
Universal Composability
alias

Reactive Simulatability

Recap: secure MPC

2 / 70

We have seen:

■ 2-party, computational, semi-honest, constant-round.
■ 2- or n-party, computational, semi-honest(< n), linear-round.
■ n-party, unconditional, semi-honest(< n/2), linear-round.
■ n-party, computational, malicious(< n/2), constant-round.
■ n-party, unconditional, malicious(< n/3), linear-round.

◆ Possible to have less than n/2 malicious parties, using
ZK-techniques to convince other parties that you behave as
prescribed.

◆ Has exponentially small probability of failure.

What we have not seen

3 / 70

■ Secure MPC with malicious majority (≥ n/2 malicious parties)

◆ Possible only in the computational setting
◆ In the beginning, commit to your randomness. During

computation, prove (in ZK) that you are using the committed
randomness.

◆ Malicious parties can interrupt the protocol.

■ Asynchronous MPC

◆ All messages arbitrarily delayed, but eventually delivered.

■ The delays are not controlled by the adversary.

◆ No difference in semi-honest case.
◆ With fail-stop adversary need < n/3 corrupted parties.
◆ With malicious adversary need < n/4 corrupted parties.

■ . . . with unconditional security.

On security definitions

4 / 70

■ Real vs. ideal functionality. . .
■ The ideal functionality for computing the function f with n inputs

and outputs:

◆ Parties P1, . . . , Pn hand their inputs x1, . . . , xn over to the
functionality.

◆ The ideal functionality computes (y1, . . . , yn) = f(x1, . . . , xn).

■ . . . tossing coins if f is randomized.

◆ The ideal functionality sends yi to Pi.

Ideal functionality MPC Ideal
n

5 / 70

■ Has n input ports and n output ports.
■ Initial state: x1, . . . , xn are undefined.
■ On input (input, v) from port in i?:

◆ If xi is defined, then do nothing.
◆ If xi is not defined, then set xi := v.

■ If x1, . . . , xn are all defined then compute (y1, . . . , yn).
■ For all i, write yi to port out i!.

Ideal functionality MPC Ideal
n

5 / 70

■ Has n input ports and n output ports.
■ Initial state: x1, . . . , xn are undefined.
■ On input (input, v) from port in i?:

◆ If xi is defined, then do nothing.
◆ If xi is not defined, then set xi := v.

■ If x1, . . . , xn are all defined then compute (y1, . . . , yn).
■ For all i, write yi to port out i!.

How do we run it (connections, scheduling)? What it means for a party
to be corrupted?

Real functionality MPCReal
n

6 / 70

■ Conceptually made up of n identical machines Pi.

◆ Has ports in i?, out i!, network ports. . .

■ Initialization: Pi learns his name i.
■ On input (input, v) from port in i? put xi := v and start executing

the MPC protocol. . .
■ If the protocol has finished execution then write yi to out i!.

Real functionality MPCReal
n

6 / 70

■ Conceptually made up of n identical machines Pi.

◆ Has ports in i?, out i!, network ports. . .

■ Initialization: Pi learns his name i.
■ On input (input, v) from port in i? put xi := v and start executing

the MPC protocol. . .
■ If the protocol has finished execution then write yi to out i!.

■ Cannot speak about the indistinguishability of MPC Ideal and
MPCReal because the set of ports is different.

◆ We have to simulate something. . .

Probabilistic I/O automata

7 / 70

A PIOA M has

■ The set of possible states QM ;
■ The initial state qM

0 ∈ QM and final states QM
F ⊆ QM ;

■ The sets of ports:

◆ input ports IPorts
M ,

◆ output ports OPorts
M ,

◆ clocking ports CPorts
M ;

■ A probabilistic transition function δM :

◆ domain: QM × IPorts
M × {0, 1}∗;

◆ range: QM × (OPorts
M → ({0, 1}∗)∗)× (CPorts

M ∪ {⊥})

. . . in our examples implemented by a PPT algorithm.

◆ QM , QM
F and qM

0 may (uniformly) depend on the security
parameter.

Channels and collections

8 / 70

■ A set Chans of channel names is given.
■ There is a distinguished clk ∈ Chans, representing global clock.
■ For a channel c, its input, output and clocking ports are c?, c! and

c⊳!.
■ A closed collection C is a set of PIOAs, such that

◆ no port is repeated;
◆ For each c ∈ Chans\{clk} occurring in C: the ports c?, c! and

c⊳! are all present.
◆ clk? is present. clk ! and clk ⊳! are not present.

■ A collection C is a set of PIOAs that can be extended to a closed
collection.

◆ Let freeports(C) be the set of ports that the machines in C ′

certainly must have for C ∪ C ′ to be a closed collection.

Internal state of a closed collection

9 / 70

The state of a closed collection C consists of

■ the states of all PIOA-s in C;

◆ Initially qM
0 for all M ∈ C.

■ the message queues of all channels c in C;

◆ I.e. sequences of (still undelivered) messages.
◆ Initially the empty queues for all c ∈ C.

■ the currently running PIOA M , its input message v and channel c.

◆ Initially X, ε and clk , where X is the machine with the port
clk?.

Execution step of a closed collection

10 / 70

■ Invoke the transition function of M with message v on input port c?.

◆ Update the internal state of M .
◆ If (v1, . . . , vk) was written to port c′! then append v1, . . . , vk to

the end of the message queue of c′.

■ If M is X and it reached the final state then stop the execution.
■ Otherwise, if M picked a clock port c′⊳! and the queue of c′ is not

empty, then define the new (M, v, c):

◆ c is c′;
◆ v is the first message in the queue of c′, which is removed from

the queue;
◆ M is the machine with the port c′?.

■ Otherwise set (M, v, c) := (X, ε, clk).

Trace of the execution

11 / 70

Each execution step adds a tuple consisting of

■ the machine that made the step;
■ the incoming message and the channel;
■ the random coins that were generated and the new state and

messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over
traces (for a given security parameter).

Trace of the execution

11 / 70

Each execution step adds a tuple consisting of

■ the machine that made the step;
■ the incoming message and the channel;
■ the random coins that were generated and the new state and

messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over
traces (for a given security parameter).

Given trace tr and a set of machines M, the restriction of the trace tr |M
consists of only those tuples where the machine belongs to M.

Combining PIOAs

12 / 70

The combination of PIOAs M1, . . . ,Mk is a PIOA M with

■ the state space QM = QM1 × · · · ×QMk ;
■ initial state qM

0 = (qM1

0 , . . . , qMk);
■ final states QM

F =
⋃

i Q
M1 × · · · ×QMi−1 ×QMi

F ×QMi+1 × · · · ×QMk ;

■ ports XPorts
M =

⋃

i XPorts
Mi with X ∈ {I,O,C};

■ Transition function δM , where δM ((q1, . . . , qk), c?, v) is evaluated by

◆ Let i be such that c? ∈ IPorts
Mi.

◆ Evaluate (q′i, fi, p)← δMi(qi, c?, v).
◆ Output ((q1, . . . , qi−1, q

′
i, qi+1, . . . , qk), f, p), where

f(c′!) =

{

f ′(c′!), if c′! ∈ OPorts
Mi

ε, otherwise.

Exercise. How does the semantics of a closed collection change if we
replace certain machines in this collection with their combination?

Security-oriented structures

13 / 70

■ A structure consists of

◆ a collection C;
◆ a set of ports S ⊆ freeports(C).

■ C offers the intended service on S.
■ The ports freeports(C)\S are for the adversary.

■ A system is a set of structures.
■ A configuration consists of a structure (C, S) and two PIOA-s H and

A, such that

◆ H has no ports in freeports(C)\S,
◆ C ∪ {H,A} is a closed collection.

■ Let Confs(C, S) be the set of pairs (H,A), such that (C, S, H,A) is
a configuration.

Exercise. What parts of (C, S) determine Confs(C, S)?

Reactive simulatability

14 / 70

■ Let (C1, S) and (C0, S) be two structures.
■ (C1, S) is at least as secure as (C0, S) if

◆ for all H,
◆ for all A, such that (H,A) ∈ Confs(C1, S)
◆ exists S, such that (H,S) ∈ Confs(C0, S)

such that [[C1 ∪ {H,A}]]|H ≈ [[C0 ∪ {H,S}]]|H .
■ We also say that (C0, S) simulates (C1, S).
■ The simulatability is universal if the order of quantifiers is ∀A∃S∀H.
■ The simulatability is black-box if

◆ there exists a PIOA Sim, such that
◆ for all (H,A) ∈ Confs(C1, S) holds

(H,A‖Sim) ∈ Confs(C0, S) and [[C1 ∪ {H,A}]]|H ≈ [[C0 ∪ {H,A,Sim}]]|H .

Exercise. Show that universal and black-box simulatability are
equivalent (if the port names do not collide).

Simulatability for systems

15 / 70

■ A system Sys1 is at least as secure as a system Sys0 if for all
structures (C1, S) ∈ Sys1 there exists a structure (C0, S) ∈ Sys0,
such that (C1, S) is at least as secure as (C0, S).

Example: secure channels for n parties

16 / 70

■ Ideal PIOA I has ports in i? and out i! for communicating with the
i-th party.

■ Input (j,M) on in i? causes (i,M) to be written to out j!.
■ Should model API calls, hence it also has the ports out i

⊳!.

Example: secure channels for n parties

16 / 70

■ Ideal PIOA I has ports in i? and out i! for communicating with the
i-th party.

■ Input (j,M) on in i? causes (i,M) to be written to out j!.
■ Should model API calls, hence it also has the ports out i

⊳!.
■ Real structure uses public-key cryptography to provide confidentiality

and authenticity.

◆ Message M from i to j encoded as Ej(sigi(M)).

■ Consists of PIOA-s M1, . . . ,Mn. Mi has ports ini? and out i!.
■ Mi has ports net→i !, net→i

⊳! and net←i ? for (insecure) networking.
■ Public keys are distributed over authentic channels.

◆ Mi has ports aut→i,j !, auta
i,j! and auta

j,i? for authentically
communicating with party Mj.

◆ Mi always writes identical messages to aut→i,j! and auta
i,j!.

Example: secure channels for n parties

16 / 70

■ Ideal PIOA I has ports in i? and out i! for communicating with the
i-th party.

■ Input (j,M) on in i? causes (i,M) to be written to out j!.
■ Should model API calls, hence it also has the ports out i

⊳!.
■ Real structure uses public-key cryptography to provide confidentiality

and authenticity.

◆ Message M from i to j encoded as Ej(sigi(M)).

■ Consists of PIOA-s M1, . . . ,Mn. Mi has ports ini? and out i!.
■ Mi has ports net→i !, net→i

⊳! and net←i ? for (insecure) networking.
■ Public keys are distributed over authentic channels.

◆ Mi has ports aut→i,j !, auta
i,j! and auta

j,i? for authentically
communicating with party Mj.

◆ Mi always writes identical messages to aut→i,j! and auta
i,j!.

■ S = {in1!, . . . , inn!, in1
⊳!, . . . , inn

⊳!, out1?, . . . , outn?}.

I is way too ideal

17 / 70

■ Sending a message without initialization.

◆ generating keys and distributing the public keys.

■ Sending messages without delays. Guaranteed transmission.
■ Traffic analysis.
■ Concealing the length of messages.
■ Transmitting only a number of messages polynomial to η.

I is way too ideal

17 / 70

■ Sending a message without initialization.

◆ generating keys and distributing the public keys.

■ Sending messages without delays. Guaranteed transmission.
■ Traffic analysis.
■ Concealing the length of messages.
■ Transmitting only a number of messages polynomial to η.

To simplify the presentation, we’ll also

■ Allow reordering and repetition of messages from one party to
another.

The state of the PIOA I

18 / 70

■ Boolean init i — “has Mi generated the keys?”
■ Boolean init i,j — “has Mj received the public keys of Mi?”
■ Sequence of bit-strings Di,j — the messages party i has sent to

party j.
■ ℓi — the total length of messages party i has sent so far.

Initial values — false, ε, or 0.

The state of the PIOA I

18 / 70

■ Boolean init i — “has Mi generated the keys?”
■ Boolean init i,j — “has Mj received the public keys of Mi?”
■ Sequence of bit-strings Di,j — the messages party i has sent to

party j.
■ ℓi — the total length of messages party i has sent so far.

Initial values — false, ε, or 0.

To set these values, I has to communicate with the adversary, too. It
has the ports adv→!, adv→⊳! and adv←? for that.

The transition function δI

19 / 70

■ On input (init) from in i?: Set init i to true, write (init, i) to adv→!
and raise adv→⊳!.

■ On input (init, i, j) from adv←?: Set init i,j to init i.
■ On input (send, j,M) from in i?: Do nothing if one of the following

holds:

◆ |M |+ ℓi > p(η) for a fixed polynomial p;
◆ init i ∧ init j,i = false.

Otherwise add |M | to ℓi and append M to Di,j . Write
(sent, i, j, |M |) to adv→! and raise adv→⊳!.

■ On input (recv, i, j, x) from adv←?: Do nothing if one of the
following holds:

◆ init j ∧ init i,j = false;
◆ x ≤ 0 or |Di,j | < x.

Otherwise write (received, i,Di,j [x]) to out j! and raise out j
⊳!.

The state of the PIOA Mi

20 / 70

■ The decryption key Kd
i and signing key Ks

i .
■ The encryption keys Ke

j and verification keys Kv
j of all parties j.

■ The length ℓi of the messages sent so far.

To operate, we have to fix

■ IND-CCA-secure public key encryption system;
■ EF-CMA-secure signature scheme.

The transition function δMi

21 / 70

■ On input (init) from in i?: Generate keys (Ke
i ,K

d
i) and (Kv

i ,Ks
i).

Ignore further (init)-requests. Write (Ke
i ,K

v
i) to ports aut→i,j! and

auta
i,j !.

■ On input (ke, kv) from auta
j,i?: Initialize Ke

j and Kv
j .

■ On input (send, j,M) from in i?: If |M |+ ℓi ≤ p(η) and Ks
i ,K

e
j are

defined

◆ Let v ← EKe
j
(sigKs

i
(i, j,M)).

◆ Add |M | to ℓi.
◆ Write (sent, j, v) to net→i ! and raise net→i

⊳!.

■ On input (recv, j, v) from net←i ?: If the necessary keys are initialized
and decryption and verification succeed (giving message M) then
write (received, j,M) to out i! and raise out i

⊳!.

The simulator

22 / 70

■ The simulator translates between the ideal structure I and the “real”
adversary.

■ It has the following ports:

◆ adv→?, adv←!, adv←⊳! for communicating with I.
◆ net→i !, net→i

⊳!, net←i ?, aut→i,j!, auta
i,j!, auta

j,i? for communicating
with the “real” adversary.

■ Both ends of the channel auta
i,j are at Sim.

■ But the adversary schedules this channel.

Exercise. Construct the simulator.

Composition

23 / 70

Let the structures (C1, S1), . . . , (Ck, Sk) be given. We say that (C, S) is
the composition of those structures if

■ C1, . . . , Ck are pairwise disjunct;
■ the sets of ports of C1, . . . , Ck are pairwise disjunct;
■ C = C1 ∪ · · · ∪ Ck;
■ freeports(Ci)\Si ⊆ freeports(C)\S for all i.

Write (C, S) = (C1, S1)× · · · × (Ck, Sk).

Composition

23 / 70

Let the structures (C1, S1), . . . , (Ck, Sk) be given. We say that (C, S) is
the composition of those structures if

■ C1, . . . , Ck are pairwise disjunct;
■ the sets of ports of C1, . . . , Ck are pairwise disjunct;
■ C = C1 ∪ · · · ∪ Ck;
■ freeports(Ci)\Si ⊆ freeports(C)\S for all i.

Write (C, S) = (C1, S1)× · · · × (Ck, Sk).

Theorem. Let

■ (C, S) = (C1, S1)× (C0, S0) and (C ′, S) = (C1, S1)× (C ′0, S0);
■ (C0, S0) ≥ (C ′0, S

′
0).

Then (C, S) ≥ (C ′, S).

Proof on the blackboard.

Simulation for secure messaging

24 / 70

1. Separate encryption; replace it with an ideal encryption machine.
2. Define a probabilistic bisimulation with error sets between the states

of M1‖ · · · ‖Mn and I‖Sim.
3. Show that error sets have negligible probability.

■ The errors correspond to forging a signature or generating the
same random value twice.

■ The first case may also be handled by defining a separate
signature machine.

■ The second case may also be handled by defining the ideal
machines in the appropriate way.

The PIOA Encn

25 / 70

■ Has ports eini?, eout i!, eout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get ports ein i!, eini
⊳!, eout i?.

■ On input (gen) from ein i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to eout i!, clock.

■ On input (enc, k+,M) from ein i?: if k+ has been stored as a public
key, then compute v ← E(k+,M), write v to eout i!, clock.

■ On input (dec, k+,M) from ein i?: if (i, k+, k−) has been stored,
write D(k−,M) to eout i!, clock.

The PIOA Encn
s

26 / 70

■ Has ports eini?, eout i!, eout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get ports ein i!, eini
⊳!, eout i?.

■ On input (gen) from ein i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to eout i!, clock.

■ On input (enc, k+,M) from ein i?: if k+ has been stored as a public
key, then compute v ← E(k+, 0|M |), store (k+,M, v), write v to
eout i!, clock.

◆ Recompute v until it differs from all previous v-s.

■ On input (dec, k+,M) from ein i?: if (i, k+, k−) has been stored,
then

◆ if (k+,M, v) has been stored for some v, then write v to eout i!,
clock.

◆ otherwise write D(k−,M) to eout i!, clock.

Encn ≥ Encn
s (black-box). Exercise. Describe the simulator.

The PIOA Sign

27 / 70

■ Has ports sini?, sout i!, sout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get necessary ports for using Sign as by API
calls.

■ On input (gen) from sin i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to sout i!, clock.

■ On input (sig, k+,M) from sin i?: if (i, k+, k−) has been stored then
compute v ← sig(k−,M), write v to sout i!, clock.

■ On input (ver, k+, s) from sini?: if k+ has been stored then write
ver(k+, s) to sout i!, clock.

The PIOA Sign
s

28 / 70

■ Has ports sini?, sout i!, sout i
⊳! for 1 ≤ i ≤ n.

■ The machine Mi will get necessary ports for using Sign as by API
calls.

■ On input (gen) from sin i?: generate a new keypair (k+, k−), store
(i, k+, k−), write k+ to sout i!, clock.

■ On input (sig, k+,M) from sin i?: if (i, k+, k−) has been stored then
compute v ← sig(k−,M), store (k+,M), write v to sout i!, clock.

■ On input (ver, k+, s) from sini?: if k+ has been stored then write
ver(k+, s) ∧ “(k+,M) has been stored” to sout i!, clock.

Modified real structure

29 / 70

■ Instead of generating the encryption keys, and encrypting and
decrypting themselves, machines Mi query the machine Encn.

■ We can then replace Encn with Encn
s . The original structure was at

least as secure as the modified structure.
■ Same for signatures. . .
■ Denote the modified machines by M̃i.

The state of the real structure

30 / 70

■ State of M̃i — the keys Ke
j and Kv

j (1 ≤ j ≤ n).

◆ If some K is defined at several machines, then they are equal.

■ State of Encn
s :

◆ key triples (i, k+, k−), where k+ is the same as Ke
i .

◆ text triples (k+,M, v), where k+ also occurs in a key triple.

■ State of Sign
s :

◆ key triples (i, k+, k−), where k+ is the same as Kv
i .

◆ text pairs (k+,M), where k+ also occurs in a key triple.

■ Possibly (during initialization) the keys in the buffers of the channels
auta

i,j .
■ No messages are in the buffers of newly introduced channels ein i

etc.
■ The buffers of channels connected to H or A, are not part of the

state.

The simulator Sim

31 / 70

■ Consists of the real structure and one extra machine Cntr . Its initial
state contains counters zij for all 1 ≤ i, j ≤ n.

■ The ports ini?, out i!, out i
⊳! of M̃i are renamed to cini?, cout i!,

cout i
⊳!.

■ Machine Cntr has ports cini!, cini
⊳!, cout i?, adv←!, adv←⊳!,

adv→?.
■ On input (init, i) from adv→? write (init) to cin i! and clock it.
■ On input (ke, kv) from auta

j,i?: the machine M̃i additionally writes
(recvkeys, j) to cout i! and clocks it.

■ Receiving (recvkeys, j) from cout i?, machine Cntr writes (init, j, i)
to adv←! and clocks it.

■ Receiving (send, i, j, l) from adv→?, the machine Cntr generates a
new∗ message M of length l, increments zij, stores (i, j, zij,M),
writes (send, j,M) to cin i!, clocks it.

■ Reciving (received, i,M) from cout j?, the machine Cntr locates the
tuple (i, j, x,M), writes (recv, i, j, x) to adv←!, clocks it.

The state of I‖Sim

32 / 70

■ Same as real structure.
■ For each i, j, the sequences D′i,j of messages (z,M) that the

machine Cntr has generated.
■ The counters zij.
■ Initialization bits init i, init i,j.
■ The sequences of messages Di,j that party i has sent to party j.

The state of I‖Sim

32 / 70

■ Same as real structure.
■ For each i, j, the sequences D′i,j of messages (z,M) that the

machine Cntr has generated.
■ The counters zij.
■ Initialization bits init i, init i,j.
■ The sequences of messages Di,j that party i has sent to party j.

Lemma. If I‖Sim is not currently running, then

■ zij = |Dij| = |D
′
i,j | and the lengths of the messages in the sequences

Di,j and |D′i,j | are pairwise equal.

■ If init i then M̃i has requested the generation of keys. If init i,j then
M̃j has received the keys of M̃i. The opposite also holds.

■ The signed messages in Sign
s are exactly of the form (i, j,M) where

M is in the sequence D′i,j. The encrypted messages in Encn
s are

exactly those signed messages.

Probabilistic bisimulations

33 / 70

■ Let (S,A,→, s0) be a probabilistic transition system. I.e.

◆ S and A are the sets of states and transitions. s0 ∈ S.
◆ → is a partial function from S × A to D(S) (probability

distributions over S).

■ An equivalence relation R over S is a probabilistic bisimulation if
s R s′ implies

◆ for each a ∈ A, s
a
→ D implies that there exists D′, such that

s′
a
→ D′, and

◆ for each t ∈ S:
∑

t′∈t/R
D(t′) =

∑

t′∈t/R
D′(t′).

■ Two probabilistic transition systems (S,A,→, s0) and (T,A,⇒, t0)
are bisimilar if there exists a probabilistic bisimulation R of
(S ∪̇ T,A,→ ∪ ⇒) that relates s0 and t0.

Probabilistic bisimilarity

34 / 70

Bisimilarity of systems (S,A,→, s0) and (T,A,⇒, t0) means that

■ The sets S and T can be partitioned into S1 ∪̇ · · · ∪̇ Sk and
T1 ∪̇ · · · ∪̇ Tk, such that

◆ . . . also define S0 = T0 = ∅

■ there exists a permutation σ of {0, . . . , k}, such that

◆ in other words, σ defines a relation R ⊆ S × T , such that s R t
iff s ∈ Si, t ∈ Tσ(i) for some i.

■ For all s ∈ Si, t ∈ Tσ(i), a ∈ A:

■ If s
a
→ D then t

a
⇒ E. Also, for each j:

∑

s′∈Sj
D(s′) =

∑

t′∈Tj
E(t′).

■ s0 R t0.

Bisimilarity for secure channels

35 / 70

Relating the states of real and (ideal‖simulator) structures:

■ The states of M̃i, Encn
s , Sign

s must be equal.
■ The rest of the state of I‖Sim must satisfy the lemma we had above.

The relationship must hold only if either H or A is currently running.

■ Now consider all possible inputs that the real structure or
(ideal‖simulator) may receive. Show that they react to it in the
identical manner.

Home exercise

36 / 70

Present a simulatable functionality for secure channels (not allowing
corruptions) that preserves the order of messages and does not allow
their duplication.

Can raise the exam result by up to 10%.

Deadline: January 5th.

An UC voting functionality

37 / 70

Let there be m voters and n talliers. Let the possible votes be in
{0, . . . , L− 1}.
All voters will give their votes. All authorities agree on the result. The
adversary will not learn individual votes.

An UC voting functionality

37 / 70

Let there be m voters and n talliers. Let the possible votes be in
{0, . . . , L− 1}.
All voters will give their votes. All authorities agree on the result. The
adversary will not learn individual votes.

■ The ideal functionality Ivote has the standard ports. . . inV
i ?, outV

i !,
outV

i
⊳
!, inT

i ?, outT
i !, outT

i
⊳
!, adv←?, adv→!, adv→⊳!.

■ First expect (init, sid)-command from the adversary.
■ On input (vote, sid , v) from Vi store (vote, sid , Vi, v, 0), send

(vote, sid , Vi) to the adversary, ignore further votes from Vi in
session sid .

■ On input (accept, sid , Vi) from the adversary, change the flag from 0
to 1 in (vote, sid , Vi, v,).

■ On input (result, sid) from the adversary, add up the votes in session
sid with flag 1, store (result, sid , r) and send it to the adversary.

■ On input (giveresult, sid , i) from the adversary send (result, sid , r) to
voter Vi or tallier Ti−m.

Building blocks

38 / 70

■ Message board

◆ Synchronous communication

■ Homomorphic threshold encryption

◆ MPC (for key generation)

■ NIZK proofs

◆ Random oracle
◆ Generation of random elements

of a group

NIZK

RO

RGR

VOTE

KGEN

MB

Message board

39 / 70

Ideal functionality Imb for parties P1, . . . , Pn is the following:

■ On input (bcast, sid , v) from Pi, store (bcast, i, sid , v). Accept no
further (bcast, sid , . . .)-queries from Pi. Send (bcast, sid , i, v) to the
adversary.

■ On input (pass, sid , i) from the adversary, if (bcast, i, sid , v) has
been stored, store (post, sid , i, v).

■ On input (tally, sid) from the adversary, accept no more
(bcast, sid , . . .) and (pass, sid , . . .)-requests.

■ On input (request, sid , i) from Pj, if (tally, sid) has been received
before, send all stored (post, sid , . . .)-tuples to Pj (as a single
message).

Realization requires reliable channels or smth.

ZK proofs

40 / 70

The ideal functionality Izk for parties P1, . . . , Pn and witnessing relation
R is the following

■ On input (prove, sid , Pj, x, w) from a party Pi:

◆ Check that (x,w) ∈ R;
◆ Store (Pi, Pj, sid , x);
◆ Send (prove, Pi, Pj, sid , x) to the adversary.
◆ Accept no more (prove, sid , . . .) queries from Pi.

■ On input (proofok, Pi, Pj, sid , x) from the adversary send
(proof, sid , Pi, x) to Pj.

NIZK proofs

41 / 70

The ideal functionality Inizk for parties P1, . . . , Pn and witnessing
relation R is the following

■ On input (prove, sid , x, w) from a party Pi:

◆ Check that (x,w) ∈ R;
◆ Send (proof, sid , x) to the adversary.
◆ Accept no more (prove, sid , . . .) queries from Pi.
◆ Wait for a query of the form (proof, sid , x, π) from the

adversary.
◆ Store (sid , x, π).
◆ Send (proof, sid , x, π) to Pi.

■ On input (prove, sid , x, w, π) from the adversary:

◆ Check that (x,w) ∈ R;
◆ Store (sid , x, π).

NIZK proofs

42 / 70

■ On input (verify, sid , x, π) from Pj check whether (sid , x, π) is
stored. If it is then

◆ Return (verifyok, sid , x).

If it is not then

◆ Send (witness?, sid , x) to the adversary.
◆ Wait for a query of the form (prove, sid , x, w, π) from the

adversary.
◆ Handle (prove, sid , x, w, π) as on previous slide.
◆ If (x,w) ∈ R then return (verifyok, sid , x) to Pj.

Waiting for some message

43 / 70

■ Before stopping, record the form of the expected message and the
point where the execution was interrupted.

■ At the next invocation check whether the expected message was
received.

◆ If yes, then continue from where we left off.
◆ If no, then handle the received message normally.

In both cases, clear the waiting state.

Random oracles

44 / 70

The random oracle functionality IRO for n parties is the following:

■ On input x by any party or the adversary

◆ If (x, r) is already stored for some r, return r.
◆ Otherwise generate r ∈R {0, 1}

p(η), store (x, r) and return r.

IRO works as a subroutine.

Generating a random element of a group

45 / 70

Let G be a fixed group (depends on η only), with a prime cardinality and
hard DDH problem. The functionality Irgr is the following:

■ On input (init) by the adversary generates a random element of G
and returns it to the adversary.

■ On input (init, i) marks that it may answer to party Pi.
■ On input (get) from a party returns the generated element, if

allowed.

Realization:

■ The machines Mi are initialized by the adversary.
■ Mi generates a random element gi ∈ G, secret shares it;
■ The shared values are multiplied and the result is opened.
■ A (get) by a party allows it to learn the computed value.
■ Uses secure channels functionality.

Exercise. How to simulate?

Protocol realizing NIZK

46 / 70

■ Idea: on input (prove, sid , x, w) from party Pi the machine Mi

commits to w and outputs x, C(w), and a NIZK proof that C(w) is
hiding a witness for x.

■ Initialization: parties get two random elements g, h ∈ G using two
copies of Irgr.

◆ Ignore user’s query if (get) to Irgr-s gets no response.

■ Let us use the following commitment scheme (G is a group with
cardinality #G and hard DDH problem):

◆ To commit to m ∈ G, generate a random r ∈ {0, . . . #G− 1}.
The commitment is (gr,m · hr).

◆ The opening of the previous commitment is r.

Exercise. How to verify? What is this commitment scheme? What can
be said about its security?

Protocol realizing NIZK

47 / 70

■ There exists a ZK protocol for proving that a commitment c hides a
witness w, such that (x,w) ∈ R.

■ For honest verifiers, this protocol has three rounds — commitment
(or witness), challenge and response.

◆ It depends on R (and the commitment scheme).
◆ Let A(x,C(w), w, r) generate the witness and

Z(x,C(w), w, r, a, c) compute the response.
◆ Challenge is a random string. Let V(x,C(w), a, c, z) be the

verification algorithm at the end.

■ The whole proof π for (x, sid) consists of

◆ C(w), a random string r̄;
◆ a← A(x,C(w), w, r);
◆ z ← Z(x,C(w), w, r, a,H(x, a, sid , r̄))

■ (proof, sid , x, π) is sent back to the user.

Protocol realizing NIZK

48 / 70

■ On input (verify, sid , x, π) from the user, machine Mj verifies that
proof:

◆ Computes c = H(x, a, sid , r̄) (by invoking Iro) and verifies
V(x,C, a, c, z).

If correct, responds with (verifyok, sid , x).

Simulation

49 / 70

The simulator communicates with

■ the ideal functionality: possible commands are

◆ (proof, i, sid , x);
◆ (witness?, sid , x, π).

■ the real adversary: possible commands are

◆ (init) and (init, i) for two copies of Irgr;
◆ queries to the random oracle Iro.

■ Answer the queries to Iro in the normal way.

Simulator: initialization

50 / 70

On the very first invocation:

■ Generate random elements g, h ∈ G.

On (init) and (init, i) from the adversary for functionalities Irgr:

■ Record that these commands have been received.

Simulating (proof, i, sid , x)

51 / 70

■ The query (prove, sid , x, w) was made by party Pi to Inizk.
■ Where do we get w?

Simulating (proof, i, sid , x)

51 / 70

■ The query (prove, sid , x, w) was made by party Pi to Inizk.
■ Where do we get w? We don’t get it at all.
■ Let C be the commitment of a random element w′;
■ Simulate the ZK proof of (x,w′) ∈ R:

◆ Let c be a random challenge.
◆ Let (a, z) be suitable witness and response for showing that C is

the commitment of a suitable witness of x in R.

■ Let r̄ be a random string, such that (x, a, sid , r̄) has not been a
query to Iro.

Simulating (proof, i, sid , x)

51 / 70

■ The query (prove, sid , x, w) was made by party Pi to Inizk.
■ Where do we get w? We don’t get it at all.
■ Let C be the commitment of a random element w′;
■ Simulate the ZK proof of (x,w′) ∈ R:

◆ Let c be a random challenge.
◆ Let (a, z) be suitable witness and response for showing that C is

the commitment of a suitable witness of x in R.

■ Let r̄ be a random string, such that (x, a, sid , r̄) has not been a
query to Iro.

■ Define H(x, a, sid , r̄) := c. Let π = (C, r̄, a, z).
■ Send (proof, sid , x, i, π) to Inizk.

(Programmable random oracle)

Simulating (witness?, sid , x, π)

52 / 70

This is called if the real adversary has independently constructed a valid
proof.

■ Change the simulator as follows:

◆ Initialization: the simulator generates g and h so, that it knows
logg h.

■ On a (witness?, . . .)-query, the simulator checks whether the proof
π = (C, r̄, a, z) is correct.

■ If it is, then it extracts the witness w from C by ElGamal decryption.

■ After that, it sends (prove, sid , x, w, π) to Inizk.

Exercise. What if C does not contain a valid witness?

Corruptions

53 / 70

■ The real adversary may send (corrupt)-command to some machine
Mi.

◆ Static corruptions — only at the beginning.
◆ Adaptive corruptions — any time.

■ The machine responds with its current state.
■ Afterwards, Mi “becomes a part of” the adversary.

◆ Forwards all received messages to the adversary.
◆ Mi accesses other components on behalf of the adversary.
◆ No more traffic between Mi and the user.

■ Possibility to corrupt players has to be taken into account when
specifying ideal functionalities.

◆ The ideal adversary may send (corrupt, i) to the functionality.

■ The simulator will make these queries if the real adversary
corrupted someone.

◆ The functionality may change the handling of the i-th party.

Corruptions and functionalities

54 / 70

■ Random oracles — impossible to corrupt.
■ Generating a random element of the group:

◆ Implementations uses MPC techniques.
◆ Tolerates adaptive corruptions of less than n/3 participants.
◆ If party i is corrupted, then Irgr

■ Gives no output to the i-th party.
■ Forwards to the adversary all requests from the i-th party.

◆ If too many parties are corrupted (at least n/3) then Irgr gives
all control to the adversary.

◆ The simulator simply acts as a forwarder between a corrupted
party and the adversary.

Corrupting Inizk

55 / 70

■ The realization of NIZK uses Irgr.

◆ It fails if there are at least n/3 corrupt parties.

■ It has no other weaknesses.

Corrupting Inizk

55 / 70

■ The realization of NIZK uses Irgr.

◆ It fails if there are at least n/3 corrupt parties.

■ It has no other weaknesses.
■ If party i is corrupted in Inizk then it stops talking to the user.

◆ The adversary may prove things on user’s behalf.

■ If at least n/3 parties are corrupted then Inizk gives up.

Corrupting Inizk

55 / 70

■ The realization of NIZK uses Irgr.

◆ It fails if there are at least n/3 corrupt parties.

■ It has no other weaknesses.
■ If party i is corrupted in Inizk then it stops talking to the user.

◆ The adversary may prove things on user’s behalf.

■ If at least n/3 parties are corrupted then Inizk gives up.
■ The simulator corrupts i-th party of Inizk if Mi is corrupted or the

i-th party in Irgr is corrupted.

Exercise

56 / 70

How should corruptions be integrated to Imb?

Ideal functionality Imb for parties P1, . . . , Pn is the following:

■ On input (bcast, sid , v) from Pi, store (bcast, i, sid , v). Accept no
further (bcast, sid , . . .)-queries from Pi. Send (bcast, sid , i, v) to the
adversary.

■ On input (pass, sid , i) from the adversary, if (bcast, i, sid , v) has
been stored, store (post, sid , i, v).

■ On input (tally, sid) from the adversary, accept no more
(bcast, sid , . . .) and (pass, sid , . . .)-requests.

■ On input (request, sid , i) from Pj, if (tally, sid) has been received
before, send all stored (post, sid , . . .)-tuples to Pj (as a single
message).

Homomorphic encryption

57 / 70

■ A public-key encryption system (K,E,D).
■ The set of plaintexts is a ring.
■ There is an operation ⊕ on ciphertexts, such that if D(k−, c1) = v1

and D(k−, c2) = v2 then D(k−, c1 ⊕ c2) = v1 + v2.
■ Security — IND-CPA.

Homomorphic encryption

57 / 70

■ A public-key encryption system (K,E,D).
■ The set of plaintexts is a ring.
■ There is an operation ⊕ on ciphertexts, such that if D(k−, c1) = v1

and D(k−, c2) = v2 then D(k−, c1 ⊕ c2) = v1 + v2.
■ Security — IND-CPA.
■ In a threshold encryption system, the secret key is shared. There are

shares k−1 , . . . , k−n .
■ Also, there are public verification keys kv

1 , . . . , k
v
n that are used to

verify that the authorities have correctly computed the shares of the
plaintext.

◆ . . . like in verifiable secret sharing.

■ We use secure MPC to generate k+, k−1 , . . . , k−n , kv
1 , . . . , k

v
n.

◆ This can be modeled by an ideal functionality Ikgen.
◆ There are more efficient means of generation than general MPC.

Key generation

58 / 70

The ideal functionality Ikgen for m users and n authorities works as
follows:

■ On input (generate, sid) from the adversary, generates new keys.
and gives the keys k+, kv

1 , . . . , k
v
n to the adversary.

■ On input (getkeys, sid) from a party, gives the party this party’s
generated keys. (works like subroutine)

■ Breaks down if there are at least (m + n)/3 corrupt parties.

Each voting session needs new keys, otherwise chosen-ciphertext attacks
are possible.

Voting protocol

59 / 70

■ Voter machines MV
1 , . . . ,MV

m , tallier machines MT
1 , . . . ,MT

n .
■ The first time some MV

i or MT
i is activated, it asks for its key(s)

from Ikgen and receives them.
■ On input (vote, sid , v) from the user the machine MV

i

◆ Let ci ← Ek+(Encode(v)). Make a NIZK proof πi that ci

contains a correct vote. Send (bcast, sid‖0, (ci, πi)) to Imb.

■ On input (count, sid) from the adversary the machine MT
i

◆ Sends (request, sid‖0, i) to Imb and receives all the votes and
correctness proofs (c1, π1), . . . , (cm, πm).

◆ Checks the validity of the proofs, using Inizk.
◆ Multiplies the valid votes and decrypts the result, using k−i . Let

the result of the decryption be di. Makes a NIZK proof ξi that
di is a valid decryption and sends (bcast, sid‖1, (di, ξi) to Imb.

■ The proof also uses kv
i .

Voting protocol

60 / 70

■ On input (result, sid) from the adversary any machine

◆ Sends (request, sid‖0, i) to Imb and receives all the votes and
correctness proofs (c1, π1), . . . , (cm, πm).

◆ Checks the validity of the proofs, using Inizk.
◆ Multiplies the valid votes, let the result be c.
◆ Sends (request, sid‖1, i) to Imb and receives the shares of the

result d1, . . . , dn together with proofs ξ1, . . . , ξn.
◆ Check the validity of those proofs.
◆ Combines a number of valid shares to form the final result r.
◆ Sends (result, sid , r) to the user.

Exercise. What kind of corruptions are tolerated here?

The simulator — interface

61 / 70

The simulator encapsulates Imb, Inizk, Ikgen.
The simulator handles the following commands:

■ From Ivote:

◆ (vote, sid , i) — Vi has voted (but don’t know, how).
◆ (result, sid , r) — the result of the voting session sid .

■ From the real adversary:

◆ (count, sid) for MT
i — produce the share of the voting result.

◆ (result, sid) for any M — combine the shares of the result and
send it to the user.

◆ Corruptions; messages on behalf of corrupted parties.

The simulator — interface

62 / 70

■ From the real adversary (on behalf of Imb):

◆ (pass, sid , i) — lets the message sent by Mi to pass.
◆ (tally, sid) — finishes round sid .
◆ (bcast, sid , i, v) — broadcast by a corrupt party.

■ From the real adversary (on behalf of Inizk):

◆ (proof, sid , x, π) — generate a proof token π for an honest
prover.

◆ (prove, sid , x, w, π) — the adversary proves something himself.

■ From the real adversary (on behalf of Ikgen):

◆ (generate, sid) — generates the keys.

The simulator — interface

63 / 70

The simulator issues the following commands:
To Ivote:
(init, sid)
(accept, sid , i)
(result, sid)
(giveresult, sid , i)
(corrupt, i)
(vote, sid , i, v)

To the real adversary (as Imb):
(bcast, sid , i, v)
To the real adversary (as Inizk):
(proof, i, sid , x)
(witness?, sid , x, π)
To the real adversary (as Ikgen):

(keys, sid , k+, kv
1 , . . . , k

v
n)

The simulator — initialization

64 / 70

■ On the first activation with a new sid :

◆ Generates keys k+, k−1 , . . . , k−n , kv
1 , . . . , k

v
n for this session.

■ When receiving (generate, sid) from the adversary for Ikgen,

◆ marks that voting can now commence;
◆ sends (init, sid) to Ivote.

■ Corruptions by the adversary are forwarded to Ivote and recorded.

The simulator — voting

65 / 70

■ On input (vote, sid , i) from Ivote:

◆ Let the encrypted vote be c← Ek+(0).
◆ Make a NIZK proof π that this vote is valid.

■ Going to Inizk’s waiting state, as necessary.

◆ Broadcast (using Imb) the pair (c, π) on behalf of voter i.

■ On input (pass, sid , i), if the vote was broadcast for the voter Pi:

◆ Send (accept, sid , i) back to Ivote.

■ If a corrupt party i puts a vote to the message board and makes a
valid proof for it:

◆ Decrypt that vote. Let its value be v.
◆ Send (vote, sid , i, v) to Ivote.

The simulator — tallying

66 / 70

On input (tally, sid‖0) from the adversary for Imb:

■ Close the voting session sid , accept counting queries.
■ Send (result, sid) to Ivote.
■ Get the voting result r from Ivote and store it.

The simulator — counting

67 / 70

On input (count, sid) from the adversary for the tallier Ti:

■ Check the proofs of all votes (ci, πi) using Inizk.

◆ Going to wait-state, if necessary.

■ Let C be the product of all votes with valid proofs.
■ For talliers T1, . . . , Tn, let d1, . . . , dn be

◆ if Ti is corrupt, then di = D(k−i , C);
◆ if Ti is honest, then a di is simulated value

such that d1, . . . , dn combine to r.

◆ d1, . . . , dn are generated at the first (count, sid)-query.

■ Make a NIZK proof ξi for the share di.
■ Broadcast (di, ξi) in session sid‖1 using Imb.
■ A corrupt tallier can broadcast anything. But only (di, ξi) for the

valid di is accepted at the next step.

The simulator — reporting the results

68 / 70

On input (result, sid) from the adversary for any voter or tallier i:

■ Takes all votes (cj, πj) and all shares of the result (dj, ξj).
■ Verifies all correctness proofs of votes.
■ Multiplies the valid votes.
■ Verifies the correctness proofs of shares.
■ If sufficiently many proofs are correct then sends (giveresult, sid , i)

to Ivote.

Damg̊ard-Jurik encryption system

69 / 70

■ A homomorphic threshold encryption system
■ Somewhat RSA-like

◆ Operations are modulo ns, where n is a RSA modulus.
◆ Easy to recover i from (1 + n)i mod ns.

■ Maybe in the lecture. . .
■ Otherwise see http://www.daimi.au.dk/˜ivan/GenPaillier finaljour.ps

Secure MPC from thresh. homom. encr.

70 / 70

Computationally secure against malicious coalitions with size less than
the threshold.

■ Function given as a circuit with multiplications and additions.
■ The value on each wire is represented as its encryption, known to all.

■ Addition gate — everybody can add encrypted values by themselves.
■ Multiplication of a and b (encryptions are a and b):

◆ Each party Pi chooses a random di, broadcasts di, proves in ZK
that it knows di.

◆ Let d = d1 + · · ·+ dn. Then d = d1 ⊕ · · · ⊕ dn.
◆ Decrypt a⊕ d = a + d, let everybody know it.
◆ Let a1 = a + d⊖ d1 and ai = ⊖di. Pi knows ai.
◆ Pi broadcasts ai ⊙ b = aib and proves in ZK that he computed it

correctly.
◆ Everybody computes a1b⊕ · · · ⊕ anb = ab.

	Recap: secure MPC
	What we have not seen
	On security definitions
	Ideal functionality MPCIdealn
	Real functionality MPCRealn
	Probabilistic I/O automata
	Channels and collections
	Internal state of a closed collection
	Execution step of a closed collection
	Trace of the execution
	Combining PIOAs
	Security-oriented structures
	Reactive simulatability
	Simulatability for systems
	Example: secure channels for n parties
	I is way too ideal
	The state of the PIOA I
	The transition function I
	The state of the PIOA Mi
	The transition function Mi
	The simulator
	Composition
	Simulation for secure messaging
	The PIOA Encn
	The PIOA Encns
	The PIOA Sign
	The PIOA Signs
	Modified real structure
	The state of the real structure
	The simulator Sim
	The state of I"026B30D Sim
	Probabilistic bisimulations
	Probabilistic bisimilarity
	Bisimilarity for secure channels
	Home exercise
	An UC voting functionality
	Building blocks
	Message board
	ZK proofs
	NIZK proofs
	NIZK proofs
	Waiting for some message
	Random oracles
	Generating a random element of a group
	Protocol realizing NIZK
	Protocol realizing NIZK
	Protocol realizing NIZK
	Simulation
	Simulator: initialization
	Simulating (proof,i,sid,x)
	Simulating (witness?,sid,x,)
	Corruptions
	Corruptions and functionalities
	Corrupting Inizk
	Exercise
	Homomorphic encryption
	Key generation
	Voting protocol
	Voting protocol
	The simulator --- interface
	The simulator --- interface
	The simulator --- interface
	The simulator --- initialization
	The simulator --- voting
	The simulator --- tallying
	The simulator --- counting
	The simulator --- reporting the results
	Damgård-Jurik encryption system
	Secure MPC from thresh. homom. encr.

