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Recap: secure MPC
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We have seen:

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.
■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, malicious(< n/2), constant-round.
■ n-party, unconditional, malicious(< n/3), linear-round.

◆ Possible to have less than n/2 malicious parties, using
ZK-techniques to convince other parties that you behave as
prescribed.

◆ Has exponentially small probability of failure.



What we have not seen
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■ Secure MPC with malicious majority (≥ n/2 malicious parties)

◆ Possible only in the computational setting
◆ In the beginning, commit to your randomness. During

computation, prove (in ZK) that you are using the committed
randomness.

◆ Malicious parties can interrupt the protocol.

■ Asynchronous MPC

◆ All messages arbitrarily delayed, but eventually delivered.

■ The delays are not controlled by the adversary.

◆ No difference in semi-honest case.
◆ With fail-stop adversary need < n/3 corrupted parties.
◆ With malicious adversary need < n/4 corrupted parties.

■ . . . with unconditional security.



On security definitions
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■ Real vs. ideal functionality. . .
■ The ideal functionality for computing the function f with n inputs

and outputs:

◆ Parties P1, . . . , Pn hand their inputs x1, . . . , xn over to the
functionality.

◆ The ideal functionality computes (y1, . . . , yn) = f(x1, . . . , xn).

■ . . . tossing coins if f is randomized.

◆ The ideal functionality sends yi to Pi.



Ideal functionality MPC Ideal
n
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■ Has n input ports and n output ports.
■ Initial state: x1, . . . , xn are undefined.
■ On input (input, v) from port in i?:

◆ If xi is defined, then do nothing.
◆ If xi is not defined, then set xi := v.

■ If x1, . . . , xn are all defined then compute (y1, . . . , yn).
■ For all i, write yi to port out i!.
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■ Has n input ports and n output ports.
■ Initial state: x1, . . . , xn are undefined.
■ On input (input, v) from port in i?:

◆ If xi is defined, then do nothing.
◆ If xi is not defined, then set xi := v.

■ If x1, . . . , xn are all defined then compute (y1, . . . , yn).
■ For all i, write yi to port out i!.

How do we run it (connections, scheduling)? What it means for a party
to be corrupted?



Real functionality MPCReal
n
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■ Conceptually made up of n identical machines Pi.

◆ Has ports in i?, out i!, network ports. . .

■ Initialization: Pi learns his name i.
■ On input (input, v) from port in i? put xi := v and start executing

the MPC protocol. . .
■ If the protocol has finished execution then write yi to out i!.
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■ Conceptually made up of n identical machines Pi.

◆ Has ports in i?, out i!, network ports. . .

■ Initialization: Pi learns his name i.
■ On input (input, v) from port in i? put xi := v and start executing

the MPC protocol. . .
■ If the protocol has finished execution then write yi to out i!.

■ Cannot speak about the indistinguishability of MPC Ideal and
MPCReal because the set of ports is different.

◆ We have to simulate something. . .



Probabilistic I/O automata
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A PIOA M has

■ The set of possible states QM ;
■ The initial state qM

0 ∈ QM and final states QM
F ⊆ QM ;

■ The sets of ports:

◆ input ports IPorts
M ,

◆ output ports OPorts
M ,

◆ clocking ports CPorts
M ;

■ A probabilistic transition function δM :

◆ domain: QM × IPorts
M × {0, 1}∗;

◆ range: QM × (OPorts
M → ({0, 1}∗)∗)× (CPorts

M ∪ {⊥})

. . . in our examples implemented by a PPT algorithm.

◆ QM , QM
F and qM

0 may (uniformly) depend on the security
parameter.



Channels and collections
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■ A set Chans of channel names is given.
■ There is a distinguished clk ∈ Chans, representing global clock.
■ For a channel c, its input, output and clocking ports are c?, c! and

c⊳!.
■ A closed collection C is a set of PIOAs, such that

◆ no port is repeated;
◆ For each c ∈ Chans\{clk} occurring in C: the ports c?, c! and

c⊳! are all present.
◆ clk? is present. clk ! and clk ⊳! are not present.

■ A collection C is a set of PIOAs that can be extended to a closed
collection.

◆ Let freeports(C) be the set of ports that the machines in C ′

certainly must have for C ∪ C ′ to be a closed collection.



Internal state of a closed collection
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The state of a closed collection C consists of

■ the states of all PIOA-s in C;

◆ Initially qM
0 for all M ∈ C.

■ the message queues of all channels c in C;

◆ I.e. sequences of (still undelivered) messages.
◆ Initially the empty queues for all c ∈ C.

■ the currently running PIOA M , its input message v and channel c.

◆ Initially X, ε and clk , where X is the machine with the port
clk?.



Execution step of a closed collection
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■ Invoke the transition function of M with message v on input port c?.

◆ Update the internal state of M .
◆ If (v1, . . . , vk) was written to port c′! then append v1, . . . , vk to

the end of the message queue of c′.

■ If M is X and it reached the final state then stop the execution.
■ Otherwise, if M picked a clock port c′⊳! and the queue of c′ is not

empty, then define the new (M, v, c):

◆ c is c′;
◆ v is the first message in the queue of c′, which is removed from

the queue;
◆ M is the machine with the port c′?.

■ Otherwise set (M, v, c) := (X, ε, clk).



Trace of the execution
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Each execution step adds a tuple consisting of

■ the machine that made the step;
■ the incoming message and the channel;
■ the random coins that were generated and the new state and

messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over
traces (for a given security parameter).
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Each execution step adds a tuple consisting of

■ the machine that made the step;
■ the incoming message and the channel;
■ the random coins that were generated and the new state and

messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over
traces (for a given security parameter).

Given trace tr and a set of machines M, the restriction of the trace tr |M
consists of only those tuples where the machine belongs to M.



Combining PIOAs
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The combination of PIOAs M1, . . . ,Mk is a PIOA M with

■ the state space QM = QM1 × · · · ×QMk ;
■ initial state qM

0 = (qM1

0 , . . . , qMk);
■ final states QM

F =
⋃

i Q
M1 × · · · ×QMi−1 ×QMi

F ×QMi+1 × · · · ×QMk ;

■ ports XPorts
M =

⋃

i XPorts
Mi with X ∈ {I,O,C};

■ Transition function δM , where δM ((q1, . . . , qk), c?, v) is evaluated by

◆ Let i be such that c? ∈ IPorts
Mi.

◆ Evaluate (q′i, fi, p)← δMi(qi, c?, v).
◆ Output ((q1, . . . , qi−1, q

′
i, qi+1, . . . , qk), f, p), where

f(c′!) =

{

f ′(c′!), if c′! ∈ OPorts
Mi

ε, otherwise.

Exercise. How does the semantics of a closed collection change if we
replace certain machines in this collection with their combination?



Security-oriented structures
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■ A structure consists of

◆ a collection C;
◆ a set of ports S ⊆ freeports(C).

■ C offers the intended service on S.
■ The ports freeports(C)\S are for the adversary.

■ A system is a set of structures.
■ A configuration consists of a structure (C, S) and two PIOA-s H and

A, such that

◆ H has no ports in freeports(C)\S,
◆ C ∪ {H,A} is a closed collection.

■ Let Confs(C, S) be the set of pairs (H,A), such that (C, S, H,A) is
a configuration.

Exercise. What parts of (C, S) determine Confs(C, S)?



Reactive simulatability
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■ Let (C1, S) and (C0, S) be two structures.
■ (C1, S) is at least as secure as (C0, S) if

◆ for all H,
◆ for all A, such that (H,A) ∈ Confs(C1, S)
◆ exists S, such that (H,S) ∈ Confs(C0, S)

such that [[C1 ∪ {H,A}]]|H ≈ [[C0 ∪ {H,S}]]|H .
■ We also say that (C0, S) simulates (C1, S).
■ The simulatability is universal if the order of quantifiers is ∀A∃S∀H.
■ The simulatability is black-box if

◆ there exists a PIOA Sim, such that
◆ for all (H,A) ∈ Confs(C1, S) holds

(H,A‖Sim) ∈ Confs(C0, S) and [[C1 ∪ {H,A}]]|H ≈ [[C0 ∪ {H,A,Sim}]]|H .

Exercise. Show that universal and black-box simulatability are
equivalent (if the port names do not collide).



Simulatability for systems
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■ A system Sys1 is at least as secure as a system Sys0 if for all
structures (C1, S) ∈ Sys1 there exists a structure (C0, S) ∈ Sys0,
such that (C1, S) is at least as secure as (C0, S).



Example: secure channels for n parties
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■ Ideal PIOA I has ports in i? and out i! for communicating with the
i-th party.

■ Input (j,M) on in i? causes (i,M) to be written to out j!.
■ Should model API calls, hence it also has the ports out i

⊳!.
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■ Ideal PIOA I has ports in i? and out i! for communicating with the
i-th party.

■ Input (j,M) on in i? causes (i,M) to be written to out j!.
■ Should model API calls, hence it also has the ports out i

⊳!.
■ Real structure uses public-key cryptography to provide confidentiality

and authenticity.

◆ Message M from i to j encoded as Ej(sigi(M)).

■ Consists of PIOA-s M1, . . . ,Mn. Mi has ports ini? and out i!.
■ Mi has ports net→i !, net→i

⊳! and net←i ? for (insecure) networking.
■ Public keys are distributed over authentic channels.

◆ Mi has ports aut→i,j !, auta
i,j! and auta

j,i? for authentically
communicating with party Mj.

◆ Mi always writes identical messages to aut→i,j! and auta
i,j!.
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■ Ideal PIOA I has ports in i? and out i! for communicating with the
i-th party.

■ Input (j,M) on in i? causes (i,M) to be written to out j!.
■ Should model API calls, hence it also has the ports out i

⊳!.
■ Real structure uses public-key cryptography to provide confidentiality

and authenticity.

◆ Message M from i to j encoded as Ej(sigi(M)).

■ Consists of PIOA-s M1, . . . ,Mn. Mi has ports ini? and out i!.
■ Mi has ports net→i !, net→i

⊳! and net←i ? for (insecure) networking.
■ Public keys are distributed over authentic channels.

◆ Mi has ports aut→i,j !, auta
i,j! and auta

j,i? for authentically
communicating with party Mj.

◆ Mi always writes identical messages to aut→i,j! and auta
i,j!.

■ S = {in1!, . . . , inn!, in1
⊳!, . . . , inn

⊳!, out1?, . . . , outn?}.



I is way too ideal
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■ Sending a message without initialization.

◆ generating keys and distributing the public keys.

■ Sending messages without delays. Guaranteed transmission.
■ Traffic analysis.
■ Concealing the length of messages.
■ Transmitting only a number of messages polynomial to η.
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■ Sending a message without initialization.

◆ generating keys and distributing the public keys.

■ Sending messages without delays. Guaranteed transmission.
■ Traffic analysis.
■ Concealing the length of messages.
■ Transmitting only a number of messages polynomial to η.

To simplify the presentation, we’ll also

■ Allow reordering and repetition of messages from one party to
another.



The state of the PIOA I
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■ Boolean init i — “has Mi generated the keys?”
■ Boolean init i,j — “has Mj received the public keys of Mi?”
■ Sequence of bit-strings Di,j — the messages party i has sent to

party j.
■ ℓi — the total length of messages party i has sent so far.

Initial values — false, ε, or 0.
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■ Boolean init i — “has Mi generated the keys?”
■ Boolean init i,j — “has Mj received the public keys of Mi?”
■ Sequence of bit-strings Di,j — the messages party i has sent to

party j.
■ ℓi — the total length of messages party i has sent so far.

Initial values — false, ε, or 0.

To set these values, I has to communicate with the adversary, too. It
has the ports adv→!, adv→⊳! and adv←? for that.



The transition function δI
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■ On input (init) from in i?: Set init i to true, write (init, i) to adv→!
and raise adv→⊳!.

■ On input (init, i, j) from adv←?: Set init i,j to init i.
■ On input (send, j,M) from in i?: Do nothing if one of the following

holds:

◆ |M |+ ℓi > p(η) for a fixed polynomial p;
◆ init i ∧ init j,i = false.

Otherwise add |M | to ℓi and append M to Di,j . Write
(sent, i, j, |M |) to adv→! and raise adv→⊳!.

■ On input (recv, i, j, x) from adv←?: Do nothing if one of the
following holds:

◆ init j ∧ init i,j = false;
◆ x ≤ 0 or |Di,j | < x.

Otherwise write (received, i,Di,j [x]) to out j! and raise out j
⊳!.



The state of the PIOA Mi
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■ The decryption key Kd
i and signing key Ks

i .
■ The encryption keys Ke

j and verification keys Kv
j of all parties j.

■ The length ℓi of the messages sent so far.

To operate, we have to fix

■ IND-CCA-secure public key encryption system;
■ EF-CMA-secure signature scheme.



The transition function δMi
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■ On input (init) from in i?: Generate keys (Ke
i ,K

d
i ) and (Kv

i ,Ks
i ).

Ignore further (init)-requests. Write (Ke
i ,K

v
i ) to ports aut→i,j! and

auta
i,j !.

■ On input (ke, kv) from auta
j,i?: Initialize Ke

j and Kv
j .

■ On input (send, j,M) from in i?: If |M |+ ℓi ≤ p(η) and Ks
i ,K

e
j are

defined

◆ Let v ← EKe
j
(sigKs

i
(i, j,M)).

◆ Add |M | to ℓi.
◆ Write (sent, j, v) to net→i ! and raise net→i

⊳!.

■ On input (recv, j, v) from net←i ?: If the necessary keys are initialized
and decryption and verification succeed (giving message M) then
write (received, j,M) to out i! and raise out i

⊳!.



The simulator
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■ The simulator translates between the ideal structure I and the “real”
adversary.

■ It has the following ports:

◆ adv→?, adv←!, adv←⊳! for communicating with I.
◆ net→i !, net→i

⊳!, net←i ?, aut→i,j!, auta
i,j!, auta

j,i? for communicating
with the “real” adversary.

■ Both ends of the channel auta
i,j are at Sim.

■ But the adversary schedules this channel.

Exercise. Construct the simulator.



Composition
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Let the structures (C1, S1), . . . , (Ck, Sk) be given. We say that (C, S) is
the composition of those structures if

■ C1, . . . , Ck are pairwise disjunct;
■ the sets of ports of C1, . . . , Ck are pairwise disjunct;
■ C = C1 ∪ · · · ∪ Ck;
■ freeports(Ci)\Si ⊆ freeports(C)\S for all i.

Write (C, S) = (C1, S1)× · · · × (Ck, Sk).
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Let the structures (C1, S1), . . . , (Ck, Sk) be given. We say that (C, S) is
the composition of those structures if

■ C1, . . . , Ck are pairwise disjunct;
■ the sets of ports of C1, . . . , Ck are pairwise disjunct;
■ C = C1 ∪ · · · ∪ Ck;
■ freeports(Ci)\Si ⊆ freeports(C)\S for all i.

Write (C, S) = (C1, S1)× · · · × (Ck, Sk).

Theorem. Let

■ (C, S) = (C1, S1)× (C0, S0) and (C ′, S) = (C1, S1)× (C ′0, S0);
■ (C0, S0) ≥ (C ′0, S

′
0).

Then (C, S) ≥ (C ′, S).

Proof on the blackboard.



Simulation for secure messaging
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1. Separate encryption; replace it with an ideal encryption machine.
2. Define a probabilistic bisimulation with error sets between the states

of M1‖ · · · ‖Mn and I‖Sim.
3. Show that error sets have negligible probability.

■ The errors correspond to forging a signature or generating the
same random value twice.

■ The first case may also be handled by defining a separate
signature machine.

■ The second case may also be handled by defining the ideal
machines in the appropriate way.



The PIOA Encn
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■ Has ports eini?, eout i!, eout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get ports ein i!, eini
⊳!, eout i?.

■ On input (gen) from ein i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to eout i!, clock.

■ On input (enc, k+,M) from ein i?: if k+ has been stored as a public
key, then compute v ← E(k+,M), write v to eout i!, clock.

■ On input (dec, k+,M) from ein i?: if (i, k+, k−) has been stored,
write D(k−,M) to eout i!, clock.



The PIOA Encn
s
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■ Has ports eini?, eout i!, eout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get ports ein i!, eini
⊳!, eout i?.

■ On input (gen) from ein i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to eout i!, clock.

■ On input (enc, k+,M) from ein i?: if k+ has been stored as a public
key, then compute v ← E(k+, 0|M |), store (k+,M, v), write v to
eout i!, clock.

◆ Recompute v until it differs from all previous v-s.

■ On input (dec, k+,M) from ein i?: if (i, k+, k−) has been stored,
then

◆ if (k+,M, v) has been stored for some v, then write v to eout i!,
clock.

◆ otherwise write D(k−,M) to eout i!, clock.

Encn ≥ Encn
s (black-box). Exercise. Describe the simulator.



The PIOA Sign
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■ Has ports sini?, sout i!, sout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get necessary ports for using Sign as by API
calls.

■ On input (gen) from sin i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to sout i!, clock.

■ On input (sig, k+,M) from sin i?: if (i, k+, k−) has been stored then
compute v ← sig(k−,M), write v to sout i!, clock.

■ On input (ver, k+, s) from sini?: if k+ has been stored then write
ver(k+, s) to sout i!, clock.



The PIOA Sign
s
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■ Has ports sini?, sout i!, sout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get necessary ports for using Sign as by API
calls.

■ On input (gen) from sin i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to sout i!, clock.

■ On input (sig, k+,M) from sin i?: if (i, k+, k−) has been stored then
compute v ← sig(k−,M), store (k+,M), write v to sout i!, clock.

■ On input (ver, k+, s) from sini?: if k+ has been stored then write
ver(k+, s) ∧ “(k+,M) has been stored” to sout i!, clock.



Modified real structure
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■ Instead of generating the encryption keys, and encrypting and
decrypting themselves, machines Mi query the machine Encn.

■ We can then replace Encn with Encn
s . The original structure was at

least as secure as the modified structure.
■ Same for signatures. . .
■ Denote the modified machines by M̃i.



The state of the real structure
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■ State of M̃i — the keys Ke
j and Kv

j (1 ≤ j ≤ n).

◆ If some K is defined at several machines, then they are equal.

■ State of Encn
s :

◆ key triples (i, k+, k−), where k+ is the same as Ke
i .

◆ text triples (k+,M, v), where k+ also occurs in a key triple.

■ State of Sign
s :

◆ key triples (i, k+, k−), where k+ is the same as Kv
i .

◆ text pairs (k+,M), where k+ also occurs in a key triple.

■ Possibly (during initialization) the keys in the buffers of the channels
auta

i,j .
■ No messages are in the buffers of newly introduced channels ein i

etc.
■ The buffers of channels connected to H or A, are not part of the

state.



The simulator Sim
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■ Consists of the real structure and one extra machine Cntr . Its initial
state contains counters zij for all 1 ≤ i, j ≤ n.

■ The ports ini?, out i!, out i
⊳! of M̃i are renamed to cini?, cout i!,

cout i
⊳!.

■ Machine Cntr has ports cini!, cini
⊳!, cout i?, adv←!, adv←⊳!,

adv→?.
■ On input (init, i) from adv→? write (init) to cin i! and clock it.
■ On input (ke, kv) from auta

j,i?: the machine M̃i additionally writes
(recvkeys, j) to cout i! and clocks it.

■ Receiving (recvkeys, j) from cout i?, machine Cntr writes (init, j, i)
to adv←! and clocks it.

■ Receiving (send, i, j, l) from adv→?, the machine Cntr generates a
new∗ message M of length l, increments zij, stores (i, j, zij,M),
writes (send, j,M) to cin i!, clocks it.

■ Reciving (received, i,M) from cout j?, the machine Cntr locates the
tuple (i, j, x,M), writes (recv, i, j, x) to adv←!, clocks it.



The state of I‖Sim
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■ Same as real structure.
■ For each i, j, the sequences D′i,j of messages (z,M) that the

machine Cntr has generated.
■ The counters zij.
■ Initialization bits init i, init i,j.
■ The sequences of messages Di,j that party i has sent to party j.
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■ Same as real structure.
■ For each i, j, the sequences D′i,j of messages (z,M) that the

machine Cntr has generated.
■ The counters zij.
■ Initialization bits init i, init i,j.
■ The sequences of messages Di,j that party i has sent to party j.

Lemma. If I‖Sim is not currently running, then

■ zij = |Dij| = |D
′
i,j | and the lengths of the messages in the sequences

Di,j and |D′i,j | are pairwise equal.

■ If init i then M̃i has requested the generation of keys. If init i,j then
M̃j has received the keys of M̃i. The opposite also holds.

■ The signed messages in Sign
s are exactly of the form (i, j,M) where

M is in the sequence D′i,j. The encrypted messages in Encn
s are

exactly those signed messages.



Probabilistic bisimulations
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■ Let (S,A,→, s0) be a probabilistic transition system. I.e.

◆ S and A are the sets of states and transitions. s0 ∈ S.
◆ → is a partial function from S × A to D(S) (probability

distributions over S).

■ An equivalence relation R over S is a probabilistic bisimulation if
s R s′ implies

◆ for each a ∈ A, s
a
→ D implies that there exists D′, such that

s′
a
→ D′, and

◆ for each t ∈ S:
∑

t′∈t/R
D(t′) =

∑

t′∈t/R
D′(t′).

■ Two probabilistic transition systems (S,A,→, s0) and (T,A,⇒, t0)
are bisimilar if there exists a probabilistic bisimulation R of
(S ∪̇ T,A,→ ∪ ⇒) that relates s0 and t0.



Probabilistic bisimilarity
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Bisimilarity of systems (S,A,→, s0) and (T,A,⇒, t0) means that

■ The sets S and T can be partitioned into S1 ∪̇ · · · ∪̇ Sk and
T1 ∪̇ · · · ∪̇ Tk, such that

◆ . . . also define S0 = T0 = ∅

■ there exists a permutation σ of {0, . . . , k}, such that

◆ in other words, σ defines a relation R ⊆ S × T , such that s R t
iff s ∈ Si, t ∈ Tσ(i) for some i.

■ For all s ∈ Si, t ∈ Tσ(i), a ∈ A:

■ If s
a
→ D then t

a
⇒ E. Also, for each j:

∑

s′∈Sj
D(s′) =

∑

t′∈Tj
E(t′).

■ s0 R t0.



Bisimilarity for secure channels
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Relating the states of real and (ideal‖simulator) structures:

■ The states of M̃i, Encn
s , Sign

s must be equal.
■ The rest of the state of I‖Sim must satisfy the lemma we had above.

The relationship must hold only if either H or A is currently running.

■ Now consider all possible inputs that the real structure or
(ideal‖simulator) may receive. Show that they react to it in the
identical manner.



Home exercise
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Present a simulatable functionality for secure channels (not allowing
corruptions) that preserves the order of messages and does not allow
their duplication.

Can raise the exam result by up to 10%.

Deadline: January 5th.



An UC voting functionality

37 / 70

Let there be m voters and n talliers. Let the possible votes be in
{0, . . . , L− 1}.
All voters will give their votes. All authorities agree on the result. The
adversary will not learn individual votes.
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Let there be m voters and n talliers. Let the possible votes be in
{0, . . . , L− 1}.
All voters will give their votes. All authorities agree on the result. The
adversary will not learn individual votes.

■ The ideal functionality Ivote has the standard ports. . . inV
i ?, outV

i !,
outV

i
⊳
!, inT

i ?, outT
i !, outT

i
⊳
!, adv←?, adv→!, adv→⊳!.

■ First expect (init, sid)-command from the adversary.
■ On input (vote, sid , v) from Vi store (vote, sid , Vi, v, 0), send

(vote, sid , Vi) to the adversary, ignore further votes from Vi in
session sid .

■ On input (accept, sid , Vi) from the adversary, change the flag from 0
to 1 in (vote, sid , Vi, v, ).

■ On input (result, sid) from the adversary, add up the votes in session
sid with flag 1, store (result, sid , r) and send it to the adversary.

■ On input (giveresult, sid , i) from the adversary send (result, sid , r) to
voter Vi or tallier Ti−m.
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■ Message board

◆ Synchronous communication

■ Homomorphic threshold encryption

◆ MPC (for key generation)

■ NIZK proofs

◆ Random oracle
◆ Generation of random elements

of a group

NIZK

RO

RGR

VOTE

KGEN

MB



Message board
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Ideal functionality Imb for parties P1, . . . , Pn is the following:

■ On input (bcast, sid , v) from Pi, store (bcast, i, sid , v). Accept no
further (bcast, sid , . . .)-queries from Pi. Send (bcast, sid , i, v) to the
adversary.

■ On input (pass, sid , i) from the adversary, if (bcast, i, sid , v) has
been stored, store (post, sid , i, v).

■ On input (tally, sid) from the adversary, accept no more
(bcast, sid , . . .) and (pass, sid , . . .)-requests.

■ On input (request, sid , i) from Pj, if (tally, sid) has been received
before, send all stored (post, sid , . . .)-tuples to Pj (as a single
message).

Realization requires reliable channels or smth.



ZK proofs
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The ideal functionality Izk for parties P1, . . . , Pn and witnessing relation
R is the following

■ On input (prove, sid , Pj, x, w) from a party Pi:

◆ Check that (x,w) ∈ R;
◆ Store (Pi, Pj, sid , x);
◆ Send (prove, Pi, Pj, sid , x) to the adversary.
◆ Accept no more (prove, sid , . . .) queries from Pi.

■ On input (proofok, Pi, Pj, sid , x) from the adversary send
(proof, sid , Pi, x) to Pj.
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The ideal functionality Inizk for parties P1, . . . , Pn and witnessing
relation R is the following

■ On input (prove, sid , x, w) from a party Pi:

◆ Check that (x,w) ∈ R;
◆ Send (proof, sid , x) to the adversary.
◆ Accept no more (prove, sid , . . .) queries from Pi.
◆ Wait for a query of the form (proof, sid , x, π) from the

adversary.
◆ Store (sid , x, π).
◆ Send (proof, sid , x, π) to Pi.

■ On input (prove, sid , x, w, π) from the adversary:

◆ Check that (x,w) ∈ R;
◆ Store (sid , x, π).



NIZK proofs
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■ On input (verify, sid , x, π) from Pj check whether (sid , x, π) is
stored. If it is then

◆ Return (verifyok, sid , x).

If it is not then

◆ Send (witness?, sid , x) to the adversary.
◆ Wait for a query of the form (prove, sid , x, w, π) from the

adversary.
◆ Handle (prove, sid , x, w, π) as on previous slide.
◆ If (x,w) ∈ R then return (verifyok, sid , x) to Pj.



Waiting for some message
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■ Before stopping, record the form of the expected message and the
point where the execution was interrupted.

■ At the next invocation check whether the expected message was
received.

◆ If yes, then continue from where we left off.
◆ If no, then handle the received message normally.

In both cases, clear the waiting state.



Random oracles

44 / 70

The random oracle functionality IRO for n parties is the following:

■ On input x by any party or the adversary

◆ If (x, r) is already stored for some r, return r.
◆ Otherwise generate r ∈R {0, 1}

p(η), store (x, r) and return r.

IRO works as a subroutine.



Generating a random element of a group
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Let G be a fixed group (depends on η only), with a prime cardinality and
hard DDH problem. The functionality Irgr is the following:

■ On input (init) by the adversary generates a random element of G
and returns it to the adversary.

■ On input (init, i) marks that it may answer to party Pi.
■ On input (get) from a party returns the generated element, if

allowed.

Realization:

■ The machines Mi are initialized by the adversary.
■ Mi generates a random element gi ∈ G, secret shares it;
■ The shared values are multiplied and the result is opened.
■ A (get) by a party allows it to learn the computed value.
■ Uses secure channels functionality.

Exercise. How to simulate?



Protocol realizing NIZK
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■ Idea: on input (prove, sid , x, w) from party Pi the machine Mi

commits to w and outputs x, C(w), and a NIZK proof that C(w) is
hiding a witness for x.

■ Initialization: parties get two random elements g, h ∈ G using two
copies of Irgr.

◆ Ignore user’s query if (get) to Irgr-s gets no response.

■ Let us use the following commitment scheme (G is a group with
cardinality #G and hard DDH problem):

◆ To commit to m ∈ G, generate a random r ∈ {0, . . . #G− 1}.
The commitment is (gr,m · hr).

◆ The opening of the previous commitment is r.

Exercise. How to verify? What is this commitment scheme? What can
be said about its security?



Protocol realizing NIZK
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■ There exists a ZK protocol for proving that a commitment c hides a
witness w, such that (x,w) ∈ R.

■ For honest verifiers, this protocol has three rounds — commitment
(or witness), challenge and response.

◆ It depends on R (and the commitment scheme).
◆ Let A(x,C(w), w, r) generate the witness and

Z(x,C(w), w, r, a, c) compute the response.
◆ Challenge is a random string. Let V(x,C(w), a, c, z) be the

verification algorithm at the end.

■ The whole proof π for (x, sid) consists of

◆ C(w), a random string r̄;
◆ a← A(x,C(w), w, r);
◆ z ← Z(x,C(w), w, r, a,H(x, a, sid , r̄))

■ (proof, sid , x, π) is sent back to the user.



Protocol realizing NIZK
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■ On input (verify, sid , x, π) from the user, machine Mj verifies that
proof:

◆ Computes c = H(x, a, sid , r̄) (by invoking Iro) and verifies
V(x,C, a, c, z).

If correct, responds with (verifyok, sid , x).



Simulation
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The simulator communicates with

■ the ideal functionality: possible commands are

◆ (proof, i, sid , x);
◆ (witness?, sid , x, π).

■ the real adversary: possible commands are

◆ (init) and (init, i) for two copies of Irgr;
◆ queries to the random oracle Iro.

■ Answer the queries to Iro in the normal way.



Simulator: initialization
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On the very first invocation:

■ Generate random elements g, h ∈ G.

On (init) and (init, i) from the adversary for functionalities Irgr:

■ Record that these commands have been received.



Simulating (proof, i, sid , x)
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■ The query (prove, sid , x, w) was made by party Pi to Inizk.
■ Where do we get w?
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■ The query (prove, sid , x, w) was made by party Pi to Inizk.
■ Where do we get w? We don’t get it at all.
■ Let C be the commitment of a random element w′;
■ Simulate the ZK proof of (x,w′) ∈ R:

◆ Let c be a random challenge.
◆ Let (a, z) be suitable witness and response for showing that C is

the commitment of a suitable witness of x in R.

■ Let r̄ be a random string, such that (x, a, sid , r̄) has not been a
query to Iro.
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■ The query (prove, sid , x, w) was made by party Pi to Inizk.
■ Where do we get w? We don’t get it at all.
■ Let C be the commitment of a random element w′;
■ Simulate the ZK proof of (x,w′) ∈ R:

◆ Let c be a random challenge.
◆ Let (a, z) be suitable witness and response for showing that C is

the commitment of a suitable witness of x in R.

■ Let r̄ be a random string, such that (x, a, sid , r̄) has not been a
query to Iro.

■ Define H(x, a, sid , r̄) := c. Let π = (C, r̄, a, z).
■ Send (proof, sid , x, i, π) to Inizk.

(Programmable random oracle)



Simulating (witness?, sid , x, π)
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This is called if the real adversary has independently constructed a valid
proof.

■ Change the simulator as follows:

◆ Initialization: the simulator generates g and h so, that it knows
logg h.

■ On a (witness?, . . .)-query, the simulator checks whether the proof
π = (C, r̄, a, z) is correct.

■ If it is, then it extracts the witness w from C by ElGamal decryption.

■ After that, it sends (prove, sid , x, w, π) to Inizk.

Exercise. What if C does not contain a valid witness?



Corruptions
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■ The real adversary may send (corrupt)-command to some machine
Mi.

◆ Static corruptions — only at the beginning.
◆ Adaptive corruptions — any time.

■ The machine responds with its current state.
■ Afterwards, Mi “becomes a part of” the adversary.

◆ Forwards all received messages to the adversary.
◆ Mi accesses other components on behalf of the adversary.
◆ No more traffic between Mi and the user.

■ Possibility to corrupt players has to be taken into account when
specifying ideal functionalities.

◆ The ideal adversary may send (corrupt, i) to the functionality.

■ The simulator will make these queries if the real adversary
corrupted someone.

◆ The functionality may change the handling of the i-th party.



Corruptions and functionalities
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■ Random oracles — impossible to corrupt.
■ Generating a random element of the group:

◆ Implementations uses MPC techniques.
◆ Tolerates adaptive corruptions of less than n/3 participants.
◆ If party i is corrupted, then Irgr

■ Gives no output to the i-th party.
■ Forwards to the adversary all requests from the i-th party.

◆ If too many parties are corrupted (at least n/3) then Irgr gives
all control to the adversary.

◆ The simulator simply acts as a forwarder between a corrupted
party and the adversary.



Corrupting Inizk
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■ The realization of NIZK uses Irgr.

◆ It fails if there are at least n/3 corrupt parties.

■ It has no other weaknesses.
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■ The realization of NIZK uses Irgr.

◆ It fails if there are at least n/3 corrupt parties.

■ It has no other weaknesses.
■ If party i is corrupted in Inizk then it stops talking to the user.

◆ The adversary may prove things on user’s behalf.

■ If at least n/3 parties are corrupted then Inizk gives up.
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■ The realization of NIZK uses Irgr.

◆ It fails if there are at least n/3 corrupt parties.

■ It has no other weaknesses.
■ If party i is corrupted in Inizk then it stops talking to the user.

◆ The adversary may prove things on user’s behalf.

■ If at least n/3 parties are corrupted then Inizk gives up.
■ The simulator corrupts i-th party of Inizk if Mi is corrupted or the

i-th party in Irgr is corrupted.



Exercise
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How should corruptions be integrated to Imb?

Ideal functionality Imb for parties P1, . . . , Pn is the following:

■ On input (bcast, sid , v) from Pi, store (bcast, i, sid , v). Accept no
further (bcast, sid , . . .)-queries from Pi. Send (bcast, sid , i, v) to the
adversary.

■ On input (pass, sid , i) from the adversary, if (bcast, i, sid , v) has
been stored, store (post, sid , i, v).

■ On input (tally, sid) from the adversary, accept no more
(bcast, sid , . . .) and (pass, sid , . . .)-requests.

■ On input (request, sid , i) from Pj, if (tally, sid) has been received
before, send all stored (post, sid , . . .)-tuples to Pj (as a single
message).



Homomorphic encryption
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■ A public-key encryption system (K,E,D).
■ The set of plaintexts is a ring.
■ There is an operation ⊕ on ciphertexts, such that if D(k−, c1) = v1

and D(k−, c2) = v2 then D(k−, c1 ⊕ c2) = v1 + v2.
■ Security — IND-CPA.
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■ A public-key encryption system (K,E,D).
■ The set of plaintexts is a ring.
■ There is an operation ⊕ on ciphertexts, such that if D(k−, c1) = v1

and D(k−, c2) = v2 then D(k−, c1 ⊕ c2) = v1 + v2.
■ Security — IND-CPA.
■ In a threshold encryption system, the secret key is shared. There are

shares k−1 , . . . , k−n .
■ Also, there are public verification keys kv

1 , . . . , k
v
n that are used to

verify that the authorities have correctly computed the shares of the
plaintext.

◆ . . . like in verifiable secret sharing.

■ We use secure MPC to generate k+, k−1 , . . . , k−n , kv
1 , . . . , k

v
n.

◆ This can be modeled by an ideal functionality Ikgen.
◆ There are more efficient means of generation than general MPC.



Key generation
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The ideal functionality Ikgen for m users and n authorities works as
follows:

■ On input (generate, sid) from the adversary, generates new keys.
and gives the keys k+, kv

1 , . . . , k
v
n to the adversary.

■ On input (getkeys, sid) from a party, gives the party this party’s
generated keys. (works like subroutine)

■ Breaks down if there are at least (m + n)/3 corrupt parties.

Each voting session needs new keys, otherwise chosen-ciphertext attacks
are possible.



Voting protocol
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■ Voter machines MV
1 , . . . ,MV

m , tallier machines MT
1 , . . . ,MT

n .
■ The first time some MV

i or MT
i is activated, it asks for its key(s)

from Ikgen and receives them.
■ On input (vote, sid , v) from the user the machine MV

i

◆ Let ci ← Ek+(Encode(v)). Make a NIZK proof πi that ci

contains a correct vote. Send (bcast, sid‖0, (ci, πi)) to Imb.

■ On input (count, sid) from the adversary the machine MT
i

◆ Sends (request, sid‖0, i) to Imb and receives all the votes and
correctness proofs (c1, π1), . . . , (cm, πm).

◆ Checks the validity of the proofs, using Inizk.
◆ Multiplies the valid votes and decrypts the result, using k−i . Let

the result of the decryption be di. Makes a NIZK proof ξi that
di is a valid decryption and sends (bcast, sid‖1, (di, ξi) to Imb.

■ The proof also uses kv
i .



Voting protocol
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■ On input (result, sid) from the adversary any machine

◆ Sends (request, sid‖0, i) to Imb and receives all the votes and
correctness proofs (c1, π1), . . . , (cm, πm).

◆ Checks the validity of the proofs, using Inizk.
◆ Multiplies the valid votes, let the result be c.
◆ Sends (request, sid‖1, i) to Imb and receives the shares of the

result d1, . . . , dn together with proofs ξ1, . . . , ξn.
◆ Check the validity of those proofs.
◆ Combines a number of valid shares to form the final result r.
◆ Sends (result, sid , r) to the user.

Exercise. What kind of corruptions are tolerated here?



The simulator — interface
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The simulator encapsulates Imb, Inizk, Ikgen.
The simulator handles the following commands:

■ From Ivote:

◆ (vote, sid , i) — Vi has voted (but don’t know, how).
◆ (result, sid , r) — the result of the voting session sid .

■ From the real adversary:

◆ (count, sid) for MT
i — produce the share of the voting result.

◆ (result, sid) for any M — combine the shares of the result and
send it to the user.

◆ Corruptions; messages on behalf of corrupted parties.



The simulator — interface
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■ From the real adversary (on behalf of Imb):

◆ (pass, sid , i) — lets the message sent by Mi to pass.
◆ (tally, sid) — finishes round sid .
◆ (bcast, sid , i, v) — broadcast by a corrupt party.

■ From the real adversary (on behalf of Inizk):

◆ (proof, sid , x, π) — generate a proof token π for an honest
prover.

◆ (prove, sid , x, w, π) — the adversary proves something himself.

■ From the real adversary (on behalf of Ikgen):

◆ (generate, sid) — generates the keys.



The simulator — interface

63 / 70

The simulator issues the following commands:
To Ivote:
(init, sid)
(accept, sid , i)
(result, sid)
(giveresult, sid , i)
(corrupt, i)
(vote, sid , i, v)

To the real adversary (as Imb):
(bcast, sid , i, v)
To the real adversary (as Inizk):
(proof, i, sid , x)
(witness?, sid , x, π)
To the real adversary (as Ikgen):

(keys, sid , k+, kv
1 , . . . , k

v
n)



The simulator — initialization
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■ On the first activation with a new sid :

◆ Generates keys k+, k−1 , . . . , k−n , kv
1 , . . . , k

v
n for this session.

■ When receiving (generate, sid) from the adversary for Ikgen,

◆ marks that voting can now commence;
◆ sends (init, sid) to Ivote.

■ Corruptions by the adversary are forwarded to Ivote and recorded.



The simulator — voting
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■ On input (vote, sid , i) from Ivote:

◆ Let the encrypted vote be c← Ek+(0).
◆ Make a NIZK proof π that this vote is valid.

■ Going to Inizk’s waiting state, as necessary.

◆ Broadcast (using Imb) the pair (c, π) on behalf of voter i.

■ On input (pass, sid , i), if the vote was broadcast for the voter Pi:

◆ Send (accept, sid , i) back to Ivote.

■ If a corrupt party i puts a vote to the message board and makes a
valid proof for it:

◆ Decrypt that vote. Let its value be v.
◆ Send (vote, sid , i, v) to Ivote.



The simulator — tallying
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On input (tally, sid‖0) from the adversary for Imb:

■ Close the voting session sid , accept counting queries.
■ Send (result, sid) to Ivote.
■ Get the voting result r from Ivote and store it.



The simulator — counting
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On input (count, sid) from the adversary for the tallier Ti:

■ Check the proofs of all votes (ci, πi) using Inizk.

◆ Going to wait-state, if necessary.

■ Let C be the product of all votes with valid proofs.
■ For talliers T1, . . . , Tn, let d1, . . . , dn be

◆ if Ti is corrupt, then di = D(k−i , C);
◆ if Ti is honest, then a di is simulated value

such that d1, . . . , dn combine to r.

◆ d1, . . . , dn are generated at the first (count, sid)-query.

■ Make a NIZK proof ξi for the share di.
■ Broadcast (di, ξi) in session sid‖1 using Imb.
■ A corrupt tallier can broadcast anything. But only (di, ξi) for the

valid di is accepted at the next step.



The simulator — reporting the results
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On input (result, sid) from the adversary for any voter or tallier i:

■ Takes all votes (cj, πj) and all shares of the result (dj, ξj).
■ Verifies all correctness proofs of votes.
■ Multiplies the valid votes.
■ Verifies the correctness proofs of shares.
■ If sufficiently many proofs are correct then sends (giveresult, sid , i)

to Ivote.



Damg̊ard-Jurik encryption system
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■ A homomorphic threshold encryption system
■ Somewhat RSA-like

◆ Operations are modulo ns, where n is a RSA modulus.
◆ Easy to recover i from (1 + n)i mod ns.

■ Maybe in the lecture. . .
■ Otherwise see http://www.daimi.au.dk/˜ivan/GenPaillier finaljour.ps
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Computationally secure against malicious coalitions with size less than
the threshold.

■ Function given as a circuit with multiplications and additions.
■ The value on each wire is represented as its encryption, known to all.

■ Addition gate — everybody can add encrypted values by themselves.
■ Multiplication of a and b (encryptions are a and b):

◆ Each party Pi chooses a random di, broadcasts di, proves in ZK
that it knows di.

◆ Let d = d1 + · · ·+ dn. Then d = d1 ⊕ · · · ⊕ dn.
◆ Decrypt a⊕ d = a + d, let everybody know it.
◆ Let a1 = a + d⊖ d1 and ai = ⊖di. Pi knows ai.
◆ Pi broadcasts ai ⊙ b = aib and proves in ZK that he computed it

correctly.
◆ Everybody computes a1b⊕ · · · ⊕ anb = ab.
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