

The simulator Sim

The simulator Sim

- ■Consists of the real structure and one extra machine $Cntr$. Its state contains message sequences D'_{ij} for all $1\leq i,j\leq n.$
	- The ports in_i ?, $out_i!$, out_i ^{\triangleleft}! of M_i are renamed to cin_i ?, $cout_i!$, cout_i [⊲]!.
- Machine Cntr has ports $cin_i!, \; cin_i^{\triangleleft}!, \; cout_i?, \; adv^{\leftarrow}!, \; adv^{\leftarrow\triangleleft}!,$ adv^{\rightarrow} ?
- On input (init, i) from adv^{\rightarrow} ? write (init) to $cin_i!$ and clock it.
■ O is a talk of the second that \tilde{M} and this second the second the second that \tilde{M} and this second that \tilde{M}
- ■ \blacksquare On input $(k^{\rm e},k^{\rm v})$ from $aut^{\rm a}_{j,i}$?: the machine \tilde{M}_i additionally writes $(\mathsf{recvkeys}, j)$ to $\mathit{cout}_i!$ and clocks it.
- ■Receiving (recvkeys, j) from cout_i ?, machine Cntr writes (init, j, i) to $\it{adv}^{\leftarrow}!$ and clocks it.
- ■Receiving (send, i, j, l) from adv^{-2} , the machine $Cartr$ generates a measurement of $M \geq M$ new message M of length l , appends it to $D'_{i,j}$, writes (send, $j,M)$ to $\it{cin}_i!$, clocks it.
- Receiving (received, i, M) from out_j ?, the machine Cart finds x , such that $D'_{i,j}[x] = M$, writes (recv, i, j, x) to $\mathit{adv}^{\leftarrow}!$, clocks it.

The state of $J||Sim$

- The state of real structure. Additionally
- For each i, j , the sequences $D'_{i,j}$ of messages that the machine $Cntr$ has generated.
- Initialization bits $init_i$, $init_{i,j}$.
- The sequences of messages $D_{i,j}$ that party i has sent to party j . $(\text{stored in } \mathcal{I})$

The state of $J||Sim$

- The state of real structure. Additionally
- For each i, j , the sequences $D'_{i,j}$ of messages that the machine $Cntr$ has generated.
- Initialization bits $init_i$, $init_{i,j}$.
- The sequences of messages $D_{i,j}$ that party i has sent to party j . $(\text{stored in } \mathcal{I})$

Lemma. If $\mathfrak{I}\|Sim$ is not currently running, then

- \blacksquare $\vert D_{ij} \vert = \vert D'_{i,j} \vert$ and the lengths of the messages in the sequences $D_{i,j}$ and $D'_{i,j}$ are pairwise equal.
- If $init_i$ then M_i has requested the generation of keys. If $init_{i,j}$ then \tilde{M}_j has received the keys of \tilde{M}_i . The opposite also holds.
- The signed messages in Sig^n_s are exactly of the form (i, j, M) where M is in the sequence $D'_{i,j}$. The encrypted messages in $\mathcal{E}nc^n_{\mathrm{s}}$ are
exactly these signed messages exactly those signed messages.

Bisimilarity for secure channels

Relating the states of real and (ideal \parallel simulator) structures:

- \blacksquare The states of \tilde{M}_i , $\mathcal{E}nc_{\rm s}^n$ $\frac{n}{\mathrm{s}}$, $\mathrm{{}^{\mathbf{S}i}g^{n}_\mathrm{s}}$ $\frac{n}{\mathrm{s}}$ must be equal.
- \blacksquare The rest of the state of $\mathfrak{I} \| Sim$ must satisfy the lemma we had above. ■

The relationship must hold only if either H or A is currently running.

 Now consider all possible inputs that the real structure or (ideal \parallel simulator) may receive. Show that they react to it in the identical manner.

Extension: static corruptions

- Allow the adversary to corrupt the parties before the start of the run (before party has received the $(\mathsf{init})\text{-}\mathsf{command}).$
- \blacksquare In the real functionality: machine M_i may accept a command ■(corrupt) from the port $\mathit{net}^{\leftarrow}_i$ $\stackrel{\leftarrow}{i}$? .
- \blacksquare It forwards all messages it receives directly to the adversary (over the ■channel $net^{-\rightarrow}_i$ \overrightarrow{i}) and receives from the adversary the messages it has to write to other ports.

Exercise. How should we change the ideal functionality? The simulator? **Exercise.** Why is it hard to model dynamic corruptions?

Home exercise

Present ^a simulatable functionality for secure channels (not allowing corruptions) that preserves the order of messages and does not allowtheir duplication.

Please use the defined secure messaging functionality as ^a building block(use the composition).

Deadline: Mid-January.

An UC voting functionality

Let there be m voters and n talliers. Let the possible votes be in
Correct to the 11 $\{0,\ldots,L$ All voters will ^give their votes. All authorities agree on the result. The−1}.adversary will not learn individual votes.

- At the voting phase, the voters write their encrypted votes to a bulletin board.
	- ◆Use threshold homomorphic encryption.
	- ◆Talliers have the shares of the secret key.
- ■ Everybody can see the encrypted votes and combine them to the encryption of the tally.
- ■ After the voting period, the talliers publish the plaintext shares of the tally.
- ■Everybody can combine those shares and learn the voting result.

The ideal functionality

The ideal functionality $\mathcal{I}_{\text{VOTE}}$ has the standard ports... in_i^V $_i^V$?, out_i^V $\frac{V}{i}$!, out^V_i $\it i$ \blacksquare First expect (init, sid)-command from the adversary. ⊳ $\degree!$, in^T_i $_{i}^{T}$?, out_{i}^{T} $_i^T!$, out^T_i $\it i$ ⊳ \degree !, adv \degree ?, adv \degree !, adv \degree $^{\triangleleft}!$.

The ideal functionality

- The ideal functionality $\mathcal{I}_{\text{VOTE}}$ has the standard ports... in_i^V $_i^V$?, out_i^V $\frac{V}{i}$!, out^V_i $\it i$ ⊳ $\degree!$, in^T_i $_{i}^{T}$?, out_{i}^{T} $_i^T!$, out^T_i $\it i$ ⊳ \degree !, adv \degree ?, adv \degree !, adv \degree $^{\triangleleft}!$.
- \blacksquare First expect (init, sid)-command from the adversary. **On input** (vote, sid, v) from V_i store (vote, $sid, V_i, v, 0)$, send ■ \overline{a} , \overline{a} , \overline{a} , \overline{a} (vote, $sid, V_i)$ to the adversary, ignore further votes from V_i in session sid .
- $\qquad \qquad \blacksquare \quad$ On input (accept, $sid, V_i)$ from the adversary, change the flag from 0 to 1 in (vote, $sid, V_i, v,$ $_)$.

The ideal functionality

- The ideal functionality $\mathcal{I}_{\text{VOTE}}$ has the standard ports... in_i^V $_i^V$?, out_i^V $\frac{V}{i}$!, out^V_i $\it i$ ⊳ $\degree!$, in^T_i $_{i}^{T}$?, out_{i}^{T} $_i^T!$, out^T_i $\it i$ ⊳ \degree !, adv \degree ?, adv \degree !, adv \degree $^{\triangleleft}!$.
- \blacksquare First expect (init, sid)-command from the adversary.
- **On input** (vote, sid, v) from V_i store (vote, $sid, V_i, v, 0)$, send ■ \overline{a} , \overline{a} , \overline{a} , \overline{a} (vote, $sid, V_i)$ to the adversary, ignore further votes from V_i in session sid .
- $\qquad \qquad \blacksquare \quad$ On input (accept, $sid, V_i)$ from the adversary, change the flag from 0 to 1 in (vote, $sid, V_i, v,$ $_) .$
- \blacksquare On input (result, $sid)$ from the adversary, add up the votes in session sid with flag 1 , store (result, $sid, r)$ and send it to the adversary.
- \blacksquare On input (giveresult, $sid, i)$ from the adversary send (result, $sid, r)$ to voter V_i or tallier $T_{i-m}.$

Building blocks

Message board

Ideal functionality $\mathfrak{I}_{\text{\tiny MB}}$ for parties P_1, \ldots, P_n is the following:

- ■**On input** (bcast, sid, v) from P_i , store (bcast, i , sid, v). Accept no
Combine (boset in I) we see from P . Send (boset in I) to the further $(\mathsf{bcast}, sid,\ldots)$ -queries from $P_i.$ Send $(\mathsf{bcast}, sid, i, v)$ to the adversary.
- On input (pass, sid, i) from the adversary, if (bcast, i, sid, v) has been stored, store $(\mathsf{post}, \mathit{sid}, i, v).$
- On input (tally, sid) from the adversary, accept no more $(\mathsf{bcast}, sid,\ldots)$ and $(\mathsf{pass}, sid,\ldots)$ -requests.
- **On input** (request, sid) from P_j , if (tally, sid) has been received before, send all stored $(\mathsf{post}, \mathit{sid}, \ldots)$ -tuples to P_j $(\mathsf{as} \mathsf{ a \text{ single}})$ message).

Realization requires reliable channels or smth.

ZK proofs

The ideal functionality $\mathfrak{I}_{\mathrm{z}\mathrm{\scriptscriptstyle{K}}}$ for parties P_1,\ldots,P_n and witnessing relation $\mathcal R$ is the following

- On input (prove, $sid, P_i, x, w)$ from a party P_i :
	- ◆ Check that $(x, w) \in \mathcal{R}$;
	- ◆ Store (P_i, P_j, sid, x) ;
	- ◆Send (prove, P_i, P_j, sid, x) to the adversary.
	- ◆ \blacklozenge Accept no more (prove, sid, \ldots) queries from $P_i.$
- On input (proofok, P_i , P_j , sid , x) from the adversary send $(\mathsf{proof}, \mathit{sid}, P_i, x)$ to $P_j.$

NIZK proofs

The ideal functionality $\mathfrak{I}_{\text{\tiny{NIZK}}}$ for parties P_1,\ldots,P_n and witnessing relation $\mathcal R$ is the following

- On input (prove, sid, x, w) from a party P_i :
	- ◆ Check that $(x, w) \in \mathcal{R}$;
	- ◆Send (proof, sid, x) to the adversary.
	- ◆Accept no more (prove, sid, \ldots) queries from P_i . ◆ Accept no more (prove, sid, \ldots) queries from $P_i.$
◆ Wait for a query of the form (proof, $sid. \ x. \ \pi)$ fro
	- \blacklozenge Wait for a query of the form $(\mathsf{proof}, sid, x, \pi)$ from the adversary.
		- **A** restriction on the adversary.
		- \blacksquare Can be justified for the ideal functionalities.
		- This topic warrants ^a deeper research.
	- ◆ Store $(sid, x, π)$.
◆ Send (proof.*sid*)
	- Send (proof, sid, x, π) to P_i .

NIZK proofs

On input (prove, sid, x, w, π) from the adversary:

- ◆ Check that $(x, w) \in \mathcal{R}$;
- \blacklozenge Store (sid, x, π) .
- **O**n input (verify, sid, x, π) from P_j check whether (sid, x, π) is stored. If it is then
	- \blacklozenge Return (verifyok, sid, x).

If it is not then

- ◆ Send (witness?, sid, x) to the adversary.
- ◆ \blacklozenge Wait for a query of the form (prove, sid, x, w, π) from the adversary.
- \blacklozenge Handle (prove, sid, x, w, π) as before.
- \blacklozenge If $(x, w) \in \mathcal{R}$ then return (verifyok, sid, x) to P_j .

Random oracles

The random oracle functionality $\mathfrak{I}_{\rm RO}$ for n parties is the following:

- ■On input x by any party or the adversary
	- ◆ If (x, r) is already stored for some r , return r .
◆ Otherwise generate $r \in_R \{0, 1\}^{p(\eta)}$, store (x, η)
	- Otherwise generate $r \in_R \{0,1\}^{p(\eta)}$, store (x, r) and return r.

 \mathcal{I}_RO works as a subroutine.

Generating ^a random element of ^a group

Let G be a fixed group (depends on η only), with a prime cardinality and
keed DDU and keep The forestime in π , is the following hard DDH problem. The functionality $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$ is the following:

- ■ \blacksquare On input (init) by the adversary generates a random element of G and returns it to the adversary.
- ■ \blacksquare On input (init, i) marks that it may answer to party $P_i.$
- On input (get) from a party returns the generated element, if allowed.

Realization:

- $\qquad \qquad \blacksquare$ The machines M_i are initialized by the adversary.
- ■ M_i generates a random element $g_i\in G$, secret shares it;
- The shared values are multiplied and the result is opened.
- $\mathsf A$ $(\operatorname{\mathsf{get}})$ by a party allows it to learn the computed value.
- Uses secure channels functionality.

Exercise. How to simulate?

Protocol realizing NIZK

- **I** Idea: on input $(\mathsf{prove}, sid, x, w)$ from party P_i the machine M_i commits to w and outputs x , $C(w)$, and a NIZK proof that $C(w)$ is hiding a witness for $x.$
- Initialization: parties get two random elements $g,h\in G$ using two copies of $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$.
	- \blacklozenge Ignore user's query if (get) to $\mathcal{I}_{\scriptscriptstyle\mathrm{RGR}}$ -s gets no response.
- **Let us use the following commitment scheme (** G is a group with \mathbb{R}^n and G and \mathbb{R}^n and \mathbb{R}^n and \mathbb{R}^n cardinality $\#G$ and hard DDH problem):
	- ◆ To commit to $m \in G$, generate a random $r \in \{0, \ldots #G-1\}$. The commitment is $(g^r, m\cdot h^r)$ $^r \big).$
	- \blacklozenge The opening of the previous commitment is r . ◆

Exercise. How to verify? What is this commitment scheme? What can be said about its security?

Protocol realizing NIZK

- **There exists a ZK protocol for proving that a commitment** c hides a witness w , such that $(x, w) \in \mathcal{R}$.
- \blacksquare For honest verifiers, this protocol has three rounds commitment
(or witness) challenge and response (or witness), challenge and response.
	- ◆ \bullet It depends on $\mathcal R$ (and the commitment scheme).
	- ◆ Let $A(x, C(w), w, r)$ generate the witness and $Z(x,C(w),w,r,a,c)$ compute the response.
	- ◆ Challenge is a random string. Let $V(x, C(w), a, c, z)$ be the verification algorithm at the end.
- \blacksquare The whole proof π for (x, sid) consists of

$$
\bullet \quad C(w), \text{ a random string } \bar{r};
$$

 \blacklozenge $a \leftarrow A(x, C(w), w, r);$

■

■

- **A** Property of the Second State of the $\blacklozenge\quad z\leftarrow Z(x,C(w),w,r,a,H(x,a,sid,\bar{r}))$
- $(\mathsf{proof}, sid, x, \pi)$ is sent back to the user.

Protocol realizing NIZK

- $\qquad \qquad \textsf{On} \text{ input (verify,} sid, x, \pi) \text{ from the user, machine }M_j \text{ verifies that}$ proof:
	- ◆◆ Computes $c = H(x, a, sid, \bar{r})$ (by invoking \mathcal{I}_{RO}) and verifies $\mathcal{V}(x,C,a,c,z).$

If correct, responds with (verifyok, $sid, x)$.

Simulation

The simulator communicates with

the ideal functionality: possible commands are

 \blacklozenge (proof, i , sid , x);

■

◆

- \blacklozenge (witness?, sid, x, π).
- the real adversary: possible commands are
	- ◆(init) and (init, i) for two copies of \mathcal{I}_{RGR} ;
		- queries to the random oracle \mathcal{I}_{RO} .
			- \blacksquare Answer the queries to $\mathfrak{I}_{\mathrm{RO}}$ in the normal way.
Simulator: initialization

On the very first invocation:

- \blacksquare Generate random elements $g,h\in G.$
- On (init) and (init, $i)$ from the adversary for functionalities $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$:
- Record that these commands have been received.

${\sf Simulating\ }({\sf proof},i,sid,x)$

The query (prove, sid, x, w) was made by party P_i to \mathcal{I}_{NIZK} . Where do we get w ?

${\sf Simulating\ }({\sf proof},i,sid,x)$

The query (prove, sid, x, w) was made by party P_i to \mathcal{I}_{NIZK} .

- Where do we get w ? We don't get it at all.
- \blacksquare Let C be the commitment of a random element w' ;
- **Simulate** the ZK proof of $(x, w') \in \mathcal{R}$:
	- \blacklozenge Let c be a random challenge.
	- \blacklozenge Let (a, z) be suitable witness and response for showing that C is the commitment of a suitable witness of x in $\mathcal{R}.$
- ■Let \bar{r} be a random string, such that (x, a, sid, \bar{r}) has not been a query to $\mathfrak{I}_{\scriptscriptstyle{\mathrm{RO}}}$.

${\sf Simulating\ }({\sf proof},i,sid,x)$

The query (prove, sid, x, w) was made by party P_i to \mathcal{I}_{NIZK} .

- Where do we get w ? We don't get it at all.
- \blacksquare Let C be the commitment of a random element w' ;
- **Simulate** the ZK proof of $(x, w') \in \mathcal{R}$:
	- \blacklozenge Let c be a random challenge.
	- \blacklozenge Let (a, z) be suitable witness and response for showing that C is the commitment of a suitable witness of x in $\mathcal{R}.$
- ■Let \bar{r} be a random string, such that (x, a, sid, \bar{r}) has not been a query to $\mathfrak{I}_{\scriptscriptstyle\mathrm{RO}}.$
- ■■ Define $H(x, a, sid, \bar{r}) := c$. Let $\pi = (C, \bar{r}, a, z)$.
■ Send (proof, *sid, x, i,* π) to J_{NIZK}.
	- Send (proof, sid, x, i, π) to \mathcal{I}_{NIZK} .

(Programmable random oracle)

$\textsf{Simulating} \, \, (\textsf{witness}?, sid, x, \pi)$

This is called if the real adversary has independently constructed ^a validproof.

- ■ Change the simulator as follows:
	- \blacklozenge Initialization: the simulator generates g and h so, that it knows $\log_g h$.
- On ^a (witness?, . . .)-query, the simulator checks whether the proof $\pi = (C, \bar{r}, a, z)$ is correct.
- \blacksquare If it is, then it extracts the witness w from C by ElGamal decryption.
- After that, it sends (prove, sid, x, w, π) to \mathcal{I}_{NIZK} .

Exercise. What if C does not contain a valid witness?

Corruptions

- The real adversary may send (corrupt)-command to some machine M_i .
	- ◆Static corruptions – only at the beginning.
	- ◆Adaptive corruptions — any time.

- The machine responds with its current state.
- Afterwards, M_i "becomes a part of" the adversary.
- ◆Forwards all received messages to the adversary.
- ◆ M_i accesses other components on behalf of the adversary.
- ◆No more traffic between M_i and the user.
- ■ Possibility to corrupt players has to be taken into account when specifying ideal functionalities.
	- \blacklozenge The ideal adversary may send $(\text{corrupt}, i)$ to the functionality.
		- The simulator will make these queries if the real adversarycorrupted someone.
	- ◆The functionality may change the handling of the i -th party.

Corruptions and functionalities

- Random oracles impossible to corrupt.
- Generating ^a random element of the group:
	- ◆Implementations uses MPC techniques.
	- ◆ \blacklozenge Tolerates adaptive corruptions of less than $n/3$ participants.
	- ◆ \blacklozenge If party i is corrupted, then $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$
		- \blacksquare Gives no output to the $i\text{-th}$ party.
		- \blacksquare Forwards to the adversary all requests from the $i\text{-th}$ party.
	- ◆ \blacklozenge If too many parties are corrupted (at least $n/3)$ then $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$ gives all control to the adversary.
	- ◆ The simulator simply acts as ^a forwarder between ^a corrupted party and the adversary.

Corrupting $\mathcal{I}_{\text{NIZK}}$

- \blacksquare The realization of NIZK uses $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$.
	- \blacklozenge It fails if there are at least $n/3$ corrupt parties.
	- It has no other weaknesses.

Corrupting $\mathcal{I}_{\text{NIZK}}$

- \blacksquare The realization of NIZK uses $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$.
	- \blacklozenge It fails if there are at least $n/3$ corrupt parties.
	- It has no other weaknesses.

- If party i is corrupted in J_{NIZK} then it stops talking to the user.
	- ◆ The adversary may prove things on user's behalf.
- ■If at least $n/3$ parties are corrupted then $\mathcal{I}_{\text{NIZK}}$ gives up.

Corrupting $\mathcal{I}_{\text{NIZK}}$

- \blacksquare The realization of NIZK uses $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$.
	- \blacklozenge It fails if there are at least $n/3$ corrupt parties.
	- It has no other weaknesses.

- If party i is corrupted in J_{NIZK} then it stops talking to the user.
	- ◆ The adversary may prove things on user's behalf.
- ■If at least $n/3$ parties are corrupted then $\mathcal{I}_{\text{NIZK}}$ gives up. The simulator corrupts *i*-th party of \mathcal{I}_{NIZK} if M_i is corrupted or the i -th party in $\mathfrak{I}_{\scriptscriptstyle\mathrm{RGR}}$ is corrupted.

Exercise

How should corruptions be integrated to $\mathcal{I}_\text{\tiny MB}$?

Ideal functionality $\mathfrak{I}_{\text{\tiny MB}}$ for parties P_1, \ldots, P_n is the following:

- **On input** (bcast, sid, v) from P_i , store $(\text{bcast}, i, sid, v)$. Accept no
Septhen (boost of d) meaning from P_i Septh (boost of d in) to to further $(\mathsf{bcast}, sid},\ldots)$ -queries from $P_i.$ Send $(\mathsf{bcast}, sid, i, v)$ to the adversary.
- On input (pass, sid, i) from the adversary, if (bcast, i, sid, v) has been stored, store $(\mathsf{post}, \mathit{sid}, i, v).$
- ■On input (tally, sid) from the adversary, accept no more $(\mathsf{bcast}, sid,\ldots)$ and $(\mathsf{pass}, sid,\ldots)$ -requests.
- ■**On input** (request, sid , *i*) from P_j , if (tally, sid) has been received before, send all stored $(\mathsf{post}, \mathit{sid}, \ldots)$ -tuples to P_j $(\mathsf{as} \mathsf{ a \text{ single}})$ message).

Homomorphic encryption

- A public-key encryption system $(\mathcal{K}, \mathcal{E}, \mathcal{D}).$
- \blacksquare The set of plaintexts is a ring. ■
- There is an operation \oplus on ciphertexts, such that if $\mathcal{D}(k^-, c_1) = v_1$ and $\mathcal{D}(k^-, c_2) = v_2$ $_2$ then $\mathcal{D}(k^-, c_1 \oplus c_2) = v_1+v_2.$
- \sim μ \pm μ ■ Security — IND-CPA.

Homomorphic encryption

- A public-key encryption system $(\mathcal{K}, \mathcal{E}, \mathcal{D}).$
- \blacksquare The set of plaintexts is a ring. ■
- There is an operation \oplus on ciphertexts, such that if $\mathcal{D}(k^-, c_1) = v_1$ and $\mathcal{D}(k^-, c_2) = v_2$ $_2$ then $\mathcal{D}(k^-, c_1 \oplus c_2) = v_1+v_2.$
- Security IND-CPA.

■

- ■ In ^a threshold encryption system, the secret key is shared. There are shares k_1^- 1 $\frac{1}{1}, \ldots, k_n^$ $n\,$.
- \blacksquare Also, there are public verification keys k_1^{v} verify that the authorities have correctly computed the shares of the 1 $\frac{v}{1}, \ldots, k_{n}^{v}$ $\, n \,$ $\frac{v}{n}$ that are used to plaintext.
	- ◆ ... like in verifiable secret sharing.

 \blacksquare We use secure MPC to generate k^+,k_1^- 1 $\frac{1}{1}, \ldots, k_n^ \, n \,$ $\frac{-}{n}$, k_1^{v} 1 $k_1^{\mathrm{v}}, \ldots, k_n^{\mathrm{v}}$ $n^{\scriptscriptstyle -}$

- \blacklozenge This can be modeled by an ideal functionality $\mathcal{I}_{\text{\tiny KGEN}}$.
- ◆There are more efficient means of generation than genera^l MPC.

Key generation

The ideal functionality $\mathfrak{I}_{\text{\tiny KGEN}}$ for m users and n authorities works as
follows: follows:

- On input (generate, sid) from the adversary, generates new keys. and gives the keys $k^+, k_1^{\texttt{v}}, \ldots, k_n^{\texttt{v}}$ to the adversary.
- On input (getkeys, sid) from a party, gives the party this party's generated keys. (works like subroutine)
- \blacksquare Breaks down if there are at least $(m+n)/3$ corrupt parties.

Each voting session needs new keys, otherwise chosen-ciphertext attacksare possible.

Voting protocol

- Voter machines M_1^V, \ldots, M_m^V , tallier machines M_1^T, \ldots, M_m^T . The first time some M_*^V or M_*^T is activated. it asks for its ke $\qquad \qquad \blacksquare$ The first time some M_i^V or M_i^T is activated, it asks for its key(s) from $\mathcal{I}_{\text{\tiny KGEN}}$ and receives them.
On invest (sets and a) fusure to
- $\qquad \qquad$ On input (vote, $sid, v)$ from the user the machine M_i^V
	- ◆ Let $c_i \leftarrow \mathcal{E}_{k+}(\text{Encode}(v))$. Make a NIZK proof π_i that c_i
contains a correct vote. Send (bcast, sidl0, (c_i, π_i)) to 1 contains a correct vote. Send $($ bcast $,sid\|0,(c_{i},\pi_{i}))$ to $\mathfrak{I}_{\text{\tiny MB}}.$
	- On input (count, sid) from the adversary the machine M_i^T
		- ◆ Sends (request, $sid||0, i)$ to \mathcal{I}_{MB} and receives all the votes and correctness proofs $(c_1, \pi_1), \ldots, (c_m, \pi_m).$
		- ◆Checks the validity of the proofs, using \mathcal{I}_{NIZK} .
		- Multiplies the valid votes and decrypts the result, using k_i^- . Let the result of the decryption be $d_i.$ Makes a NIZK proof ξ_i that d_i is a valid decryption and sends $($ bcast $, sid\|1,(d_i,\xi_i)$ to $\mathfrak{I}_{\text{\tiny MB}}.$
			- \blacksquare The proof also uses $k_i^{\mathrm{v}}.$

Voting protocol

On input (result, sid) from the adversary any machine

- ◆ Sends (request, $sid||0, i)$ to \mathcal{I}_{MB} and receives all the votes and correctness proofs $(c_1, \pi_1), \ldots, (c_m, \pi_m).$
- ◆Checks the validity of the proofs, using $\mathcal{I}_{\text{NIZK}}$.
Multiplies the valid votes, let the result be c.
- ◆ Multiplies the valid votes, let the result be c .
◆ Sends (request. $sid||1,i\rangle$ to $\mathcal{J}_{\text{\tiny MB}}$ and receives
- Sends (request, $sid||1, i)$ to \mathcal{I}_{MB} and receives the shares of the result d_1, \ldots, d_n together with proofs ξ_1, \ldots, ξ_n .
 \blacklozenge Check the validity of those proofs.
- Check the validity of those proofs.
- ◆Combines a number of valid shares to form the final result r .
- Sends (result, sid, r) to the user.

Exercise. What kind of corruptions are tolerated here?

The simulator — interface

The simulator encapsulates $\mathcal{I}_{\text{\tiny MB}}$, $\mathcal{I}_{\text{\tiny NLZK}}$, $\mathcal{I}_{\text{\tiny KGEN}}$. The simulator handles the following commands:

- \blacksquare From $\mathfrak{I}_{\text{vOTE}}$:
	- \blacklozenge (vote, $sid, i)$ V_i has voted (but don't know, how).
	- \blacklozenge (result, $sid, r)$ the result of the voting session $sid.$
	- From the real adversary:
	- \blacklozenge \pmod{std} for M_i^T \mathbf{u}_i^T — produce the share of the voting result.
	- ◆(result, $sid)$ for any M — combine the shares of the result and
send it to the user send it to the user.
	- ◆Corruptions; messages on behalf of corrupted parties.

The simulator — interface

 \blacksquare From the real adversary (on behalf of $\mathfrak{I}_{\text{\tiny MB}})$:

- ◆ $({\mathsf{pass}}, \mathit{sid}, i)$ — lets the message sent by M_i to pass.
- ◆ $(\mathsf{t}$ ally, $sid)$ — finishes round $sid.$
- \blacklozenge $\;$ $(\textsf{bcast}, \textit{sid}, \textit{i}, \textit{v})$ broadcast by a corrupt party.

 \blacksquare From the real adversary (on behalf of $\mathfrak{I}_{\text{\tiny{NIZK}}})$:

- \blacklozenge $\pmb{\quad}$ (proof, sid, x, π) generate a proof token π for an honest prover.
- \blacklozenge \quad (prove, $sid, x, w, \pi)$ the adversary proves something himself.

 \blacksquare From the real adversary (on behalf of $\mathfrak{I}_{\kappa_{\text{GEN}}}$):

 \blacklozenge \quad (generate, $sid)$ — generates the keys.

The simulator — interface

The simulator issues the following commands:

To $\mathfrak{I}_{\text{vOTE}}$: $(\mathsf{init}, \mathit{sid})$ $(\mathsf{accept}, \mathit{sid}, i)$ (result, sid) $(\mathsf{g} \mathsf{iv} \mathsf{er} \mathsf{esult}, \mathit{sid}, i)$ $(\mathsf{corrupt}, i)$ $(\mathsf{vote}, sid, i, v)$

To the real adversary (as $\mathfrak{I}_{\text{\tiny MB}})$: $(\mathsf{bcast}, sid, i, v)$ To the real adversary (as $\mathfrak{I}_{\text{\tiny{NIZK}}})$: $(\mathsf{proof}, i, sid, x)$ $(\textsf{witness?}, sid, x, \pi)$ To the real adversary (as $\mathfrak{I}_{\scriptscriptstyle\rm KGEN}$): $({\sf keys}, sid, k^+, k_1^{\rm v}$ 1 $\frac{v}{1}, \ldots, k_{n}^{v}$ $_{n}^{\textrm{v}})$

The simulator — initialization

- \blacksquare On the first activation with a new sid :
	- ◆◆ Generates keys k^+, k_1^- 1 $\frac{1}{1}, \ldots, k_n^ \, n \,$ $\frac{\overline{n}}{n}$, k_1^{v} 1 $\frac{v}{1}, \ldots, k_{n}^{v}$ $\, n \,$ $\frac{v}{n}$ for this session.
- \blacksquare When receiving $(\textsf{generate}, sid)$ from the adversary for $\mathfrak{I}_{\text{\tiny KGEN}}$,
	- ◆marks that voting can now commence;
	- ◆ \blacklozenge sends (init, sid) to $\mathfrak{I}_{\text{vOTE}}$.
- \blacksquare Corruptions by the adversary are forwarded to $\mathfrak{I}_{\text{vOTE}}$ and recorded.

The simulator — voting

 $\qquad \qquad \textsf{On input (vote}, sid, i) \textsf{ from } \mathfrak{I}_{\textsf{vOTE}} \textsf{.}$

- ◆◆ Let the encrypted vote be $c \leftarrow \mathcal{E}_{k+}$ $+(0).$
- \blacklozenge Make a NIZK proof π that this vote is valid. ◆
	- \blacksquare Going to $\mathcal{I}_\text{\tiny{NIZK}}$'s waiting state, as necessary.
- \blacklozenge Broadcast (using $\mathfrak{I}_{\text{\tiny MB}}$) the pair (c, π) on behalf of voter i .
- $\qquad \qquad \blacksquare \quad$ On input $(\mathsf{pass}, \mathit{sid}, i),$ if the vote was broadcast for the voter P_i :
	- \blacklozenge Send (accept, $sid, i)$ back to $\mathfrak{I}_{\text{vOTE}}$.
- ■ \blacksquare If a corrupt party i puts a vote to the message board and makes a valid proof for it:
	- ◆ \bullet Decrypt that vote. Let its value be v .
	- ◆ \blacklozenge Send (vote, $sid,i,v)$ to $\mathcal{I}_{\text{vOTE}}$.

The simulator — tallying

On input $(\mathsf{tally}, \mathit{sid} \| 0)$ from the adversary for $\mathfrak{I}_{\text{\tiny MB}}$:

- Close the voting session sid , accept counting queries.
- ■Send (result, sid) to $\mathfrak{I}_{\text{vOTE}}$.
- \blacksquare Get the voting result r from $\mathfrak{I}_{\text{vOTE}}$ and store it.

The simulator — counting

On input (count, sid) from the adversary for the tallier T_i :

- **n** Check the proofs of all votes (c_i, π_i) using $\mathcal{I}_{\text{NIZK}}$.
	- ◆ Going to wait-state, if necessary.
- ■ Let C be the product of all votes with valid proofs. \blacksquare For talliers T_1,\ldots,T_n , let d_1,\ldots,d_n $\frac{1}{n}$ be
	- ◆ if T_i is corrupt, then $d_i = \mathcal{D}(k_i^-)$ $\frac{1}{i}$, C);
	- \blacklozenge if T_i is honest, then a d_i is simulated value

such that d_1, \ldots, d_n $\frac{1}{n}$ combine to r .

- $\blacklozenge\quad d_1, \ldots, d_n$ \mathcal{L}_n are generated at the first (count, $sid)$ -query.
- **Make a NIZK proof** ξ_i **for the share** d_i **.**
- **Broadcast** (d_i, ξ_i) in session $sid||1$ using \mathcal{I}_{MB} .
- **A** corrupt tallier can broadcast anything. But only (d_i, ξ_i) for the valid d_i is accepted at the next step.

The simulator — reporting the results

On input (result, sid) from the adversary for any voter or tallier $i\colon$

- **Takes all votes** (c_j, π_j) and all shares of the result (d_j, ξ_j) .
- ■Verifies all correctness proofs of votes.
- Multiplies the valid votes.
- ■Verifies the correctness proofs of shares.
- \blacksquare If sufficiently many proofs are correct then sends (giveresult, $sid, i)$ to $\mathfrak{I}_{\text{vorr}}$.

Damgård-Jurik encryption system

- ^A homomorphic threshold encryption system Somewhat RSA-like
	- ◆ \blacklozenge Operations are modulo n^s , where n is a RSA modulus.
	- \blacklozenge Easy to recover i from $(1+n)^i \bmod n^s$ ◆.
- Maybe in the lecture. . .
- ■ \blacksquare $\hspace{0.1 cm}$ Otherwise see http://www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps

Secure MPC from thresh. homom. encr.

Computationally secure against malicious coalitions with size less than the threshold.

- ■Function ^given as ^a circuit with multiplications and additions.
- The value on each wire is represented as its encryption, known to all.
- Addition gate everybody can add encrypted values by themselves. \blacksquare Multiplication of a and b (encryptions are \overline{a} and b):
	- \blacklozenge Each party P_i chooses a random d_i , broadcasts d_i , proves in ZK that it knows $d_i.$
	- ◆ Let $d = d_1 + \cdots + d_n$. Then $\overline{d} = \overline{d_1} \oplus \cdots \oplus \overline{d_n}$. ◆
	- ◆ Decrypt $\overline{a} \oplus d = a + d$, let everybody know it. ◆
	- ◆ Let $\overline{a_1} = a + d \ominus d_1$ ◆ $\underline{\mathbf{a}}_1$ and $\overline{a_i}=\ominus d_i.$ P_i knows $a_i.$
	- \overline{a} P_i broadcasts $a_i\odot \overline{b}=\overline{a_i}\overline{b}$ and proves in ZK that he computed it ◆correctly.
	- ◆ Everybody computes $\overline{a_1b} \oplus \cdots \oplus \overline{a_nb} = \overline{ab}$. ◆