Universal Composability alias Reactive Simulatability

Recap: secure MPC

We have seen:

- 2-party, computational, semi-honest, constant-round.
- 2- or n-party, computational, semi-honest(< n), linear-round.
 - I *n*-party, unconditional, semi-honest(< n/2), linear-round.
 - *n*-party, computational, malicious (< n/2), constant-round.
 - *n*-party, unconditional, malicious (< n/3), linear-round.
 - Possible to have less than n/2 malicious parties, using ZK-techniques to convince other parties that you behave as prescribed.
 - Has exponentially small probability of failure.

What we have not seen

Secure MPC with malicious majority ($\geq n/2$ malicious parties)

- Possible only in the computational setting
- In the beginning, commit to your randomness. During computation, prove (in ZK) that you are using the committed randomness.
- Malicious parties can interrupt the protocol.
- Asynchronous MPC
 - All messages arbitrarily delayed, but eventually delivered.
 - The delays are not controlled by the adversary.
 - No difference in semi-honest case.
 - With fail-stop adversary need < n/3 corrupted parties.
 - With malicious adversary need < n/4 corrupted parties.
 - ... with unconditional security.

On security definitions

- Real vs. ideal functionality...
- The ideal functionality for computing the function f with n inputs and outputs:
 - Parties P_1, \ldots, P_n hand their inputs x_1, \ldots, x_n over to the functionality.
 - The ideal functionality computes $(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)$.
 - ... tossing coins if f is randomized.
 - The ideal functionality sends y_i to P_i .

Ideal functionality MPC_n^{Ideal}

Has n input ports and n output ports.
 Initial state: x₁,..., x_n are undefined.

- On input (input, v) from port in_i ?:
 - If x_i is defined, then do nothing.
 - If x_i is not defined, then set $x_i := v$.
- If x₁,..., x_n are all defined then compute (y₁,..., y_n).
 For all i, write y_i to port out_i!.

Ideal functionality MPC_n^{Ideal}

Has n input ports and n output ports.
 Initial state: x₁,..., x_n are undefined.

• On input (input, v) from port in_i ?:

- If x_i is defined, then do nothing.
- If x_i is not defined, then set $x_i := v$.

If x₁,..., x_n are all defined then compute (y₁,..., y_n).
 For all i, write y_i to port out_i!.

How do we run it (connections, scheduling)? What it means for a party to be corrupted?

Real functionality MPC_n^{Real}

- Conceptually made up of n identical machines P_i .
 - Has ports in_i ?, out_i !, network ports...
- Initialization: P_i learns his name i.
 - On input (input, v) from port in_i ? put $x_i := v$ and start executing the MPC protocol...
- If the protocol has finished execution then write y_i to $out_i!$.

Real functionality MPC_n^{Real}

- Conceptually made up of n identical machines P_i .
 - Has ports in_i ?, out_i !, network ports...
- Initialization: P_i learns his name i.
- On input (input, v) from port in_i ? put $x_i := v$ and start executing the MPC protocol...
- If the protocol has finished execution then write y_i to $out_i!$.
- Cannot speak about the indistinguishability of MPC^{Ideal} and MPC^{Real} because the set of ports is different.
 - We have to simulate something...

Probabilistic I/O automata

A PIOA M has

- The set of possible states Q^M ;
- The initial state $q_0^M \in Q^M$ and final states $Q_F^M \subseteq Q^M$;
 - The sets of ports:
 - input ports \mathbf{IPorts}^M ,
 - output ports \mathbf{OPorts}^M
 - clocking ports \mathbf{CPorts}^M ;

• A probabilistic transition function δ^M :

- domain: $Q^M \times \mathbf{IPorts}^M \times \{0, 1\}^*$;
 - range: $Q^M \times (\mathbf{OPorts}^M \to (\{0,1\}^*)^*) \times (\mathbf{CPorts}^M \cup \{\bot\})$
- ... in our examples implemented by a PPT algorithm.
- Q^M , Q_F^M and q_0^M may (uniformly) depend on the security parameter.

Channels and collections

- A set Chans of channel names is given.
- There is a distinguished $clk \in Chans$, representing global clock.
- For a channel c, its input, output and clocking ports are c?, c! and c^{\triangleleft} !.
- A closed collection C is a set of PIOAs, such that
 - no port is repeated;
 - For each $c \in Chans \setminus \{clk\}$ occurring in C: the ports c?, c! and $c^{\triangleleft}!$ are all present.
 - clk? is present. clk! and clk^{\triangleleft} ! are not present.
- A collection C is a set of PIOAs that can be extended to a closed collection.
 - Let freeports(C) be the set of ports that the machines in C' certainly must have for $C \cup C'$ to be a closed collection.

Internal state of a closed collection

The state of a closed collection C consists of

- the states of all PIOA-s in C;
 - Initially q_0^M for all $M \in C$.
- the message queues of all channels c in C;
 - I.e. sequences of (still undelivered) messages.
 - Initially the empty queues for all $c \in C$.
 - the currently running PIOA M, its input message v and channel c.
 - Initially X, ε and clk, where X is the machine with the port clk?.

Execution step of a closed collection

- Invoke the transition function of M with message v on input port c?.
- Update the internal state of M.
- If (v_1, \ldots, v_k) was written to port c'! then append v_1, \ldots, v_k to the end of the message queue of c'.
- If M is X and it reached the final state then stop the execution.
 Otherwise, if M picked a clock port c'[⊲]! and the queue of c' is not empty, then define the new (M, v, c):
 - c is c';
 - v is the first message in the queue of c', which is removed from the queue;
 - M is the machine with the port c'?.
- Otherwise set $(M, v, c) := (X, \varepsilon, clk)$.

Trace of the execution

Each execution step adds a tuple consisting of

- the machine that made the step;
- the incoming message and the channel;
- the random coins that were generated and the new state and messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over traces (for a given security parameter).

Trace of the execution

Each execution step adds a tuple consisting of

- the machine that made the step;
- the incoming message and the channel;
- the random coins that were generated and the new state and messages that were produced.

to the end of the trace so far.

The semantics of a closed collection is a probability distribution over traces (for a given security parameter).

Given trace tr and a set of machines \mathcal{M} , the restriction of the trace $tr|_{\mathcal{M}}$ consists of only those tuples where the machine belongs to \mathcal{M} .

Combining PIOAs

The combination of PIOAs M_1, \ldots, M_k is a PIOA M with

• Let
$$i$$
 be such that $c? \in \mathbf{IPorts}^{M_i}$

• Evaluate
$$(q'_i, f_i, p) \leftarrow \delta^{M_i}(q_i, c?, v)$$
.

• Output $((q_1, ..., q_{i-1}, q'_i, q_{i+1}, ..., q_k), f, p)$, where

$$f(c'!) = \begin{cases} f'(c'!), & \text{if } c'! \in \mathbf{OPorts}^{M_i} \\ \varepsilon, & \text{otherwise.} \end{cases}$$

Exercise. How does the semantics of a closed collection change if we replace certain machines in this collection with their combination?

Security-oriented structures

- A structure consists of
 - a collection C;
 - a set of ports $S \subseteq freeports(C)$.
 - C offers the intended service on S.
 - The ports freeports $(C) \setminus S$ are for the adversary.
- A system is a set of structures.
- A configuration consists of a structure (C, S) and two PIOA-s H and A, such that
 - H has no ports in freeports $(C) \setminus S$,
 - $C \cup \{H, A\}$ is a closed collection.
- Let Confs(C, S) be the set of pairs (H, A), such that (C, S, H, A) is a configuration.

Exercise. What parts of (C, S) determine Confs(C, S)?

Reactive simulatability

Let (C₁, S) and (C₀, S) be two structures.
(C₁, S) is at least as secure as (C₀, S) if
for all H,
for all A, such that (H, A) ∈ Confs(C₁, S)
exists S, such that (H, S) ∈ Confs(C₀, S)
such that [[C₁ ∪ {H, A}]]|_H ≈ [[C₀ ∪ {H, S}]]|_H.
We also say that (C₀, S) simulates (C₁, S).
The simulatability is universal if the order of quantifiers is ∀A∃S∀H.
The simulatability is black-box if

- there exists a PIOA Sim, such that
- for all $(H, A) \in \mathbf{Confs}(C_1, \mathsf{S})$ holds

 $(H, A \| Sim) \in \mathbf{Confs}(C_0, \mathsf{S}) \text{ and } [\![C_1 \cup \{H, A\}]\!]|_H \approx [\![C_0 \cup \{H, A, Sim\}]\!]|_H.$

Exercise. Show that universal and black-box simulatability are equivalent (if the port names do not collide).

Simulatability for systems

A system Sys_1 is at least as secure as a system Sys_0 if for all structures $(C_1, S) \in Sys_1$ there exists a structure $(C_0, S) \in Sys_0$, such that (C_1, S) is at least as secure as (C_0, S) .

Example: secure channels for n **parties**

- Ideal PIOA \mathcal{I} has ports in_i ? and out_i ! for communicating with the i-th party.
- I Input (j, M) on in_i ? causes (i, M) to be written to out_j !.
- Should model API calls, hence it also has the ports $out_i^{\triangleleft}!$.

Example: secure channels for n **parties**

- Ideal PIOA \mathcal{I} has ports in_i ? and out_i ! for communicating with the *i*-th party.
- I Input (j, M) on in_i ? causes (i, M) to be written to out_j !.
- Should model API calls, hence it also has the ports $out_i^{\triangleleft}!$.
- Real structure uses public-key cryptography to provide confidentiality and authenticity.
 - Message M from i to j encoded as $\mathcal{E}_j(sig_i(M))$.
- Consists of PIOA-s M₁,..., M_n. M_i has ports in_i? and out_i!.
 M_i has ports net_i→!, net_i→! and net_i→? for (insecure) networking.
 Public keys are distributed over authentic channels.
 - M_i has ports $aut_{i,j}^{\rightarrow}!$, $aut_{i,j}^{a}!$ and $aut_{j,i}^{a}?$ for authentically communicating with party M_j .
 - M_i always writes identical messages to $aut_{i,j}^{\rightarrow}!$ and $aut_{i,j}^{a}!$.

Example: secure channels for n **parties**

- Ideal PIOA \mathcal{I} has ports in_i ? and out_i ! for communicating with the *i*-th party.
- I Input (j, M) on in_i ? causes (i, M) to be written to out_j !.
- Should model API calls, hence it also has the ports $out_i^{\triangleleft}!$.
- Real structure uses public-key cryptography to provide confidentiality and authenticity.
 - Message M from i to j encoded as $\mathcal{E}_j(sig_i(M))$.
- Consists of PIOA-s M₁,..., M_n. M_i has ports in_i? and out_i!.
 M_i has ports net_i→!, net_i→! and net_i→? for (insecure) networking.
 Public keys are distributed over authentic channels.
 - M_i has ports $aut_{i,j}^{\rightarrow}!$, $aut_{i,j}^{a}!$ and $aut_{j,i}^{a}?$ for authentically communicating with party M_j .
 - M_i always writes identical messages to $aut_{i,j}^{\rightarrow}!$ and $aut_{i,j}^{a}!$.

 $\blacksquare S = \{in_1!, \ldots, in_n!, in_1^{\triangleleft}!, \ldots, in_n^{\triangleleft}!, out_1?, \ldots, out_n?\}.$

$\ensuremath{\mathbb{J}}$ is way too ideal

- Sending a message without initialization.
 - generating keys and distributing the public keys.
- Sending messages without delays. Guaranteed transmission.
 Traffic analysis.
- Concealing the length of messages.
- Transmitting only a number of messages polynomial to η .

$\ensuremath{\mathbb{J}}$ is way too ideal

Sending a message without initialization.

- Sending messages without delays. Guaranteed transmission.
 Traffic analysis.
- Concealing the length of messages.
- Transmitting only a number of messages polynomial to η .

To simplify the presentation, we'll also

Allow reordering and repetition of messages from one party to another.

The state of the PIOA $\ensuremath{\mathbb{J}}$

- Boolean $init_i$ "has M_i generated the keys?"
- Boolean $init_{i,j}$ "has M_j received the public keys of M_i ?"
- Sequence of bit-strings $D_{i,j}$ the messages party i has sent to party j.
- ℓ_i the total length of messages party *i* has sent so far.

Initial values — false, ε , or 0.

The state of the PIOA $\ensuremath{\mathbb{J}}$

- Boolean $init_i$ "has M_i generated the keys?"
- Boolean $init_{i,j}$ "has M_j received the public keys of M_i ?"
- Sequence of bit-strings $D_{i,j}$ the messages party i has sent to party j.
- ℓ_i the total length of messages party *i* has sent so far.

```
Initial values — false, \varepsilon, or 0.
```

To set these values, \mathcal{I} has to communicate with the adversary, too. It has the ports $adv^{\rightarrow}!$, $adv^{\rightarrow}!$ and $adv^{\leftarrow}?$ for that.

The transition function $\delta^{\mathcal{I}}$

- On input (init) from in_i ?: Set $init_i$ to true, write (init, i) to adv^{\rightarrow} ! and raise $adv^{\rightarrow \triangleleft}$!.
- On input (init, i, j) from $adv \leftarrow ?$: Set $init_{i,j}$ to $init_i$.
- On input (send, j, M) from in_i ?: Do nothing if one of the following holds:
 - $|M| + \ell_i > p(\eta)$ for a fixed polynomial p;

•
$$init_i \wedge init_{j,i} = \texttt{false}$$
.

Otherwise add |M| to ℓ_i and append M to $D_{i,j}$. Write (sent, i, j, |M|) to $adv^{\rightarrow}!$ and raise $adv^{\rightarrow\triangleleft}!$.

On input (recv, i, j, x) from $adv \leftarrow ?$: Do nothing if one of the following holds:

•
$$init_j \wedge init_{i,j} = false;$$

•
$$x \leq 0$$
 or $|D_{i,j}| < x$.

Otherwise write (received, $i, D_{i,j}[x]$) to $out_j!$ and raise $out_j^{\triangleleft}!$.

The state of the PIOA M_i

- The decryption key K_i^d and signing key K_i^s .
- The encryption keys K_i^{e} and verification keys K_i^{v} of all parties j.
- The length ℓ_i of the messages sent so far.

To operate, we have to fix

- IND-CCA-secure public key encryption system;
- EF-CMA-secure signature scheme.

The transition function δ^{M_i}

- On input (init) from in_i ?: Generate keys (K_i^{e}, K_i^{d}) and (K_i^{v}, K_i^{s}) . Ignore further (init)-requests. Write (K_i^{e}, K_i^{v}) to ports $aut_{i,j}^{\rightarrow}$! and $aut_{i,j}^{a}$!.
- On input (k^{e}, k^{v}) from $aut^{a}_{j,i}$?: Initialize K^{e}_{j} and K^{v}_{j} .
- On input (send, j, M) from in_i ?: If $|M| + \ell_i \le p(\eta)$ and K_i^{s}, K_j^{e} are defined
 - Let $v \leftarrow \mathcal{E}_{K_j^{e}}(\operatorname{sig}_{K_i^{s}}(i, j, M)).$
 - Add |M| to ℓ_i .
 - Write (sent, j, v) to $net_i^{\rightarrow}!$ and raise $net_i^{\rightarrow}!$.

On input (recv, j, v) from net_i^{\leftarrow} ?: If the necessary keys are initialized and decryption and verification succeed (giving message M) then write (received, j, M) to out_i ! and raise out_i^{\triangleleft} !.

The simulator

- The simulator translates between the ideal structure $\ensuremath{\mathbb{J}}$ and the "real" adversary.
- It has the following ports:
 - $adv \rightarrow ?$, $adv \leftarrow !$, $adv \leftarrow !$ for communicating with J.
 - $net_i^{\rightarrow}!$, $net_i^{\rightarrow}!$, $net_i^{\leftarrow}?$, $aut_{i,j}^{\rightarrow}!$, $aut_{i,j}^{a}!$, $aut_{j,i}^{a}?$ for communicating with the "real" adversary.
 - Both ends of the channel $aut_{i,j}^{a}$ are at Sim.
 - But the adversary schedules this channel.

Exercise. Construct the simulator.

Composition

Let the structures $(C_1, S_1), \ldots, (C_k, S_k)$ be given. We say that (C, S) is the composition of those structures if

- C_1, \ldots, C_k are pairwise disjunct;
- the sets of ports of C_1, \ldots, C_k are pairwise disjunct;
- $C = C_1 \cup \cdots \cup C_k;$
- freeports $(C_i) \setminus S_i \subseteq \text{freeports}(C) \setminus S$ for all i.

Write $(C, S) = (C_1, S_1) \times \cdots \times (C_k, S_k)$.

Composition

Let the structures $(C_1, S_1), \ldots, (C_k, S_k)$ be given. We say that (C, S) is the composition of those structures if

- C_1, \ldots, C_k are pairwise disjunct;
- the sets of ports of C_1, \ldots, C_k are pairwise disjunct;

$$C = C_1 \cup \cdots \cup C_k;$$

freeports $(C_i) \setminus S_i \subseteq \text{freeports}(C) \setminus S$ for all i.

Write
$$(C, S) = (C_1, S_1) \times \cdots \times (C_k, S_k)$$
.

Theorem. Let

■ $(C, S) = (C_1, S_1) \times (C_0, S_0)$ and $(C', S) = (C_1, S_1) \times (C'_0, S_0)$; ■ $(C_0, S_0) \ge (C'_0, S'_0)$. Then $(C, S) \ge (C', S)$.

Proof on the blackboard.

Simulation for secure messaging

- 1. Separate encryption; replace it with an ideal encryption machine.
- 2. Define a probabilistic bisimulation with error sets between the states of $M_1 \| \cdots \| M_n$ and $\Im \| Sim$.
- 3. Show that error sets have negligible probability.
 - The errors correspond to forging a signature or generating the same random value twice.
 - The first case may also be handled by defining a separate signature machine.
 - The second case may also be handled by defining the ideal machines in the appropriate way.

The PIOA $\mathcal{E}nc^n$

- Has ports ein_i ?, $eout_i$!, $eout_i \triangleleft$! for $1 \leq i \leq n$.
- I The machine M_i will get ports $ein_i!$, $ein_i^{\triangleleft}!$, $eout_i$?.
- On input (gen) from ein_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $eout_i$!, clock.
- On input (enc, k^+ , M) from ein_i ?: if k^+ has been stored as a public key, then compute $v \leftarrow \mathcal{E}(k^+, M)$, write v to $eout_i$!, clock.
- On input (dec, k^+, M) from ein_i ?: if (i, k^+, k^-) has been stored, write $\mathcal{D}(k^-, M)$ to $eout_i$!, clock.

The PIOA $\mathcal{E}nc_{s}^{n}$

- Has ports ein_i ?, $eout_i$!, $eout_i^{\triangleleft}$! for $1 \leq i \leq n$.
 - The machine M_i will get ports $ein_i!$, $ein_i^{\triangleleft}!$, $eout_i$?.
- On input (gen) from ein_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $eout_i$!, clock.
 - On input (enc, k^+ , M) from ein_i ?: if k^+ has been stored as a public key, then compute $v \leftarrow \mathcal{E}(k^+, 0^{|M|})$, store (k^+, M, v) , write v to $eout_i$!, clock.
 - Recompute v until it differs from all previous v-s.
 - On input (dec, k^+, M) from ein_i ?: if (i, k^+, k^-) has been stored, then
 - if (k^+, M, v) has been stored for some v, then write v to $eout_i!$, clock.
 - otherwise write $\mathcal{D}(k^-, M)$ to $eout_i!$, clock.

 $\mathcal{E}nc^n \geq \mathcal{E}nc^n_s$ (black-box). **Exercise.** Describe the simulator.

The PIOA Sig^n

- Has ports sin_i?, sout_i!, sout_i[⊲]! for 1 ≤ i ≤ n.
 The machine M_i will get necessary ports for using Sigⁿ as by API calls.
- On input (gen) from sin_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $sout_i$!, clock.
- On input (sig, k^+, M) from sin_i ?: if (i, k^+, k^-) has been stored then compute $v \leftarrow sig(k^-, M)$, write v to $sout_i$!, clock.
- On input (ver, k⁺, s) from sin_i?: if k⁺ has been stored then write ver(k⁺, s) to sout_i!, clock.

The PIOA Sig_s^n

- Has ports sin_i?, sout_i!, sout_i ! for 1 ≤ i ≤ n.
 The machine M_i will get necessary ports for using Sigⁿ as by API calls.
- On input (gen) from sin_i ?: generate a new keypair (k^+, k^-) , store (i, k^+, k^-) , write k^+ to $sout_i$!, clock.
- On input (sig, k^+ , M) from sin_i ?: if (i, k^+, k^-) has been stored then compute $v \leftarrow sig(k^-, M)$, store (k^+, M) , write v to $sout_i$!, clock.
- On input (ver, k^+ , s) from sin_i ?: if k^+ has been stored then write $ver(k^+, s) \wedge "(k^+, M)$ has been stored" to $sout_i$!, clock.

Modified real structure

- Instead of generating the encryption keys, and encrypting and decrypting themselves, machines M_i query the machine Encⁿ.
 We can then replace Encⁿ with Encⁿ_s. The original structure was at least as secure as the modified structure.
- Same for signatures...
- Denote the modified machines by \tilde{M}_i .

The state of the real structure

State of \tilde{M}_i — the keys K_j^{e} and K_j^{v} $(1 \le j \le n)$.

• If some K is defined at several machines, then they are equal. State of $\mathcal{E}nc_s^n$:

- key triples (i, k^+, k^-) , where k^+ is the same as K_i^{e} .
- text triples (k^+, M, v) , where k^+ also occurs in a key triple.
- State of Sig_s^n :
 - key triples (i, k^+, k^-) , where k^+ is the same as K_i^v .
 - text pairs (k^+, M) , where k^+ also occurs in a key triple.
- Possibly (during initialization) the keys in the buffers of the channels $aut_{i,j}^{a}$.
- No messages are in the buffers of newly introduced channels ein_i etc.
- The buffers of channels connected to *H* or *A*, are not part of the state.

The simulator *Sim*

- Consists of the real structure and one extra machine Cntr. Its initial state contains counters z_{ij} for all $1 \le i, j \le n$.
- The ports in_i ?, out_i !, out_i^{\triangleleft} ! of \tilde{M}_i are renamed to cin_i ?, $cout_i$!, $cout_i^{\triangleleft}$!.
- Machine *Cntr* has ports $cin_i!$, $cin_i^{\triangleleft}!$, $cout_i?$, $adv^{\leftarrow}!$, $adv^{\leftarrow}!$, $adv^{\leftarrow}!$, $adv^{\leftarrow}?$.
- On input (init, i) from $adv \rightarrow ?$ write (init) to $cin_i!$ and clock it.
- On input (k^{e}, k^{v}) from $aut_{j,i}^{a}$?: the machine \tilde{M}_{i} additionally writes (recvkeys, j) to $cout_{i}$! and clocks it.
- Receiving (recvkeys, j) from $cout_i$?, machine Cntr writes (init, j, i) to $adv \leftarrow !$ and clocks it.
 - Receiving (send, i, j, l) from $adv \rightarrow ?$, the machine Cntr generates a new^{*} message M of length l, increments z_{ij} , stores (i, j, z_{ij}, M) , writes (send, j, M) to $cin_i!$, clocks it.
 - Reciving (received, i, M) from $cout_j$?, the machine Cntr locates the tuple (i, j, x, M), writes (recv, i, j, x) to $adv \leftarrow !$, clocks it.

The state of \Im *||Sim*

- Same as real structure.
- For each i, j, the sequences $D'_{i,j}$ of messages (z, M) that the machine Cntr has generated.
- The counters z_{ij} .
- Initialization bits $init_i$, $init_{i,j}$.
- The sequences of messages $D_{i,j}$ that party *i* has sent to party *j*.

The state of \Im *||Sim*

- Same as real structure.
- For each i, j, the sequences $D'_{i,j}$ of messages (z, M) that the machine Cntr has generated.
- The counters z_{ij} .
- Initialization bits $init_i$, $init_{i,j}$.
- The sequences of messages $D_{i,j}$ that party *i* has sent to party *j*.

Lemma. If $\mathcal{I} \| Sim$ is not currently running, then

- $z_{ij} = |D_{ij}| = |D'_{i,j}| \text{ and the lengths of the messages in the sequences}$ $D_{i,j} \text{ and } |D'_{i,j}| \text{ are pairwise equal.}$
- If $init_i$ then \tilde{M}_i has requested the generation of keys. If $init_{i,j}$ then \tilde{M}_j has received the keys of \tilde{M}_i . The opposite also holds.
- The signed messages in Sig_s^n are exactly of the form (i, j, M) where M is in the sequence $D'_{i,j}$. The encrypted messages in Enc_s^n are exactly those signed messages.

Probabilistic bisimulations

Let (S, A, \rightarrow, s_0) be a probabilistic transition system. I.e.

- S and A are the sets of states and transitions. $s_0 \in S$.
- \rightarrow is a partial function from $S \times A$ to $\mathcal{D}(S)$ (probability distributions over S).
- An equivalence relation ${\mathcal R}$ over S is a probabilistic bisimulation if $s \mathrel{\mathcal R} s'$ implies
 - for each $a \in A$, $s \xrightarrow{a} D$ implies that there exists D', such that $s' \xrightarrow{a} D'$, and
 - for each $t \in S$: $\sum_{t' \in t/\mathcal{R}} D(t') = \sum_{t' \in t/\mathcal{R}} D'(t')$.

Two probabilistic transition systems (S, A, \rightarrow, s_0) and (T, A, \Rightarrow, t_0) are bisimilar if there exists a probabilistic bisimulation \mathcal{R} of $(S \cup T, A, \rightarrow \cup \Rightarrow)$ that relates s_0 and t_0 .

Probabilistic bisimilarity

Bisimilarity of systems (S, A, \rightarrow, s_0) and (T, A, \Rightarrow, t_0) means that

The sets S and T can be partitioned into $S_1 \cup \cdots \cup S_k$ and $T_1 \cup \cdots \cup T_k$, such that

• ... also define
$$S_0 = T_0 = \emptyset$$

there exists a permutation σ of $\{0, \ldots, k\}$, such that

• in other words, σ defines a relation $\mathcal{R} \subseteq S \times T$, such that $s \mathcal{R} t$ iff $s \in S_i, t \in T_{\sigma(i)}$ for some i.

For all
$$s \in S_i$$
, $t \in T_{\sigma(i)}$, $a \in A$:
If $s \xrightarrow{a} D$ then $t \xrightarrow{a} E$. Also, for each j :
 $\sum_{s' \in S_j} D(s') = \sum_{t' \in T_j} E(t')$.
 $s_0 \ \Re \ t_0$.

Bisimilarity for secure channels

Relating the states of real and (ideal||simulator) structures:

- The states of \tilde{M}_i , $\mathcal{E}nc_s^n$, $\mathcal{S}ig_s^n$ must be equal.
- The rest of the state of $\mathcal{I} \| Sim$ must satisfy the lemma we had above.

The relationship must hold only if either H or A is currently running.

Now consider all possible inputs that the real structure or (ideal||simulator) may receive. Show that they react to it in the identical manner.

Home exercise

Present a simulatable functionality for secure channels (not allowing corruptions) that preserves the order of messages and does not allow their duplication.

Can raise the exam result by up to 10%.

Deadline: January 5th.

An UC voting functionality

Let there be m voters and n talliers. Let the possible votes be in $\{0, \ldots, L-1\}$.

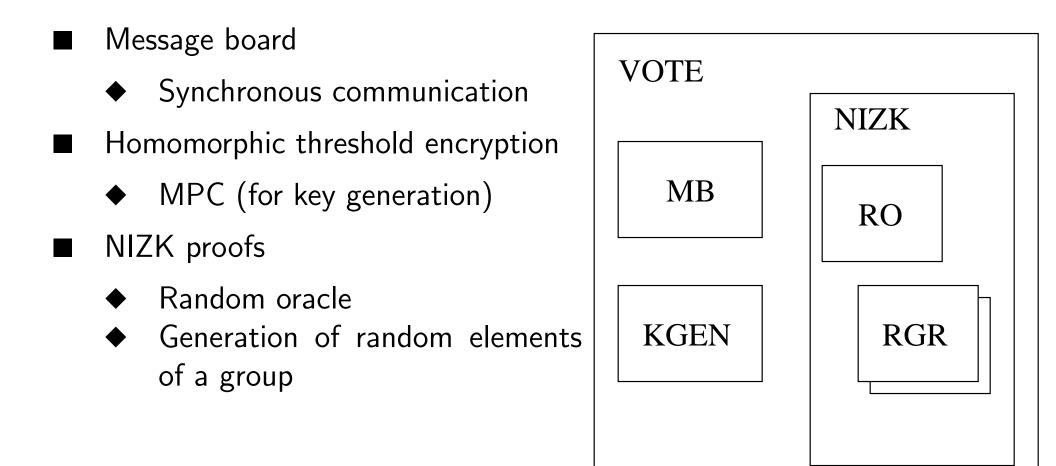
All voters will give their votes. All authorities agree on the result. The adversary will not learn individual votes.

An UC voting functionality

Let there be m voters and n talliers. Let the possible votes be in $\{0, \ldots, L-1\}$. All voters will give their votes. All authorities agree on the result. The adversary will not learn individual votes.

- The ideal functionality \mathcal{I}_{VOTE} has the standard ports... $in_i^V?$, $out_i^V!$, $out_i^{V\triangleleft}!$, $in_i^T?$, $out_i^T!$, $out_i^{T\triangleleft}!$, $adv \stackrel{\leftarrow}{\rightarrow}!$, $adv \stackrel{\rightarrow}{\rightarrow}!$.
 - First expect (init, *sid*)-command from the adversary.
- On input (vote, sid, v) from V_i store (vote, sid, V_i , v, 0), send (vote, sid, V_i) to the adversary, ignore further votes from V_i in session sid.
- On input (accept, sid, V_i) from the adversary, change the flag from 0 to 1 in (vote, sid, V_i, v, _).
- On input (result, sid) from the adversary, add up the votes in session sid with flag 1, store (result, sid, r) and send it to the adversary.
- On input (giveresult, sid, i) from the adversary send (result, sid, r) to voter V_i or tallier T_{i-m} .

Building blocks



Message board

Ideal functionality \mathcal{I}_{MB} for parties P_1, \ldots, P_n is the following:

- On input (bcast, sid, v) from P_i, store (bcast, i, sid, v). Accept no further (bcast, sid, ...)-queries from P_i. Send (bcast, sid, i, v) to the adversary.
- On input (pass, sid, i) from the adversary, if (bcast, i, sid, v) has been stored, store (post, sid, i, v).
- On input (tally, *sid*) from the adversary, accept no more (bcast, *sid*,...) and (pass, *sid*,...)-requests.
- On input (request, sid, i) from P_j, if (tally, sid) has been received before, send all stored (post, sid, ...)-tuples to P_j (as a single message).

Realization requires reliable channels or smth.

ZK proofs

The ideal functionality $\mathcal{I}_{\rm ZK}$ for parties P_1, \ldots, P_n and witnessing relation \mathcal{R} is the following

- On input (prove, sid, P_j , x, w) from a party P_i :
 - Check that $(x, w) \in \mathcal{R}$;
 - Store (P_i, P_j, sid, x) ;
 - Send (prove, P_i , P_j , sid, x) to the adversary.
 - Accept no more (prove, sid, \ldots) queries from P_i .
- On input (proofok, P_i , P_j , sid, x) from the adversary send (proof, sid, P_i , x) to P_j .

NIZK proofs

The ideal functionality $\mathcal{I}_{\text{NIZK}}$ for parties P_1, \ldots, P_n and witnessing relation \mathcal{R} is the following

- On input (prove, sid, x, w) from a party P_i :
 - Check that $(x, w) \in \mathcal{R}$;
 - Send (proof, sid, x) to the adversary.
 - Accept no more (prove, sid, \ldots) queries from P_i .
 - Wait for a query of the form $(proof, sid, x, \pi)$ from the adversary.
 - Store (sid, x, π) .
 - Send (proof, sid, x, π) to P_i .
- On input (prove, sid, x, w, π) from the adversary:
 - Check that $(x, w) \in \mathbb{R}$;
 - Store (sid, x, π) .

NIZK proofs

- On input (verify, sid, x, π) from P_j check whether (sid, x, π) is stored. If it is then
 - Return (verifyok, sid, x).

If it is not then

- Send (witness?, sid, x) to the adversary.
- Wait for a query of the form (prove, sid, x, w, π) from the adversary.
- Handle (prove, sid, x, w, π) as on previous slide.
- If $(x, w) \in \mathcal{R}$ then return (verifyok, sid, x) to P_j .

Waiting for some message

- Before stopping, record the form of the expected message and the point where the execution was interrupted.
- At the next invocation check whether the expected message was received.
 - If yes, then continue from where we left off.
 - If no, then handle the received message normally.

In both cases, clear the waiting state.

Random oracles

The random oracle functionality \mathcal{I}_{RO} for n parties is the following:

- On input x by any party or the adversary
 - If (x, r) is already stored for some r, return r.
 - Otherwise generate $r \in_R \{0,1\}^{p(\eta)}$, store (x,r) and return r.

 $\ensuremath{\mathbb{J}_{\mathrm{RO}}}$ works as a subroutine.

Generating a random element of a group

Let G be a fixed group (depends on η only), with a prime cardinality and hard DDH problem. The functionality \mathcal{I}_{RGR} is the following:

- On input (init) by the adversary generates a random element of G and returns it to the adversary.
- On input (init, i) marks that it may answer to party P_i .
- On input (get) from a party returns the generated element, if allowed.

Realization:

- The machines M_i are initialized by the adversary.
- $\blacksquare M_i \text{ generates a random element } g_i \in G, \text{ secret shares it;}$
- The shared values are multiplied and the result is opened.
- A (get) by a party allows it to learn the computed value.
- Uses secure channels functionality.

Exercise. How to simulate?

Protocol realizing NIZK

- Idea: on input (prove, sid, x, w) from party P_i the machine M_i commits to w and outputs x, C(w), and a NIZK proof that C(w) is hiding a witness for x.
- Initialization: parties get two random elements $g,h \in G$ using two copies of $\mathcal{I}_{\rm RGR}$.
 - Ignore user's query if (get) to \mathcal{I}_{RGR} -s gets no response.
- Let us use the following commitment scheme (G is a group with cardinality #G and hard DDH problem):
 - To commit to $m \in G$, generate a random $r \in \{0, \dots \#G-1\}$. The commitment is $(g^r, m \cdot h^r)$.
 - The opening of the previous commitment is r.

Exercise. How to verify? What is this commitment scheme? What can be said about its security?

Protocol realizing NIZK

- There exists a ZK protocol for proving that a commitment c hides a witness w, such that $(x, w) \in \mathcal{R}$.
- For honest verifiers, this protocol has three rounds commitment (or witness), challenge and response.
 - It depends on \mathcal{R} (and the commitment scheme).
 - Let A(x, C(w), w, r) generate the witness and Z(x, C(w), w, r, a, c) compute the response.
 - Challenge is a random string. Let $\mathcal{V}(x, C(w), a, c, z)$ be the verification algorithm at the end.
 - The whole proof π for (x, sid) consists of

•
$$C(w)$$
, a random string \overline{r} ;

- $\bullet \quad a \leftarrow A(x, C(w), w, r);$
- $\bullet \quad z \leftarrow Z(x, C(w), w, r, a, H(x, a, sid, \bar{r}))$
- $(proof, sid, x, \pi)$ is sent back to the user.

Protocol realizing NIZK

- On input (verify, sid, x, π) from the user, machine M_j verifies that proof:
 - Computes $c = H(x, a, sid, \bar{r})$ (by invoking \mathcal{I}_{RO}) and verifies $\mathcal{V}(x, C, a, c, z)$.

If correct, responds with (verifyok, sid, x).

Simulation

The simulator communicates with

the ideal functionality: possible commands are

- (proof, i, sid, x);
- (witness?, sid, x, π).
- the real adversary: possible commands are
 - (init) and (init, i) for two copies of \mathcal{I}_{RGR} ;
 - queries to the random oracle ${\mathfrak I}_{\rm RO}.$
 - Answer the queries to $\mathcal{I}_{\rm RO}$ in the normal way.

Simulator: initialization

On the very first invocation:

- Generate random elements $g, h \in G$.
- On (init) and (init, *i*) from the adversary for functionalities \mathcal{I}_{RGR} :
- Record that these commands have been received.

Simulating (proof, i, sid, x)

The query (prove, sid, x, w) was made by party P_i to J_{NIZK}.
 Where do we get w?

Simulating (proof, i, sid, x)

• The query (prove, sid, x, w) was made by party P_i to $\mathcal{I}_{\text{NIZK}}$.

■ Where do we get *w*? We don't get it at all.

• Let C be the commitment of a random element w';

Simulate the ZK proof of $(x, w') \in \mathbb{R}$:

- Let c be a random challenge.
- Let (a, z) be suitable witness and response for showing that C is the commitment of a suitable witness of x in \mathcal{R} .

Let \bar{r} be a random string, such that (x, a, sid, \bar{r}) has not been a query to \mathcal{I}_{RO} .

Simulating (proof, i, sid, x)

The query (prove, sid, x, w) was made by party P_i to \mathcal{I}_{NIZK} .

- Where do we get *w*? We don't get it at all.
- Let C be the commitment of a random element w';
- **Simulate** the ZK proof of $(x, w') \in \mathcal{R}$:
 - Let c be a random challenge.
 - Let (a, z) be suitable witness and response for showing that C is the commitment of a suitable witness of x in \mathcal{R} .
- Let \bar{r} be a random string, such that (x, a, sid, \bar{r}) has not been a query to \mathcal{I}_{RO} .
- **Define** $H(x, a, sid, \overline{r}) := c$. Let $\pi = (C, \overline{r}, a, z)$.
- Send (proof, sid, x, i, π) to $\mathcal{I}_{\text{NIZK}}$.

(*Programmable* random oracle)

Simulating (witness?, sid, x, π)

This is called if the real adversary has independently constructed a valid proof.

- Change the simulator as follows:
 - Initialization: the simulator generates g and h so, that it knows $\log_g h$.
- On a (witness?,...)-query, the simulator checks whether the proof $\pi = (C, \overline{r}, a, z)$ is correct.
- If it is, then it extracts the witness w from C by ElGamal decryption.
- After that, it sends (prove, sid, x, w, π) to $\mathcal{I}_{\text{NIZK}}$.

Exercise. What if C does not contain a valid witness?

Corruptions

- The real adversary may send (corrupt)-command to some machine M_i .
 - Static corruptions only at the beginning.
 - Adaptive corruptions any time.
- The machine responds with its current state. Afterwards, M_i "becomes a part of" the adversary.
 - Forwards all received messages to the adversary.
 - M_i accesses other components on behalf of the adversary.
 - No more traffic between M_i and the user.
- Possibility to corrupt players has to be taken into account when specifying ideal functionalities.
 - The ideal adversary may send (corrupt, i) to the functionality.
 - The simulator will make these queries if the real adversary corrupted someone.
 - The functionality may change the handling of the *i*-th party.

Corruptions and functionalities

- Random oracles impossible to corrupt.
 - Generating a random element of the group:
 - Implementations uses MPC techniques.
 - Tolerates adaptive corruptions of less than n/3 participants.
 - If party i is corrupted, then \mathcal{I}_{RGR}
 - Gives no output to the *i*-th party.
 - Forwards to the adversary all requests from the *i*-th party.
 - If too many parties are corrupted (at least n/3) then \mathcal{I}_{RGR} gives all control to the adversary.
 - The simulator simply acts as a forwarder between a corrupted party and the adversary.

Corrupting $\mathcal{I}_{\rm NIZK}$

- The realization of NIZK uses \mathcal{I}_{RGR} .
 - It fails if there are at least n/3 corrupt parties.
- It has no other weaknesses.

Corrupting $\mathbb{J}_{\scriptscriptstyle \mathrm{NIZK}}$

- The realization of NIZK uses \mathcal{I}_{RGR} .
 - It fails if there are at least n/3 corrupt parties.
 - It has no other weaknesses.

- If party i is corrupted in $\mathcal{I}_{\text{NIZK}}$ then it stops talking to the user.
 - The adversary may prove things on user's behalf.
- If at least n/3 parties are corrupted then $\mathcal{I}_{\text{NIZK}}$ gives up.

Corrupting $\mathcal{J}_{\rm NIZK}$

- The realization of NIZK uses \mathcal{I}_{RGR} .
 - It fails if there are at least n/3 corrupt parties.
 - It has no other weaknesses.
 - If party i is corrupted in $\mathcal{I}_{\text{NIZK}}$ then it stops talking to the user.
 - The adversary may prove things on user's behalf.
- If at least n/3 parties are corrupted then J_{NIZK} gives up.
 The simulator corrupts *i*-th party of J_{NIZK} if M_i is corrupted or the *i*-th party in J_{RGR} is corrupted.

Exercise

How should corruptions be integrated to $\mathcal{I}_{\rm MB}?$

Ideal functionality \mathcal{I}_{MB} for parties P_1, \ldots, P_n is the following:

- On input (bcast, sid, v) from P_i, store (bcast, i, sid, v). Accept no further (bcast, sid, ...)-queries from P_i. Send (bcast, sid, i, v) to the adversary.
- On input (pass, sid, i) from the adversary, if (bcast, i, sid, v) has been stored, store (post, sid, i, v).
- On input (tally, *sid*) from the adversary, accept no more (bcast, *sid*,...) and (pass, *sid*,...)-requests.
- On input (request, sid, i) from P_j, if (tally, sid) has been received before, send all stored (post, sid, ...)-tuples to P_j (as a single message).

Homomorphic encryption

- A public-key encryption system $(\mathcal{K}, \mathcal{E}, \mathcal{D})$.
- The set of plaintexts is a ring.
- There is an operation \oplus on ciphertexts, such that if $\mathcal{D}(k^-, c_1) = v_1$ and $\mathcal{D}(k^-, c_2) = v_2$ then $\mathcal{D}(k^-, c_1 \oplus c_2) = v_1 + v_2$.
- Security IND-CPA.

Homomorphic encryption

- A public-key encryption system $(\mathcal{K}, \mathcal{E}, \mathcal{D})$.
- The set of plaintexts is a ring.
- There is an operation \oplus on ciphertexts, such that if $\mathcal{D}(k^-, c_1) = v_1$ and $\mathcal{D}(k^-, c_2) = v_2$ then $\mathcal{D}(k^-, c_1 \oplus c_2) = v_1 + v_2$.
- Security IND-CPA.
- In a threshold encryption system, the secret key is shared. There are shares k_1^-, \ldots, k_n^- .
 - Also, there are public verification keys k_1^v, \ldots, k_n^v that are used to verify that the authorities have correctly computed the shares of the plaintext.
 - ... like in verifiable secret sharing.

We use secure MPC to generate $k^+, k_1^-, \ldots, k_n^-, k_1^v, \ldots, k_n^v$.

- This can be modeled by an ideal functionality \mathcal{I}_{KGEN} .
- There are more efficient means of generation than general MPC.

Key generation

The ideal functionality $\mathbb{J}_{\rm KGEN}$ for m users and n authorities works as follows:

- On input (generate, sid) from the adversary, generates new keys. and gives the keys $k^+, k_1^v, \ldots, k_n^v$ to the adversary.
- On input (getkeys, *sid*) from a party, gives the party this party's generated keys. (works like subroutine)
- Breaks down if there are at least (m+n)/3 corrupt parties.

Each voting session needs new keys, otherwise chosen-ciphertext attacks are possible.

Voting protocol

- Voter machines M₁^V,..., M_m^V, tallier machines M₁^T,..., M_n^T.
 The first time some M_i^V or M_i^T is activated, it asks for its key(s) from J_{KGEN} and receives them.
- On input (vote, sid, v) from the user the machine M_i^V
 - Let $c_i \leftarrow \mathcal{E}_{k^+}(\operatorname{Encode}(v))$. Make a NIZK proof π_i that c_i contains a correct vote. Send (bcast, $sid || 0, (c_i, \pi_i)$) to \mathcal{I}_{MB} .
 - On input (count, sid) from the adversary the machine M_i^T
 - Sends (request, sid || 0, i) to \mathcal{I}_{MB} and receives all the votes and correctness proofs $(c_1, \pi_1), \ldots, (c_m, \pi_m)$.
 - Checks the validity of the proofs, using \mathcal{I}_{NIZK} .
 - Multiplies the valid votes and decrypts the result, using k_i^- . Let the result of the decryption be d_i . Makes a NIZK proof ξ_i that d_i is a valid decryption and sends (bcast, $sid || 1, (d_i, \xi_i)$ to \mathcal{I}_{MB} .
 - The proof also uses k_i^{v} .

Voting protocol

On input (result, sid) from the adversary any machine

- Sends (request, sid || 0, i) to \mathcal{I}_{MB} and receives all the votes and correctness proofs $(c_1, \pi_1), \ldots, (c_m, \pi_m)$.
- Checks the validity of the proofs, using \mathcal{I}_{NIZK} .
- Multiplies the valid votes, let the result be c.
- Sends (request, sid||1, i) to \mathcal{I}_{MB} and receives the shares of the result d_1, \ldots, d_n together with proofs ξ_1, \ldots, ξ_n .
- Check the validity of those proofs.
- Combines a number of valid shares to form the final result r.
- Sends (result, sid, r) to the user.

Exercise. What kind of corruptions are tolerated here?

The simulator — **interface**

The simulator encapsulates \mathcal{J}_{MB} , \mathcal{J}_{NIZK} , \mathcal{J}_{KGEN} . The simulator handles the following commands:

- From $\mathcal{I}_{\text{VOTE}}$:
 - (vote, sid, i) V_i has voted (but don't know, how).
 - (result, sid, r) the result of the voting session sid.
 - From the real adversary:
 - (count, sid) for M_i^T produce the share of the voting result.
 - ♦ (result, sid) for any M combine the shares of the result and send it to the user.
 - Corruptions; messages on behalf of corrupted parties.

The simulator — interface

From the real adversary (on behalf of \mathcal{I}_{MB}):

- (pass, sid, i) lets the message sent by M_i to pass.
- (tally, sid) finishes round sid.
- (bcast, sid, i, v) broadcast by a corrupt party.

From the real adversary (on behalf of \mathcal{I}_{NIZK}):

- (proof, sid, x, π) generate a proof token π for an honest prover.
- (prove, sid, x, w, π) the adversary proves something himself.

From the real adversary (on behalf of \mathcal{I}_{KGEN}):

• (generate, sid) — generates the keys.

The simulator — interface

The simulator issues the following commands:

 $\frac{\text{To } \mathcal{I}_{\text{VOTE}}:}{(\text{init}, sid)}$ (accept, sid, i) (result, sid) (giveresult, sid, i) (corrupt, i) (vote, sid, i, v)

 $\frac{\text{To the real adversary (as } \mathcal{I}_{\text{MB}}):}{(\text{bcast, } sid, i, v)}$ $\frac{\text{To the real adversary (as } \mathcal{I}_{\text{NIZK}}):}{(\text{proof, } i, sid, x)}$ $(\text{witness}?, sid, x, \pi)$ $\frac{\text{To the real adversary (as } \mathcal{I}_{\text{KGEN}}):}{(\text{keys, } sid, k^+, k_1^v, \dots, k_n^v)}$

The simulator — initialization

- On the first activation with a new sid:
 - Generates keys $k^+, k_1^-, \ldots, k_n^-, k_1^v, \ldots, k_n^v$ for this session.
- When receiving (generate, sid) from the adversary for $\mathcal{I}_{\text{KGEN}}$,
 - marks that voting can now commence;
 - sends (init, sid) to \mathcal{I}_{VOTE} .
 - Corruptions by the adversary are forwarded to $\mathcal{I}_{\rm VOTE}$ and recorded.

The simulator — voting

On input (vote, sid, i) from $\mathcal{I}_{\text{VOTE}}$:

- Let the encrypted vote be $c \leftarrow \mathcal{E}_{k^+}(0)$.
- Make a NIZK proof π that this vote is valid.
 - Going to $\mathcal{I}_{\rm NIZK}$'s waiting state, as necessary.
- Broadcast (using \mathcal{I}_{MB}) the pair (c, π) on behalf of voter i.
- On input (pass, sid, i), if the vote was broadcast for the voter P_i :
 - Send (accept, sid, i) back to \mathcal{I}_{VOTE} .
 - If a corrupt party i puts a vote to the message board and makes a valid proof for it:
 - Decrypt that vote. Let its value be v.
 - Send (vote, sid, i, v) to \mathcal{I}_{VOTE} .

The simulator — tallying

On input (tally, $\mathit{sid} \| 0)$ from the adversary for $\mathcal{I}_{\scriptscriptstyle \rm MB}$:

- \blacksquare Close the voting session sid, accept counting queries.
- Send (result, sid) to \mathcal{I}_{VOTE} .
- Get the voting result r from \mathcal{I}_{VOTE} and store it.

The simulator — counting

On input (count, sid) from the adversary for the tallier T_i :

- Check the proofs of all votes (c_i, π_i) using $\mathcal{I}_{\text{NIZK}}$.
 - Going to wait-state, if necessary.
- Let C be the product of all votes with valid proofs.
 For talliers T₁,...,T_n, let d₁,...,d_n be
 - if T_i is corrupt, then $d_i = \mathcal{D}(k_i^-, C)$;
 - if T_i is honest, then a d_i is simulated value

such that d_1, \ldots, d_n combine to r.

- d_1, \ldots, d_n are generated at the first (count, sid)-query.
- Make a NIZK proof ξ_i for the share d_i .
- Broadcast (d_i, ξ_i) in session $sid \parallel 1$ using \mathcal{I}_{MB} .
- A corrupt tallier can broadcast anything. But only (d_i, ξ_i) for the valid d_i is accepted at the next step.

The simulator — reporting the results

On input (result, sid) from the adversary for any voter or tallier i:

- Takes all votes (c_j, π_j) and all shares of the result (d_j, ξ_j) .
- Verifies all correctness proofs of votes.
- Multiplies the valid votes.
- Verifies the correctness proofs of shares.
- If sufficiently many proofs are correct then sends (giveresult, sid, i) to $\mathcal{I}_{\text{VOTE}}$.

Damgård-Jurik encryption system

- A homomorphic threshold encryption system
 Somewhat RSA-like
 - Operations are modulo n^s , where n is a RSA modulus.
 - Easy to recover i from $(1+n)^i \mod n^s$.
- Maybe in the lecture...
- Otherwise see http://www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps

Secure MPC from thresh. homom. encr.

Computationally secure against malicious coalitions with size less than the threshold.

- Function given as a circuit with multiplications and additions.
- The value on each wire is represented as its encryption, known to all.
- Addition gate everybody can add encrypted values by themselves.
 Multiplication of a and b (encryptions are a and b):
 - Each party P_i chooses a random d_i , broadcasts $\overline{d_i}$, proves in ZK that it knows d_i .
 - Let $d = d_1 + \cdots + d_n$. Then $\overline{d} = \overline{d_1} \oplus \cdots \oplus \overline{d_n}$.
 - Decrypt $\overline{a} \oplus \overline{d} = \overline{a+d}$, let everybody know it.
 - Let $\overline{a_1} = \overline{a+d} \ominus \overline{d_1}$ and $\overline{a_i} = \ominus \overline{d_i}$. P_i knows a_i .
 - P_i broadcasts $a_i \odot \overline{b} = \overline{a_i b}$ and proves in ZK that he computed it correctly.
 - Everybody computes $\overline{a_1b} \oplus \cdots \oplus \overline{a_nb} = \overline{ab}$.