
George Danezis
Microsoft Research, Cambridge, UK 



 Theme: protecting identity on the Internet
 4 lectures (4 x 1.5h = 6h)
 Authentication

▪ Authentication (4th Dec, part I)

▪ Simple anonymous credentials (4th Dec, part II)

 Anonymous communications & traffic analysis
▪ High latency (6th Dec, part I)

▪ Low latency (6th Dec, part II)

 Practical deployment and relation with 
computer security



Forward secrecy, privacy, Denial of Service protection, weak passwords...



 Authentication protocols
 Check the assertion a user makes about her identity
 Studied very early 

▪ (e.g. Needham-Schroeder 1978 – already sophisticated)

 Large volume of literature & Formal analysis
▪ (Formal / Dolev-Yao model)

 Why such fuss?
 Key role in computer security
 Access control matrix:

▪ Describe what operations subjects can perform on objects.

 Identify subject to make decision!



 Old days – UNIX, mainframes, ...
 Authentication: first interaction with system.

 Known users interact with few known systems.

 Username and password requested and 
transmitted in clear – user authentication.
▪ Context dedicated lines linking terminals to mainframe!

▪ If you were in the terminal room you were already ok.

▪ Physical security important and strong.

 Shared keys used for network authentication between 
mainframes
▪ Too few for key management to be an issue



 Today – Internet
 Substantial  public space requires no authentication 

▪ DoS, Phishing, ...

 Business with strangers
▪ No pre-existing shared keys

▪ Public key cryptography needed!

 Anyone can talk to a network host
 Authentication is last!

 Transmitted over the insecure network.

 Adversaries lurking everywhere!
▪ Eavesdropping, Phishing, Denial of Service, credential stealing, ...



 Study two protocols used for authentication

 Just Fast Keying (JFK)
▪ (W. Aiello, S. Bellovin, M. Blaze, R. Canetti, 

J. Ioannidis, A. Keromytis, O. Reingold – 2003)

 Core security: public key based key exchange
 Nice features: Denial of Service prevention, privacy, forward secrecy.
 Roadmap: Diffie-Hellman exchange, JFK, properties

 Password-Authenticated Key exchange (PAK)
▪ (Boyko, MacKenzie, Patel – 2000)

 Password based key exchange
 Secure against guessing attacks
 Roadmap: standard password authentication, PAK, (server 

strengthening)



 Discrete logarithm 
and related cryptographic problems

 Diffie-Hellman key exchange

 ISO 9798-3 Authentication protocol



 Assume p a large prime 
 (>1024 bits—2048 bits)
 Detail: p = qr+1 where q also large prime
 Denote the field of integers modulo p as Zp

 Example with p=5
 Addition works fine: 1+2 = 3, 3+3 = 1, ...
 Multiplication too: 2*2 = 4, 2*3 = 1, ...
 Exponentiation is as expected: 22 = 4

 Choose g in the multiplicative group of Zp

 Such that g is a generator 
 Example: g=2
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 Exponentiation is computationally easy:
 Given g and x, easy to compute gx

 But logarithm is computationally hard:
 Given g and gx, difficult to find x = logg gx

 If p is large it is practically impossible

 Related DH problem
 Given (g, gx, gy) difficult to find gxy

 Stronger assumption than DL problem



 Alice (A) and Bob (B) do not share any keys

 They want to chat securely

 Confidentiality (encryption), 

 Integrity (message authentication),

 Both need a shared key!

 Diffie-Hellman protocol (1976)

 Key exchange protocol

 Two parties end up sharing a private key.

 Not authentication yet!



Public: g, p

Alice Bob

)(mod:BA pg
x



)(mod:AB pg
y



Private: 
y

Private: 
x

Derive: (gy)x = K = (gx)y

K = gxy is the shared key!



 Secure against passive adversaries

▪ Just looking at messages in the network

▪ From g, gx, gy cannot learn anything about x, y or gxy

▪ Slight problem: K is always the same – not fresh!

 Insecure against active adversaries 

▪ Adversary can delete, insert, modify messages

▪ Man-in-the-middle attack



Public: g, p

Alice Bob

Private: 
y

Private: 
x

Mallory

gx

gm

gm

gy

K = gxm K’ = gymKnows 
K and K’



 How to secure DH against MITM?

 Alice and Bob know the fingerprint of each other’s 
keys

▪ Telephone directory with hashes of public keys?
(Original proposal)

 PKI: Public Key Infrastructure

▪ Trusted party that distributes signed certificates linking 
names (Alice or Bob, or URLs) to public keys.

 Authenticated key-exchange



 ISO: International Standards Organization
 (ISO 216 defines the A4 paper size)

 Improves on the Diffie-Hellman exchange:
 Freshness of keys

▪ Both parties contribute fresh random numbers to be 
used as part of key derivation.

 MITM protection using long term signature keys
▪ Verification keys for the signatures of Alice and Bob are 

know to each other.

▪ (Probably though some PKI)



 SignA[M] – Signature of M with A’s key
(There is a certificate linking A and her key)

 H[M] – Hash function

 HK[M] – Keyed hash function

 {M}K – Symmetric Encrypt & MAC



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

Random 
NB

Random 
NA



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b in Zp

Private: 
a in Zp

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

K will always be different,
Even if ga, gb are reused.



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

Adversary cannot forge 
these to do MITM.



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

What happens if we do not 
sign the identities?



 Forward secrecy – GOOD
 If ga and gb are ephemeral (deleted after the exchange).

 Revealing the long term signature keys does not 
compromise K!

 Alice and Bob are certain of each other’s identities –
GOOD
 So is any passive eavesdropper

 Privacy concern – BAD

 Alice maintains state before knowing Bob.
 Denial of Service: resource depletion (memory) – BAD



Public: 
g, p, VerA, VerB

Alice

Random:
NB, R

Private: 
a

M -> A: NB, B, R 

A -> M: NA, NB, A, ga, SignA[NA,NB,ga,R,B]

DoS 1: 
Remember:
NA, NB, B, R

Wait? Mallory

DoS 2: 
One signature 

per reply.



 Authenticated key-exchange

 All properties of ISO 9798-3

 New properties

 Denial of Service protection

 Privacy

▪ Initiator’s identity is not revealed to third parties.

▪ (Responder’s identity is revealed.)

 Detailed look at JFKi

 JFKr – privacy for responder



Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

Private: 
b

Private: a,
HKA

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:       Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]



Private: 
b

Private: a,
HKA

Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kae

Derive:      Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kae

Random:
N’B = H[NB]



Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:   Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]

Private: 
b

Private: a ,
HKA



Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:   Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]

2) Encryption prevents 
eavesdropper from 

learning IDB

1) Bob can already 
authenticate Alice

Private: 
b

Private: a,
HKA



Private: 
b

Private: a,
HKA

Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:   Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]

1) Tell ahead 
of time

2) Cookie: Alice uses 
Bob as secure 

remote storage!

Cheap!



USUAL

 Key exchange (DH)

 Authentication of key 
exchange
 Freshness

 Signatures & certificates (PKI)

HOT

 Forward secrecy
 Ephemeral keys

 Privacy
 Authenticate before telling

 Protect against passive 
adversaries

 Denial of service 
prevention
 Cookies



 PKI, certificates, shared cryptographic keys
 Not very usable

 Need bootstrapping
 Web authentication
 Password based

 Small device pairing – using 4-digit PINs
 Smart phones

 Bluetooth

 User interface constraints



 Most web services
 Eavesdropper can get PassB (SSL?)
 Alice does not store passwords in clear

 Alice DB: B, SB, H(PassB, SB, B) – SB called `salt’

 Can still check passwords

Alice
(Server)

Bob
(Client)

B->A: B, PassB



 HTTP digest authentication
 Problem 1: No server authentication
 Problem 2: Off-line guessing attacks
 Entropy of PIN or passwords small

 Try all words in dictionary until you get H(NA, NB, PassB)
 Server compromise is bad – no hashing/salting

Alice
(Server)

Bob
(Client)

B->A: B, NB, NA, H(NA, NB, PassB)

A -> B: NA



 Alice and Bob share a weak secret 

 a short PIN (4-digits)

 Password (dictionary word)

 Low entropy

 Mutual authentication
 Derive a cryptographically strong key

 Encryption / message authentication

 No off-line guessing attacks
 (Security against server compromise)



Public: 
g, p

Alice Bob

Private:
Password: π

Random b

Private:
Password: π 

Random a

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k

Check k Check k’

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

A->B: H2b[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k’

gab



A->B: H2b[A,B,m,gb,  gab, π] = k’

Public: 
g, p

Bob

Private:
Password: π

Random b

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, gab, π] = k

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

Alice

Private:
Password: π 

Random a



A->B: H2b[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k’

Public: 
g, p

Bob

Private:
Password: π

Random b

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

Alice

Private:
Password: π 

Random a

The ability to blind and un-blind proves knowledge of the password π.



A->B: H2b[A,B,m,gb, gab, π] = k’

Public: 
g, p

Bob

Private:
Password: π

Random b

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, gab, π] = k

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

Alice

Private:
Password: π 

Random a



Public: 
g, p

Bob

Private:
Password: π

Random b

M->B: gx∙(H1[A,B, πx]) = m

B->M: gb, H2a[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k

Check if
k = H2a[A,B,m,gb, (m/ (H1[A,B, πx]) )b, πx]

(if π = πx)

?

Private:
Random x

Random πx

Mallory

Security precaution: limit the number of attempts!



 Denial of Service

 Adversary can lock users out!

 Require to give up after few attempts.

 Implicit names

 Alice and Bob expect to talk to each other

 Otherwise ... Privacy concerns

 Public key operation – more expensive than 
hashing.

 PAK-X: server compromise-resistant.



 A weak password can bootstrap a strong one
 Force adversary to go active
 PAK-X modification to allow salting (home work)

 Key problems
 Denial of service

 Applicability
 Pairing devices
 Shy adversaries 
 Not www, login, ...



 Expect a lot from your authentication
 Key derivation (not just identification)

 Forward secrecy

 Denial of service prevention

 Privacy
 More properties
 Federation, thin client, ...

 Do not design your own protocol unless you 
understand all those in the literature!



 Core:
 William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, 

Angelos D. Keromytis, Omer Reingold: Just fast keying: Key agreement in a 
hostile internet. ACM Trans. Inf. Syst. Secur. 7(2): 242-273 (2004)

 Victor Boyko, Philip D. MacKenzie, Sarvar Patel: Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. EUROCRYPT 2000: 156-
171

 More:
 Martín Abadi, Bruno Blanchet, Cédric Fournet: Just fast keying in the pi 

calculus. ACM Trans. Inf. Syst. Secur. 10(3): (2007)

 Colin Boyd, Anish Mathuria: Protocols for Authentication and Key 
Establishment. 2003, XVI, 321 p., Hardcover. ISBN: 978-3-540-43107-7. 
Springer.



Proving certified attributes without leaking identities



 Identity as a proxy to check credentials

 Username decides access in Access Control Matrix

 Sometime it leaks too much information

 Real world examples

 Tickets allow you to use cinema / train

 Bars require customers to be older than 18

▪ But do you want the barman to know your address?



 Usual way:
 Identity provider certifies attributes of a subject.

 Identity consumer checks those attributes

 Match credential with live person (biometric)

 Examples:
 E-passport: signed attributes, with lightweight access 

control. 
▪ Attributes: nationality, names, number, pictures, ...

 Identity Cards: signatures over attributes
▪ Attributes: names, date of birth, picture, address, ...



 The players:
 Issuer (I) = Identity provider
 Prover (P) = subject
 Verifier (V) = identity consumer

 Properties:
 The prover convinces the verifier that he holds a credential 

with attributes that satisfy some boolean formula:
▪ Simple example “age=18 AND city=Cambridge”

 Prover cannot lie
 Verifier cannot infer anything else aside the formula
 Anonymity maintained despite collusion of V & I



Issuer

Prover Verifier

1.
Issuing protocol: 

Prover
gets a certified 

credential.

2.
Showing Protocol:

Prover makes assertions 
about some attributes

Passport 
Issuing 

Authority

Peggy Victor
(Bar staff

Checking age)
age=25

Name=Peggy, 
age=25, 
address=Cambridge,
Status=single

Cannot learn 
anything 

beyond age



 Single-show credential (Brands & Chaum)
 Blind the issuing protocol
 Show the credential in clear
 Multiple shows are linkable – BAD
 Protocols are simpler – GOOD

 Multi-show (Camenisch & Lysyanskaya)
 Random oracle free signatures for issuing (CL)
 Blinded showing

▪ Prover shows that they know a signature over a particular 
ciphertext.

 Cannot link multiple shows of the credential
 More complex – no implementations

We will 
Focus on 
these



 Cryptographic preliminaries
 The discrete logarithm problem

 Schnorr’s Identification protocol
▪ Unforgeability, simulator, Fiat-Shamir Heuristic

▪ Generalization to representation

 Showing protocol
 Linear relations of attributes

 AND-connective
 Issuing protocol
 Blinded issuing



 Assume p a large prime 
 (>1024 bits—2048 bits)
 Detail: p = qr+1 where q also large prime
 Denote the field of integers modulo p as Zp

 Example with p=5
 Addition works fine: 1+2 = 3, 3+3 = 1, ...
 Multiplication too: 2*2 = 4, 2*3 = 1, ...
 Exponentiation is as expected: 22 = 4

 Choose g in the multiplicative group of Zp

 Such that g is a generator 
 Example: g=2

0
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 Exponentiation is computationally easy:
 Given g and x, easy to compute gx

 But logarithm is computationally hard:
 Given g and gx, difficult to find x = logg gx

 If p is large it is practically impossible

 Related DH problem
 Given (g, gx, gy) difficult to find gxy

 Stronger assumption than DL problem



 Efficient to find inverses
 Given c easy to calculate g-c mod p

▪ (p-1) – c  mod p-1

 Efficient to find roots
 Given c easy to find g1/c mod p

▪ c (1/c) = 1 mod (p-1)

 Note the case N=pq (RSA security)

 No need to be scared of this field.



 Exemplary of the zero-knowledge protocols credentials 
are based on.

 Players
 Public – g a generator of Zp

 Prover – knows x (secret key)
 Verifier – knows y = gx (public key)

 Aim: the prover convinces the verifier that she knows an x 
such that gx = y
 Zero-knowledge – verifier does not learn x!

 Why identification?
 Given a certificate containing y



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x Knows: y=gx

P->V: gw = a (witness)

V->P: c (challenge)

P->V: cx+w = r (response)

Check: 
gr = yc a

g cx+w = (gx)cgw

Random: w



 Assume that Peggy (Prover) does not know x?

 If, for the same witness, Peggy forges two valid 
responses to two of Victor’s challenges

r1 = c1 x + w

r2 = c2 x + w

 Then Peggy must know x

▪ 2 equations, 2 unknowns (x,w) – can find x 



 The verifier learns nothing new about x.
 How do we go about proving this?

 Verifier can simulate protocol executions

▪ On his own!

▪ Without any help from Peggy (Prover)

 This means that the transcript gives no 
information about x

 How does Victor simulate a transcript?

 (Witness, challenge, response)



 Need to fake a transcript (gw’, c’, r’)
 Simulator:
 Trick: do not follow the protocol order!

 First pick the challenge c’

 Then pick a random response r’
▪ Then note that the response must satisfy:

gr’ = (gx)c’ gw’ -> gw’ = gr’ / (gx)c’

 Solve for gw’

 Proof technique for ZK 
 but also important in constructions (OR)



 Schnorr’s protocol
 Requires interaction between Peggy and Victor
 Victor cannot transfer proof to convince Charlie

▪ (In fact we saw he can completely fake a transcript)

 Fiat-Shamir Heuristic
 H[∙] is a cryptographic hash function
 Peggy sets c = H[gw]
 Note that the simulator cannot work any more

▪ gw has to be set first to derive c

 Signature scheme
 Peggy sets c = H[gw, M]



 Traditional Schnorr

 For fixed g, p and public key h = gx

 Peggy proves she knows x such that h = gx

 General problem

 Fix prime p, generators g1, ..., gl

 Public key h’=g1
x1g2

x2 ... gl
xl

 Peggy proves she knows x1, ..., xl such that 
h’=g1

x1g2
x2 ... gl

xl



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, ..., xl 

Knows: 
h = g1

X1g2
X2 ... gl

Xl

P->V: ∏0<i<l g
wi = a (witness)

V->P: c (challenge)

P->V: r1, ..., rl (response)

Check: 

(∏0<i<l gi
ri) = hca

l random: wi

ri = cxi+wi

Let’s convince ourselves: (∏0<i<l gi
ri) = (∏0<i<l gi

xi)c(∏0<i<l gwi) = hc a



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, ..., xl 

Knows: 
h = g1

X1g2
X2 ... gl

Xl

P->V: ∏0<i<l g
wi = a (witness)

V->P: c (challenge)

P->V: r1, ..., rl (response)

Check: 

(∏0<i<l gi
ri) = hca

l random: wi

ri = cxi+wi

Lets convince ourselves: (∏0<i<l gi
ri)= (∏0<i<l gi

xi)c(∏0<i<l gwi) = hc a



 Relation to DL representation

 Credential representation:
 Attributes xi

 Credential h =g1
X1g2

X2 ... gl
Xl, SigIssuer(h)

 Credential showing protocol
 Peggy gives the credential to Victor
 Peggy proves a statement on values xi

▪ Xage = 28 AND xcity = H[Cambridge]

 Merely DL rep. proves she knows xi



 Remember:
 Attributes xi , i = 1,...,4

 Credential h =g1
x1g2

x2 g3
x3 g4

x4, SigIssuer(h)

 Example relation of attributes:
 (x1 + 2x2 – 10x3 = 13) AND (x2 – 4x3 = 5)

 Implies: (x1 = 2x3+3) AND (x2 = 4x3+5)

 Substitute into h
▪ h = g1

2x3+3 g2
4x3+5 g3

x3 g4
x4= (g1

3g2
5)(g1

2g2
4g3)x3 g4

x4

▪ Implies: h / (g1
3g2

5) = (g1
2g2

4g3)x3 g4
x4



 Example (continued)

 (x1 + 2x2 – 10x3 = 13) AND (x2 – 4x3 = 5)

 Implies: h / (g1
3g2

5) = (g1
2g2

4g3)x3 g4
x4

 How do we prove that in ZK?

 DL representation proof!

▪ h’ = h / (g1
3g2

5)

▪ g1’ = g1
2g2

4g3 g2’ = g4

 Prove that you know x3 and x4

such that h’ = (g1’)x3 (g2’)x4



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, x2, x3, x4

Knows: 
h = g1

X1g2
X2 g3

X3g4
X4

P->V: g1’w1 g2’w2  = a’ (witness)

V->P: c (challenge)

P->V: r1, r2 (response)

Check: 

(g1’)r1 (g2’)r2 = (h’)ca

random: w1, w2

r1 = cx3+w1

r2 = cx4+w2



 Reminder
▪ h = g1

X1g2
X2 g3

X3g4
X4

▪ h’ = h / (g1
3g2

5) g1’ = g1
2g2

4g3 g2’ = g4

▪ a = g1’w1 g2’w2  r1 = cx3+w1 r2 = cx4+w1

 Check:

 (g1’)r1 (g2’)r2 = (h’)ca =>  
(g1’)(cx3+w1) (g2’)(cx4+w1) = (h / (g1

3g2
5))c g1’w1 g2’w2 =>

(g1
2x3+3g2

4x3+5 g3
x3g4

x4) = h 

x1 x2



 Showing any relation implies knowing all 
attributes.

 Can make non-interactive (message m)

 c = H[h, m, a’]

 Other proofs:

 (OR) connector (simple concept)

▪ (xage=18 AND xcity=H[Cambridge]) OR (xage=15)

 (NOT) connector

 Inequality (xage > 18) (Yao’s millionaire protocol)



 Standard tools

 Schnorr – ZK proof of knowledge of discrete log.

 DL rep. – ZK proof of knowledge of 
representation.

 Credential showing

 representation + certificate

 ZK proof of linear relations on attributes (AND)

 More reading: (OR), (NOT), Inequality



Issuer

Prover Verifier

1.
Issuing protocol: 

Prover
gets a certified 

credential.

2.
Showing Protocol:

Prover makes assertions 
about some attributes

Cannot learn 
anything

Credential 
h =g1

X1g2
X2 ... gl

Xl

SigIssuer(h)



 Prover cannot falsify a credential

 Unlinkability
 Issuer cannot link a showing transcript to an 

instance of issuing

 h, Sigissuer(h) have to be unlinkable to issuing

 Achieving unlinkability
 Issuer’s view: h = g1

X1g2
X2 ...gl

Xl

 Prover uses: h’ = g1
X1g2

X2 ...gl
Xlg0

a1



Public: g, p
Knows: x1, x2, ..., xl Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Rand: w0

Issuer

Prover

Private: x0, (y1, ..., yl)
Public: h0 = gx0, gi = gyi

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

r0 = c0(x0 + ∑i xiyi) +w0

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]



Public: g, p
Knows: x1, x2, ..., xl Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Rand: w0

Issuer

Prover

Private: x0, (y1, ..., yl)
Public: h0 = gx0, gi = gyi

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

r0 = c0(x0 + ∑i xiyi) +w0

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1
ZK knowledge proof of the 
representation of h0h = gx0∏ gi

xi

Non interactive signature: c0 = H[h, a0]

= g(x0 + ∑i xiyi) : just Schnorr ! 



Public: g, p , h0 = gx0, gi = gyi
Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Prover

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]

Schnorr
Verification: 

Issuer 
knows the 

representation 
of (h0h)!



Public: g, p , h0 = gx0, gi = gyi
Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Prover

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]

My Goal

Unlinkable

1) Set c0

2) Get r0 such 
that...



Public: g, p , h0 = gx0, gi = gyi
Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Prover

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]

?



 Goal:

 c’0 = H[h’, ga2(h0h)a3a0] = H[h’, gr’0(h0h’)-c’0]

▪ So ga2(h0h)a3a0 = gr’0(h0h’)-c’0 must be true

 Lets follow:

▪ gr’0(h0h’)-c’0 = ga2(h0h)a3a0 

▪ g(r0 + a2 + c’0a1) (h0h)-(c0+a3)g-c0a1 = ga2(h0h)a3 a0

▪ (gr0(h0h)-c0) (ga
2(h0h)a

3 ) = (ga
2(h0h)a

3 ) a0

Substitute r’0 and c’0

TRUE



 Issuer sees: co, r0, h
 Such that gro = (h0h)c0a0

 Verifier sees: c’0, r’0, h’

 Relation:
 Random: a1, a2, a3

▪ h’ = h∙ga1

▪ c0 = c’0 + a3

▪ r’0 = r0 + a2 + c’0a1

 Even if they collude they cannot link the 
credential issuing and showing



 Authentication between Issuer and Peggy

 Need to check that Peggy has the attributes 
requested

 Issuing protocol should not be run in parallel!

 (simple modifications are required)



 Putting it all together:

 Issuer and Peggy run the issuing protocol.

▪ Peggy gets: 

 Peggy and Victor run the showing protocol

▪ Victor checks the validity of the credential first

▪ Peggy shows some relation on the attributes
▪ (Using DL-rep proof on h’)

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]



 Credential issuing

 Proof of knowledge of DL-rep & x0 of issuer

 Peggy assists & blinds proof to avoid linking

 Further topics

 Transferability of credential

 Double spending



 Attribute based access control

 Federated identity management

 Electronic cash
 (double spending)

 Privacy friendly e-identity
 Id-cards & e-passports

 Multi-show credentials!



 Core:
 Claus P. Schnorr. Efficient signature generation by smart 

cards. Journal of Cryptology, 4:161—174, 1991.

 Stefan Brands. Rethinking public key infrastructures and 
digital certificates – building in privacy. MIT Press.

 More:
 Jan Camenisch and Markus Stadler. Proof systems for general 

statements about discrete logarithms. Technical report TR 
260, Institute for Theoretical Computer Science, ETH, Zurich, 
March 1997.

 Jan Camenisch and Anna Lysianskaya. A signature scheme 
with efficient proofs. (CL signatures)



 Peggy wants to prove (A OR B)
 Say A is true and B is false

 Simple modification of Schnorr
 Peggy sends witness
 Victor sends commitment c
 Peggy uses simulator for producing a response rB for B

▪ (That sets a particular cB)
▪ Peggy chooses cA such that c = cA + cB

 Then she produces the response rA for A

 Key concept: simulators are useful, not just proof 
tools!



 Designated verifier proof

 A OR knowledge of verifier’s key

 Simulate the second part

 Third parties do nor know if A is true or the 
statement has been built by the designated 
verifier!

 Non-interactive proof not transferable!


