George Danezis
Microsoft Research, Cambridge, UK

ldentity and
anonymity protocols

Global outline

Theme: protecting identity on the Internet
4 lectures (4 x 1.5h = 6h)

Authentication
Authentication (4™ Dec, part 1)
Simple anonymous credentials (4" Dec, part I1)
Anonymous communications & traffic analysis
High latency (6" Dec, part)
Low latency (6" Dec, part Il)
Practical deployment and relation with
computer security

Secure Authentication

Forward secrecy, privacy, Denial of Service protection, weak passwords...

Why Authentication?

Authentication protocols
Check the assertion a user makes about her identity

Studied very early
(e.g. Needham-Schroeder 1978 — already sophisticated)

Large volume of literature & Formal analysis
(Formal / Dolev-Yao model)

Why such fuss?

Key role in computer security

Access control matrix:
Describe what operations subjects can perform on objects.

Identify subject to make decision!

Authentication first!

Old days — UNIX, mainframes, ...
Authentication: first interaction with system.
Known users interact with few known systems.

Username and password requested and
transmitted in clear — user authentication.
Context dedicated lines linking terminals to mainframe!
If you were in the terminal room you were already ok.
Physical security important and strong.
Shared keys used for network authentication between
mainframes
Too few for key management to be an issue

Authentication last?

Today — Internet

Substantial public space requires no authentication
DoS, Phishing, ...

Business with strangers
No pre-existing shared keys
Public key cryptography needed!

Anyone can talk to a network host
Authentication is last!
Transmitted over the insecure network.

Adversaries lurking everywhere!
Eavesdropping, Phishing, Denial of Service, credential stealing, ...

Our focus

Study two protocols used for authentication

Just Fast Keying (JFK)

(W. Aiello, S. Bellovin, M. Blaze, R. Canetti,
J.loannidis, A. Keromytis, O. Reingold — 2003)

Core security: public key based key exchange
Nice features: Denial of Service prevention, privacy, forward secrecy.
Roadmap: Diffie-Hellman exchange, JFK, properties

Password-Authenticated Key exchange (PAK)
(Boyko, MacKenzie, Patel — 2000)
Password based key exchange
Secure against guessing attacks

Roadmap: standard password authentication, PAK, (server
strengthening)

Revision

Discrete logarithm
and related cryptographic problems

Diffie-Hellman key exchange

ISO 9798-3 Authentication protocol

Discrete logarithms (I)

Assume p a large prime
(>1024 bits—2048 bits)
Detail: p = gr+1 where g also large prime
Denote the field of integers modulo p as Z,

Example with p=g
Addition works fine: 142 =3, 3+3 =1, ...
Multiplicationtoo: 2%2 =4, 2%3 =1, ...
Exponentiationis as expected: 22 = 4

Choose g in the multiplicative group of Z,
Such that g is a generator
Example: g=2

Discrete logarithms (ll)

Exponentiation is computationally easy:
Given g and x, easy to compute g~

But logarithm is computationally hard:
Given g and g% difficult to find x = log, g*
If pis large it is practically impossible

Related DH problem
Given (g, g%, ¢¥) difficult to find g
Stronger assumption than DL problem

Diffie-Hellman (1)

Alice (A) and Bob (B) do not share any keys

They want to chat securely
Confidentiality (encryption),
Integrity (message authentication),
Both need a shared key!

Diffie-Hellman protocol (1976)
Key exchange protocol
Two parties end up sharing a private key.

Not authentication yet!

Diffie-Hellman (l1)

Public: g, p
Private: Private:
X y
A—B:((mod a
s ¥ g (modp) <O
[X
y

B—>A:(J (modp)

Alice g Bob

Derive: (¢¥) =K = (g
K = g is the shared key!

Diffie-Hellman (l1)

Secure against passive adversaries

Just looking at messages in the network
From g, g%, ¢V cannot learn anything about x, y or g
Slight problem: K'is always the same — not fresh!

Insecure against active adversaries

Adversary can delete, insert, modify messages
Man-in-the-middle attack

Diffie-Hellman (MITM)

Public: g, p
Private: Private:
8 y
m
X
g 9 op'a
&
¥ CXOXO

[X

g" 9’
Alice Bob

K = gm Knows K= g/m

Diffie-Hellman (1V)

How to secure DH against MITM?
Alice and Bob know the fingerprint of each other’s
keys

Telephone directory with hashes of public keys?
(Original proposal)

PKI: Public Key Infrastructure

Trusted party that distributes signed certificates linking
names (Alice or Bob, or URLSs) to public keys.

Authenticated key-exchange

ISO 9798-3 — Authenticated DH

ISO: International Standards Organization

(ISO 216 defines the A4 paper size)
Improves on the Diffie-Hellman exchange:

Freshness of keys

Both parties contribute fresh random numbers to be
used as part of key derivation.

MITM protection using long term signature keys

Verification keys for the signatures of Alice and Bob are
know to each other.

(Probably though some PKI)

Some Notation

Sign,[M] —Signature of M with A's key
(There is a certificate linking A and her key)

H[M] —Hash function
H.[M] —Keyed hash function

iM}, —Symmetric Encrypt & MAC

150 9798-3 (1)

Private:
a

P\

Alice

Random

Public:
g/ p/ VerA/ VerB

B->A:Ng, B, g°

A->B:N,, Ng, A, g9 Sign,[N,,Ng,g%g°B]

B -> A: NA / NB / SignB[NAINBIga/gbIA]

Derive: K =H(g%, N,, Ng, A, B)

Private:

Random
NB

ISO 9798-3 as Diffie-Hellman

Private:

Public:
9.p
B->A: | B,g°
A ->B: A, g°

Derive: K= g%

Private:

b

SO
X)

Bob

ISO 9798-3— Freshness

Public:

Private: g pP Private:
ainZp binZp
P\ B->A:N,, B, g’ :}5?,

[X
A->B:N,, N, A, @
Alice Bob
B->A:N,, Ng

K will always be different,
Even if g, g® are reused.

Derive: K=H(g®, N,, Ny, A, B)

ISO 9798-3—- Authenticity

Public:
Private: g, p, Ver Ar Ver B Private:
a b
» & B->A:Ng, B, g°

A ->B:N,, Ng, A, g4 Sign,[N,,Ng,g%g°B]

Alice Bob
B -> A: NAI NB / SignB[NAINB/ga/gblA]

Adversary cannot forge
these to do MITM.

Derive: K =H(g%, N,, Ng, A, B)

ISO 9798-3— Home work

Public:
Private: g, p, Ver A1 Ver B Private:
a b
% & B->A:Ng, B, g°

A->B:N,, Ng, A, g9 Sign,[N,,Ng,g%g°B]

Alice Bob
B -> A: NA / NB / SignB[NAINBIgaIgbIA]

What happens if we do not
sign the identities?

Derive: K =H(g%, N,, Ng, A, B)

Notes on ISO 9798-3

Forward secrecy
If g2 and g are ephemeral (deleted after the exchange).

Revealing the long term signature keys does not
compromise K!

Alice and Bob are certain of each other’s identities

So is any passive eavesdropper
Privacy concern — BAD

Alice maintains state before knowing Bob.
Denial of Service: resource depletion (memory) — BAD

ISO 9798-3— Denial of Service

Public:
S g, p, Ver,, Verg Random:
a NBI R
¥ & M ->A:Ng, B, R

A ->M: N,, Ng, A, g8 Sign,[N,,Ng, g3 R,B]
Alice

Wait? Mallory
DoS 2:
Do5 1: One signature
Remember: 9

ly.
Na Ng, B, R R

Just Fast Keying (JFKi)

Authenticated key-exchange

All properties of ISO 9798-3
New properties

Denial of Service protection

Privacy
Initiator’s identity is not revealed to third parties.
(Responder’s identity is revealed.)

Detailed look at JFKi
JFKr — privacy for responder

JFKi (1) - The protocol

Private: q,
HK,
B->A:
&
& A ->B:
B->A:
Alice
(Responder)
A->B:
Derive:

Public:
9, P VerA/ VerB Private:
b
NIBI gbl IDA’

NIBINAI IDAI gal SignA[ga]l HHKA[gaI NA IN’BIIPB]

NBI NAI gb, gal HHKA[gaI NA INIBIIPB]

{|DB, SignB[N,BI NA ! gb I gaIIDA]}Kauth-enc BOb
(Initiator)
{SignA[N,Bl NA / gb / gal IDB]} Kauth-enc
Random:
Kauth—enc = H(gabl NAI NIBI ab) N'g = H[Ng]

K =H(g?, N,, N'g, “key")

JFKi (1) = The panic

(Responder)

auth-enc

K =H(g?, N,, N'g, “key")

JFKi—The ISO 9798-3 core

Private: a,
HK
B->A:
&
¥ A -> B:
B->A:
Alice
(Responder)
A->B:
Derive:

Public:
g/ p/ VerA/ VerB

NA/ IDAI ga

NBI NAI gb, ga
IDg, Signg[N', N, g°, g3,1D4]

SignA[N,Bl NAI gb, gal IDB]

K =H(g®, N,, N'5, “key”)

Private:

Bob
(Initiator)

Random:
N'g = H[Ng]

JFKi - Initiator privacy

Public:
Private: g, g, p, Ver,, Verg
HK 5
B->A:
s AAY ah A
-> B: Na, 1Dy, 9% Sign,foc]

B->A: NB,NA,gb,ga
Alice {IDB, SignB[N,Bl NA 1 gb 1 gaIIDA]}Kauth—enc
(Responder)

A->B: {SignA[N’B, NA / gb / ga, IDB]} Kauth-enc

2) Encryption prevents o N
eavesdropper from 2 Kauth-enc = H(ga / NA, N B/ ab)

learning IDg K = H(gab, N,, NG, “key")

1) Bob can already
authenticate Alice

Private:

Bob
(Initiator)

Random:
N'g = H[Ng]

JFKi—-DoS Prevention

Public:
Private: q, g, p, Ver,, Verg Eree
HK b
B->A: N5, gD, 1) Tell ahead
& of time
® A->B: N'g, Ny 1Dy 9% 5ignalg®l, Hy [9° Nu N'g, IPg]

B -> A: NBI NAI gb, ga[HHKA[gaI I\IAII\IIB/”:)B:|

Cheap!
Alice {IDg, Signg[N'g, Ny, gb L9230 Bauth-ent BOb
(Responder) (Initiator)
A'>B: {Slan\[:\lBl NA ! gb ! gal IDB]} Kauth-enc
2) C|§O||3<ie: Alice uses Random:
as secure N - _ ;
0 Ure — vb: K, e = H(G?, N, N'g, “ab”) N'g = HIN]

remote storage!

K =H(g®, N,, N'5, “key”)

Summary of key concepts (1)

USUAL HOT

Key exchange (DH) Forward secrecy
Ephemeral keys

Authentication of key

H Privacy

excnange . ,
d Authenticate before telling
Freshness Protect against passive
Signatures & certificates (PKI) adversaries

Denial of service
prevention
Cookies

What about passwords?

PKI, certificates, shared cryptographic keys
Not very usable

Need bootstrapping
Web authentication

Password based
Small device pairing — using 4-digit PINs
Smart phones
Bluetooth
User interface constraints

Naive password authentication (1)

() X
¥ 4 B->A: B, Passg Q%.}’
[X

Alice B_Ob
(Server) (Client)

Most web services

Eavesdropper can get Pass; (SSL?)

Alice does not store passwords in clear
Alice DB: B, Sg, H(Passg, Sg, B) — S; called “salt’
Can still check passwords

Naive password authentication (2)

% @8
Alice
(Server)

HT |
Pro
Pro

A->B:N, :zéz.

B->A: B, N, N, H(N,, Ng, Pass;)
Bob

(Client)

P digest authentication
blem 1: No server authentication

blem 2: Off-line guessing attacks

Entropy of PIN or passwords small

Try all words in dictionary until you get H(N,, Ng, Passg)
Server compromise is bad — no hashing/salting

Password auth. — Requirements

Alice and Bob share a weak secret
a short PIN (4-digits)
Password (dictionary word)

Low entropy
Mutual authentication
Derive a cryptographically strong key
Encryption / message authentication
No off-line guessing attacks
(Security against server compromise)

PAK —

Definition

Private:
Password: 1t
Random a

P\

Alice

Check k

Public: Private:
Password: 1
g’ p Random b

A->B: g*(H,[A,B,]) =

B->A: g°, H, [A,B,m,g®, (m/ (H,[A,B, 1]))P, 1] = k

A->B: H,,[A,B,m,g® (m/ (H,[A,B, ,7/ n] =k’ Bob

l/

I?

Derive: K = H[A,B,m, g°, (m/ (H,[A,B, n]))°,]

Check k'

PAK - Diffie-Hellman core

Public: Private:
9.p

Random a Random b

& A->B: g° N
¥ (XX
B->A: g, [

Alice Bob

Private:

PAK — Authentication?

Private: Public: Private:

Password: 1t Password: 1t

Random a g’ p Random b
A->B: g (H [AB, i])=m

s ¥ ‘

B->A: g°, H,,[A,B,m,g® (m/(H.[A,B,)P, m] =k

: B

Alice A->B: H,,[A,B,m,gP, (m/(H.[A,B, 1)))b,] = K’ ob

The ability to blind and un-blind proves knowledge of the password .

Derive: K =H,[A,B,m, g° (m/(H,[A,B, m]))®, m]

PAK - no off-line guessing

Private: Public: Privatde:

P d: Password: 1t

;Z:IZI(;:n : g’ p Random b
A->B: g°-(H,[A,B, Ti]) = m

P\

B->A: g° H,,[A,B,m,g® g®°, m] = k

- Bob

Alice A->B: H, [A,B,m,gb, g, 1] = k'

Derive: K = H,[A,B,m, g, (m/ (H,[A,B, m]))",]

PAK — on-line guessing

Private: Pu b|IC: Private:
Random x Password: 1
Random T, g’ p Random b

M->B: g*-(H,[A,B, .])=m

B->M: g° H,,[A,B,m,g® (m/ (H,[A,B, m]))°, m] = k

Bob
Mallory

, Check if
k'=H,,[A,B,m,gb, (m/ (H.[A,B, 1))}, T0,]
(ift=m)

Security precaution: limit the number of attempts!

Practical considerations

Denial of Service
Adversary can lock users out!

Require to give up after few attempts.
Implicit names

Alice and Bob expect to talk to each other
Otherwise ... Privacy concerns
Public key operation — more expensive than
hashing.
PAK-X: server compromise-resistant.

Summary of key concepts (2)

A weak password can bootstrap a strong one
Force adversary to go active
PAK-X modification to allow salting (home work)

Key problems

Denial of service

Applicability
Pairing devices
Shy adversaries ©
Not www, login, ...

In conclusion

Expect a lot from your authentication
Key derivation (not just identification)
Forward secrecy

Denial of service prevention

Privacy

More properties

Federation, thin client, ...
Do not design your own protocol unless you
understand all those in the literature!

References

Core:

William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John loannidis,
Angelos D. Keromytis, Omer Reingold: Just fast keying: Key agreement in a
hostile internet. ACM Trans. Inf. Syst. Secur. 7(2): 242-273 (2004)

Victor Boyko, Philip D. MacKenzie, Sarvar Patel: Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. EUROCRYPT 2000: 156-
171

More:

Martin Abadi, Bruno Blanchet, Cédric Fournet: Just fast keying in the pi
calculus. ACM Trans. Inf. Syst. Secur. 10(3): (2007)

Colin Boyd, Anish Mathuria: Protocols for Authentication and Key
Establishment. 2003, XVI, 321 p., Hardcover. ISBN: 978-3-540-43107-7.
Springer.

Anonymous credentials

Proving certified attributes without leaking identities

A critique of identity

ldentity as a proxy to check credentials
Username decides access in Access Control Matrix

Sometime it leaks too much information

Real world examples
Tickets allow you to use cinema / train
Bars require customers to be older than 18

But do you want the barman to know your address?

The privacy-invasive way

Usual way:
Ildentity provider certifies attributes of a subject.
Ildentity consumer checks those attributes
Match credential with live person (biometric)

Examples:

E-passport: signed attributes, with lightweight access
control.

Attributes: nationality, names, number, pictures, ...

Identity Cards: signatures over attributes
Attributes: names, date of birth, picture, address, ...

Anonymous credentials

The players:
Issuer (I) = Identity provider
Prover (P) = subject
Verifier (V) = identity consumer

Properties:

The prover convinces the verifier that he holds a credential
with attributes that satisfy some boolean formula:

Simple example “age=18 AND city=Cambridge”
Prover cannot lie
Verifier cannot infer anything else aside the formula

Anonymity maintained despite collusion of V & |

The big picture

Name=Pegqgy,
1. age=2g,
Issuing protocol: address=Cambridge,
Prover Status=single
gets a certified Issuer Cannot !earn
credential. Passport banyﬂnng
. eyond age
Issuing
Authority
TN y
Prover 2. Verifier
Showing Protocol: -
Peggy Prover mal?es assertions (B\Qrczsz
about some attributes Checking age)

age=25

Two flavours of credentials

Single-show credential (Brands & Chaum)
Blind the issuing protocol
Show the credential in clear
Multiple shows are linkable - BAD
Protocols are simpler —

Multi-show (Camenisch & Lysyanskaya)
Random oracle free signatures for issuing (CL)
Blinded showing

Prover shows that they know a signature over a particular
ciphertext.

Cannot link multiple shows of the credential
More complex — no implementations

Technical Outline

Cryptographic preliminaries
The discrete logarithm problem

Schnorr’s Identification protocol
Unforgeability, simulator, Fiat-Shamir Heuristic
Generalization to representation

Showing protocol

Linear relations of attributes

AND-connective
Issuing protocol

Blinded issuing

Discrete logarithms (l) - revision

Assume p a large prime
(>1024 bits—2048 bits)
Detail: p = gr+1 where g also large prime
Denote the field of integers modulo p as Z,

Example with p=g
Addition works fine: 142 =3, 3+3 =1, ...
Multiplicationtoo: 2%2 =4, 2%3 =1, ...
Exponentiationis as expected: 22 = 4

Choose g in the multiplicative group of Z,
Such that g is a generator
Example: g=2

Discrete logarithms (ll) -revision

Exponentiation is computationally easy:
Given g and x, easy to compute g~

But logarithm is computationally hard:
Given g and g% difficult to find x = log, g*
If pis large it is practically impossible

Related DH problem
Given (g, g%, g¥) difficult to find g
Stronger assumption than DL problem

More on Zp

Efficient to find inverses

Given c easy to calculate g mod p
(p-1)— ¢ mod p-1

Efficient to find roots

Given c easy to find g mod p
C (2/c) =1 mod (p-1)

Note the case N=pq (RSA security)

No need to be scared of this field.

Schnorr’s Identification protocol

Exemplary of the zero-knowledge protocols credentials
are based on.

Players
Public—gageneratorof Z,
Prover —knows x (secret key)
Verifier —knows y = g* (public key)

Aim: the prover convinces the verifier that she knows an x
suchthatg*=y
Zero-knowledge — verifier does not learn x!

Why identification?
Given a certificate containingy

Schnorr’s protocol

Public: g, p
Knows: x Knows: y=g*
V=N oDe
P->V: g"¥=a (witness) ‘%’
Peggy V->P: c (challenge) Victor
(Prover) (Verifier)
P->V: CX*W =T (response)
Random: w
Check:
g'=y‘a

l

g CX+W — (gx)cgw

No Schnorr Forgery (intuition)

Assume that Peggy (Prover) does not know x?

If, for the same witness, Peggy forges two valid
responses to two of Victor’s challenges

r=C, X+W

r,=C,X+W

Then Peggy must know x

2 equations, 2 unknowns (x,w) — can find x

Zero-knowledge (intuition)

The verifier learns nothing new about x.
How do we go about proving this?
Verifier can simulate protocol executions

On his own!
Without any help from Peggy (Prover)

This means that the transcript gives no
information about x

How does Victor simulate a transcript?
(Witness, challenge, response)

Simulator

Need to fake a transcript (g, c’, r')
Simulator:
Trick: do not follow the protocol order!
First pick the challenge ¢’

Then pick a random response r’
Then note that the response must satisfy:
gr' — (gx)c' gw' -> gw’ — gr’ / (gx)c’
Solve for gV
Proof technique for ZK

but also important in constructions (OR)

Non-interactive proof?

Schnorr’s protocol
Requires interaction between Peggy and Victor

Victor cannot transfer proof to convince Charlie
(In fact we saw he can completely fake a transcript)

Fiat-Shamir Heuristic
H[-]1is a cryptographic hash function
Peggy sets c = H[g"]

Note that the simulator cannot work any more
g" has to be set first to derive ¢

Signature scheme
Peggy sets c = H[g"V, M]

Generalise to DL represenations

Traditional Schnorr
For fixed g, p and public key h = g
Peggy proves she knows x such that h = g

General problem

FIX prime p, generatorsg,, ..., g,

Public key h'=g_ *g.% ... g/

Pegqgy proves she knows x_, ..., Xx;such that
1'=0,%9,7% - gy

DL represenation — protocol

Public: g, p
Knows: X, ..., X

¥ | random: w,

P->V: ﬂo<i<|gwi = d (witness)

Peggy
(Prover) V->P: c (challenge)
r = CX;+W, P->V:r,...,n (response)

Check:

(Ho<i<l giri) = h

Let’s convince ourselves: ([T..ic1 9" = (TTo<ic) 97D (TTocicy ™) = h€a

Knows:

h=g,9, ..

SO
)

Victor
(Verifier)

gIXI

DL represenation vs. Schnorr

Public: g, p
Knows: X,
¥ | random: w,
P->V: gW‘ = d (witness)

Peggy

(Prover) V->P: c (challenge)
ri = CXi'I'VVi P->V: r (response)

Check
- C
g =h¢a

Lets convince ourselves: (gi") = (g)(g") =hca

Knows:
h — g X1

1

SO
)

Victor
(Verifier)

Credentials — showing

Relation to DL representation

Credential representation:
Attributes x;
Credential h =g.**g,** ... g/, Sig;..,.,(h)

Credential showing protocol
Peggy gives the credential to Victor

Peggy proves a statement on values x.
X, qe = 28 AND x_,,,, = H{Cambridge]

age city
Merely DL rep. proves she knows x.

Linear relations of attributes (1)

Remember:
Attributesx,, i =1,...,4
Credential h =g,*=g.* 9,9, Sigccper(h)

Example relation of attributes:
(X, + 2X, — 10X, =13) AND (X, — 4X, = 5)
Implies: (x, = 2x,+3) AND (X, = 4X,+5)
Substituteinto h

h=g,25*3g,#%"5 9, g,%=(g,39,°)(9,°9,9,)¢ g, *
Implies: h/(g,2g.%) = (9,29,49,)% g, %

Linear relations of attributes (2)

Example (continued)
(X, + 2%, — 10X, = 13) AND (x, — 4Xy = 5)
Implies: h/(g,39,°) = (9,°9,%9,)+ g,
How do we prove that in ZK?

DL representation proof!
h"=h/(9,39,%)
91 =9:°9,%7; 9, =9,
Prove that you know x, and x,
suchthat h’=(g,")s (g,)

DL rep. — credential show example

Public: g, p Knows:
Knows: X, Xy X3 X, h=geg X2 g3x3g4x4
&
3 random: w,, w, :%6?’
ny ny / [N
P->V: g1 192 2=4d (witness)
Peggy Victor
(Prover) V->P: c (challenge) (Verifier)
r,= CX3+W1 P->V: rur, (response)
r2 = CX4+W2
Check:

(9,)* (g,)= =(h")‘a

Check (g,")* (g,) = (h’)ca

Reminder
h=9,%9," 9,39,
h'=h/ (9.39,°) g, = 91292493 g, = 9,
a=g,"g,"" r =cx;+w, r,=CX, +W,
Check:

(9,)(g,)==(h")a =>
(9,)5¥9) (g,)exe) = (h [(939,997 ™ g™ =>
(912X3+3924X3+5 g3x3g4x4) =h

Vo

X X

1 2

A few notes

Showing any relation implies knowing all
attributes.
Can make non-interactive (message m)
c = H[h, m, a']
Other proofs:

(OR) connector (simple concept)
(X...=18 AND x =H[Cambridge])OR(xage=15)

age city

(NOT) connector

Inequality (x,,.> 18) (Yao's millionaire protocol)

age

Summary of key concepts (1)

Standard tools

Schnorr—ZK proof of knowledge of discrete log.

DL rep. — ZK proof of knowledge of
representation.

Credential showing
representation + certificate

ZK proof of linear relations on attributes (AND)
More reading: (OR), (NOT), Inequality

Issuing credentials

1.
Issuing protocol: @
Prover CannOt Iearn

gets a certified anything

credential.

Issuer

Prover Verifier

Credential

h=g,¢g,* ... g/
Siglssuer(h)

Issuing security

Prover cannot falsify a credential

Unlinkability

Issuer cannot link a showing transcript to an
instance of issuing

h, Sigi.....(h) have to be unlinkable to issuing

Achieving unlinkability
Issuer’s view: h = g *1g_*>...g/
Prover uses: h' = g %*g,%>...gXg

Issuing protocol — gory detalils

Knows: X, X, ... X

Private: x_, (Y, ..., ¥))
Public: h_ =g*, g =g"

Rand: w, |->P:
E P->|
|ssuer

ro = Co(xo + Zi XiYi) +Wo

Credential: h' = g>] g*

Knows: X, X, X

P\

gWo = d, (witness) ;
rover

Rand: a,a, a,

hl — h_ga1

c’.=H[h', g®2(h h)%a_]
o (challenge) Co=C,yta,

I (response)
Check: g™ = (h, h)%a,
r’0 = rO + a2 + C’Oal

Signature: (¢’ , r',)
Check: c’, = H[h’, g"°(h,h")<"]

Issuing protocol — Issuer side

Knows: X, X, ... X

Public: g, p

Private: x,, (y, ---, V)

Public: h_ =g*, g =g"

Rand: w, I->P: g"e=a, (witness)
@ P->|- C, (challenge)
Issuer

Fo = Co(Xo + 25 XiYi) +W, |->P-: ro (response)

ZK knowledge proof of the

representation of h_h = g*J] g = g *2 xiyi) : just Schnorr!

Issuing protocol — Prover side (1)

Public:

gl pl ho= gxol gi = gyi

|->P: gW°=ao (witness)

P->|:

->P:

r

(challenge)

(response)

Rand: a

Check: g = (h h)<a,

Schnorr
Verification:

Issuer
knows the

representation
of (h h)!

Issuing protocol — Prover side (2)

Public: g, P, ho = 9X°/ g;= gYi Knows: Xy Xz, oy X
Y

|->P: gW°= d, (witness)
Prover

Rand: a,a,a
= hoge 3 1) Set ¢,

P'>I: (Challenge) CIO - Ijl[hl’ gaz(hoh)agao]
Co=C'y+a,
2) Get r_ such
-SP- that...
->P: (response) Check: g = (h_h)<a,

Unlinkable r'y=ro+a,+c,a,

Credential: h' = g™ [] g;* Signatur My Goal

Check: ¢’ =HfiT;g (h h’)]

Issuing protocol — Prover side (3)

Public: g,p,h,=g% g,=9" Knows: x, X, X

» Y

|->P: gW°=ao (witness)

Prover
Rand: a3, 3,
h' — h.gal
P->I: ¢ (challenge) Co= I:”hl' g*(h,h)>a,]
0 Co=Co+a,
|->P: I'o (response) Check: g™ = (h h)“a,

| A I
re=r,+a,+C.,a,;

Credential: h' = g* [g~ Signature: (c’,, r',)
Check: ¢’ = H[h’, g"°(h h")“°]

Goal:
c'o=HIh', g*(h,h)®=a] = HK, gre(h,h') <]
So g®(h,h)%a, = g"(h h’)¢>- must be true

Lets follow:
g"(h h’)-= g*(h,h)®a, <
g(ro +a2+C'od1) (hoh)'(C°+a3)g'C°al — gaz(hoh)a3ao S

(gre(hoh) <) (@2hgt)™) = (g2Lhsh)™) a, <

Substitute r',and ¢’

TRUE

Unlinkability

|lssuersees:c_, r., h

ol "ol

Such that g™ = (h h)“a,
Verifier sees: ., ', h'
Relation:

Random: a,, a,, a,

h’ - h.ga1
Co=Co+a,

I I
ro_ro+az+coa1

Even if they collude they cannot link the
credential issuing and showing

Notes on issuer

Authentication between Issuer and Peggy

Need to check that Peggy has the attributes
requested

Issuing protocol should not be run in parallel!
(simple modifications are required)

Full credential protocol

Putting it all together:
Issuer and Peggy run the issuing protocol.

Peggy gets:
Credential: h' = g*][g Signature: (c',, r',)
Check: c’, = H[N’, g"o(h h’)<"]
Peggy and Victor run the showing protocol
Victor checks the validity of the credential first

Peggy shows some relation on the attributes
(Using DL-rep proof on h’)

Key concepts so far (2)

Credential issuing
Proof of knowledge of DL-rep & x, of issuer
Peggy assists & blinds proof to avoid linking

Further topics
Transferability of credential
Double spending

Key applications

Attribute based access control
Federated identity management

Electronic cash
(double spending)

Privacy friendly e-identity
|d-cards & e-passports

Multi-show credentials!

References

Core:

Claus P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4:161—174, 1991.

Stefan Brands. Rethinking public key infrastructures and
digital certificates — building in privacy. MIT Press.

More:

Jan Camenisch and Markus Stadler. Proof systems for general
statements about discrete logarithms. Technical report TR
260, Institute for Theoretical Computer Science, ETH, Zurich,
March 1997.

Jan Camenisch and Anna Lysianskaya. A signature scheme
with efficient proofs. (CL signatures)

OR proofs

Peggy wants to prove (A OR B)
Say Ais true and B is false

Simple modification of Schnorr
Peggy sends witness
Victor sends commitment c

Peggy uses simulator for producing a response ry for B
(That sets a particular ¢p)
Peggy chooses c, suchthatc=c, + ¢y

Then she produces the response r, for A

Key concept: simulators are useful, not just proof
tools!

Strong(er) showing privacy

Designated verifier proof
A OR knowledge of verifier’'s key
Simulate the second part

Third parties do nor know if A is true or the
statement has been built by the designated
verifier!

Non-interactive proof not transferable!

