
George Danezis
Microsoft Research, Cambridge, UK 



 Theme: protecting identity on the Internet
 4 lectures (4 x 1.5h = 6h)
 Authentication

▪ Authentication (4th Dec, part I)

▪ Simple anonymous credentials (4th Dec, part II)

 Anonymous communications & traffic analysis
▪ High latency (6th Dec, part I)

▪ Low latency (6th Dec, part II)

 Practical deployment and relation with 
computer security



Forward secrecy, privacy, Denial of Service protection, weak passwords...



 Authentication protocols
 Check the assertion a user makes about her identity
 Studied very early 

▪ (e.g. Needham-Schroeder 1978 – already sophisticated)

 Large volume of literature & Formal analysis
▪ (Formal / Dolev-Yao model)

 Why such fuss?
 Key role in computer security
 Access control matrix:

▪ Describe what operations subjects can perform on objects.

 Identify subject to make decision!



 Old days – UNIX, mainframes, ...
 Authentication: first interaction with system.

 Known users interact with few known systems.

 Username and password requested and 
transmitted in clear – user authentication.
▪ Context dedicated lines linking terminals to mainframe!

▪ If you were in the terminal room you were already ok.

▪ Physical security important and strong.

 Shared keys used for network authentication between 
mainframes
▪ Too few for key management to be an issue



 Today – Internet
 Substantial  public space requires no authentication 

▪ DoS, Phishing, ...

 Business with strangers
▪ No pre-existing shared keys

▪ Public key cryptography needed!

 Anyone can talk to a network host
 Authentication is last!

 Transmitted over the insecure network.

 Adversaries lurking everywhere!
▪ Eavesdropping, Phishing, Denial of Service, credential stealing, ...



 Study two protocols used for authentication

 Just Fast Keying (JFK)
▪ (W. Aiello, S. Bellovin, M. Blaze, R. Canetti, 

J. Ioannidis, A. Keromytis, O. Reingold – 2003)

 Core security: public key based key exchange
 Nice features: Denial of Service prevention, privacy, forward secrecy.
 Roadmap: Diffie-Hellman exchange, JFK, properties

 Password-Authenticated Key exchange (PAK)
▪ (Boyko, MacKenzie, Patel – 2000)

 Password based key exchange
 Secure against guessing attacks
 Roadmap: standard password authentication, PAK, (server 

strengthening)



 Discrete logarithm 
and related cryptographic problems

 Diffie-Hellman key exchange

 ISO 9798-3 Authentication protocol



 Assume p a large prime 
 (>1024 bits—2048 bits)
 Detail: p = qr+1 where q also large prime
 Denote the field of integers modulo p as Zp

 Example with p=5
 Addition works fine: 1+2 = 3, 3+3 = 1, ...
 Multiplication too: 2*2 = 4, 2*3 = 1, ...
 Exponentiation is as expected: 22 = 4

 Choose g in the multiplicative group of Zp

 Such that g is a generator 
 Example: g=2
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 Exponentiation is computationally easy:
 Given g and x, easy to compute gx

 But logarithm is computationally hard:
 Given g and gx, difficult to find x = logg gx

 If p is large it is practically impossible

 Related DH problem
 Given (g, gx, gy) difficult to find gxy

 Stronger assumption than DL problem



 Alice (A) and Bob (B) do not share any keys

 They want to chat securely

 Confidentiality (encryption), 

 Integrity (message authentication),

 Both need a shared key!

 Diffie-Hellman protocol (1976)

 Key exchange protocol

 Two parties end up sharing a private key.

 Not authentication yet!



Public: g, p

Alice Bob

)(mod:BA pg
x



)(mod:AB pg
y



Private: 
y

Private: 
x

Derive: (gy)x = K = (gx)y

K = gxy is the shared key!



 Secure against passive adversaries

▪ Just looking at messages in the network

▪ From g, gx, gy cannot learn anything about x, y or gxy

▪ Slight problem: K is always the same – not fresh!

 Insecure against active adversaries 

▪ Adversary can delete, insert, modify messages

▪ Man-in-the-middle attack



Public: g, p

Alice Bob

Private: 
y

Private: 
x

Mallory

gx

gm

gm

gy

K = gxm K’ = gymKnows 
K and K’



 How to secure DH against MITM?

 Alice and Bob know the fingerprint of each other’s 
keys

▪ Telephone directory with hashes of public keys?
(Original proposal)

 PKI: Public Key Infrastructure

▪ Trusted party that distributes signed certificates linking 
names (Alice or Bob, or URLs) to public keys.

 Authenticated key-exchange



 ISO: International Standards Organization
 (ISO 216 defines the A4 paper size)

 Improves on the Diffie-Hellman exchange:
 Freshness of keys

▪ Both parties contribute fresh random numbers to be 
used as part of key derivation.

 MITM protection using long term signature keys
▪ Verification keys for the signatures of Alice and Bob are 

know to each other.

▪ (Probably though some PKI)



 SignA[M] – Signature of M with A’s key
(There is a certificate linking A and her key)

 H[M] – Hash function

 HK[M] – Keyed hash function

 {M}K – Symmetric Encrypt & MAC



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

Random 
NB

Random 
NA



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b in Zp

Private: 
a in Zp

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

K will always be different,
Even if ga, gb are reused.



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

Adversary cannot forge 
these to do MITM.



Public: 
g, p, VerA, VerB

Alice Bob

Private: 
b

Private: 
a

B -> A: NB, B, gb

A -> B: NA, NB, A, ga, SignA[NA,NB,ga,gb,B]

B -> A: NA , NB , SignB[NA,NB,ga,gb,A]

Derive: K = H(gab, NA, NB, A, B)

What happens if we do not 
sign the identities?



 Forward secrecy – GOOD
 If ga and gb are ephemeral (deleted after the exchange).

 Revealing the long term signature keys does not 
compromise K!

 Alice and Bob are certain of each other’s identities –
GOOD
 So is any passive eavesdropper

 Privacy concern – BAD

 Alice maintains state before knowing Bob.
 Denial of Service: resource depletion (memory) – BAD



Public: 
g, p, VerA, VerB

Alice

Random:
NB, R

Private: 
a

M -> A: NB, B, R 

A -> M: NA, NB, A, ga, SignA[NA,NB,ga,R,B]

DoS 1: 
Remember:
NA, NB, B, R

Wait? Mallory

DoS 2: 
One signature 

per reply.



 Authenticated key-exchange

 All properties of ISO 9798-3

 New properties

 Denial of Service protection

 Privacy

▪ Initiator’s identity is not revealed to third parties.

▪ (Responder’s identity is revealed.)

 Detailed look at JFKi

 JFKr – privacy for responder



Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

Private: 
b

Private: a,
HKA

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:       Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]



Private: 
b

Private: a,
HKA

Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kae

Derive:      Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kae

Random:
N’B = H[NB]



Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:   Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]

Private: 
b

Private: a ,
HKA



Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:   Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]

2) Encryption prevents 
eavesdropper from 

learning IDB

1) Bob can already 
authenticate Alice

Private: 
b

Private: a,
HKA



Private: 
b

Private: a,
HKA

Public: 
g, p, VerA, VerB

Alice
(Responder)

Bob
(Initiator)

B -> A: N’B , g
b, IDA’

A -> B: N’B ,NA, IDA, ga, SignA[ga], HHKA
[ga, NA ,N’B ,IPB]

B -> A: NB , NA , gb, ga, HHKA
[ga, NA ,N’B ,IPB]

{IDB, SignB[N’B , NA , gb , ga,IDA]}Kauth-enc

Derive:   Kauth-enc = H(gab, NA, N’B, “ab”)
K = H(gab, NA, N’B, “key”)

A->B: {SignA[N’B , NA , gb , ga, IDB]} Kauth-enc

Random:
N’B = H[NB]

1) Tell ahead 
of time

2) Cookie: Alice uses 
Bob as secure 

remote storage!

Cheap!



USUAL

 Key exchange (DH)

 Authentication of key 
exchange
 Freshness

 Signatures & certificates (PKI)

HOT

 Forward secrecy
 Ephemeral keys

 Privacy
 Authenticate before telling

 Protect against passive 
adversaries

 Denial of service 
prevention
 Cookies



 PKI, certificates, shared cryptographic keys
 Not very usable

 Need bootstrapping
 Web authentication
 Password based

 Small device pairing – using 4-digit PINs
 Smart phones

 Bluetooth

 User interface constraints



 Most web services
 Eavesdropper can get PassB (SSL?)
 Alice does not store passwords in clear

 Alice DB: B, SB, H(PassB, SB, B) – SB called `salt’

 Can still check passwords

Alice
(Server)

Bob
(Client)

B->A: B, PassB



 HTTP digest authentication
 Problem 1: No server authentication
 Problem 2: Off-line guessing attacks
 Entropy of PIN or passwords small

 Try all words in dictionary until you get H(NA, NB, PassB)
 Server compromise is bad – no hashing/salting

Alice
(Server)

Bob
(Client)

B->A: B, NB, NA, H(NA, NB, PassB)

A -> B: NA



 Alice and Bob share a weak secret 

 a short PIN (4-digits)

 Password (dictionary word)

 Low entropy

 Mutual authentication
 Derive a cryptographically strong key

 Encryption / message authentication

 No off-line guessing attacks
 (Security against server compromise)



Public: 
g, p

Alice Bob

Private:
Password: π

Random b

Private:
Password: π 

Random a

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k

Check k Check k’

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

A->B: H2b[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k’

gab



A->B: H2b[A,B,m,gb,  gab, π] = k’

Public: 
g, p

Bob

Private:
Password: π

Random b

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, gab, π] = k

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

Alice

Private:
Password: π 

Random a



A->B: H2b[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k’

Public: 
g, p

Bob

Private:
Password: π

Random b

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

Alice

Private:
Password: π 

Random a

The ability to blind and un-blind proves knowledge of the password π.



A->B: H2b[A,B,m,gb, gab, π] = k’

Public: 
g, p

Bob

Private:
Password: π

Random b

A->B: ga∙(H1[A,B, π]) = m

B->A: gb, H2a[A,B,m,gb, gab, π] = k

Derive: K = H3[A,B,m, gb, (m/ (H1[A,B, π]) )b, π]

Alice

Private:
Password: π 

Random a



Public: 
g, p

Bob

Private:
Password: π

Random b

M->B: gx∙(H1[A,B, πx]) = m

B->M: gb, H2a[A,B,m,gb, (m/ (H1[A,B, π]) )b, π] = k

Check if
k = H2a[A,B,m,gb, (m/ (H1[A,B, πx]) )b, πx]

(if π = πx)

?

Private:
Random x

Random πx

Mallory

Security precaution: limit the number of attempts!



 Denial of Service

 Adversary can lock users out!

 Require to give up after few attempts.

 Implicit names

 Alice and Bob expect to talk to each other

 Otherwise ... Privacy concerns

 Public key operation – more expensive than 
hashing.

 PAK-X: server compromise-resistant.



 A weak password can bootstrap a strong one
 Force adversary to go active
 PAK-X modification to allow salting (home work)

 Key problems
 Denial of service

 Applicability
 Pairing devices
 Shy adversaries 
 Not www, login, ...



 Expect a lot from your authentication
 Key derivation (not just identification)

 Forward secrecy

 Denial of service prevention

 Privacy
 More properties
 Federation, thin client, ...

 Do not design your own protocol unless you 
understand all those in the literature!



 Core:
 William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, 

Angelos D. Keromytis, Omer Reingold: Just fast keying: Key agreement in a 
hostile internet. ACM Trans. Inf. Syst. Secur. 7(2): 242-273 (2004)

 Victor Boyko, Philip D. MacKenzie, Sarvar Patel: Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman. EUROCRYPT 2000: 156-
171

 More:
 Martín Abadi, Bruno Blanchet, Cédric Fournet: Just fast keying in the pi 

calculus. ACM Trans. Inf. Syst. Secur. 10(3): (2007)

 Colin Boyd, Anish Mathuria: Protocols for Authentication and Key 
Establishment. 2003, XVI, 321 p., Hardcover. ISBN: 978-3-540-43107-7. 
Springer.



Proving certified attributes without leaking identities



 Identity as a proxy to check credentials

 Username decides access in Access Control Matrix

 Sometime it leaks too much information

 Real world examples

 Tickets allow you to use cinema / train

 Bars require customers to be older than 18

▪ But do you want the barman to know your address?



 Usual way:
 Identity provider certifies attributes of a subject.

 Identity consumer checks those attributes

 Match credential with live person (biometric)

 Examples:
 E-passport: signed attributes, with lightweight access 

control. 
▪ Attributes: nationality, names, number, pictures, ...

 Identity Cards: signatures over attributes
▪ Attributes: names, date of birth, picture, address, ...



 The players:
 Issuer (I) = Identity provider
 Prover (P) = subject
 Verifier (V) = identity consumer

 Properties:
 The prover convinces the verifier that he holds a credential 

with attributes that satisfy some boolean formula:
▪ Simple example “age=18 AND city=Cambridge”

 Prover cannot lie
 Verifier cannot infer anything else aside the formula
 Anonymity maintained despite collusion of V & I



Issuer

Prover Verifier

1.
Issuing protocol: 

Prover
gets a certified 

credential.

2.
Showing Protocol:

Prover makes assertions 
about some attributes

Passport 
Issuing 

Authority

Peggy Victor
(Bar staff

Checking age)
age=25

Name=Peggy, 
age=25, 
address=Cambridge,
Status=single

Cannot learn 
anything 

beyond age



 Single-show credential (Brands & Chaum)
 Blind the issuing protocol
 Show the credential in clear
 Multiple shows are linkable – BAD
 Protocols are simpler – GOOD

 Multi-show (Camenisch & Lysyanskaya)
 Random oracle free signatures for issuing (CL)
 Blinded showing

▪ Prover shows that they know a signature over a particular 
ciphertext.

 Cannot link multiple shows of the credential
 More complex – no implementations

We will 
Focus on 
these



 Cryptographic preliminaries
 The discrete logarithm problem

 Schnorr’s Identification protocol
▪ Unforgeability, simulator, Fiat-Shamir Heuristic

▪ Generalization to representation

 Showing protocol
 Linear relations of attributes

 AND-connective
 Issuing protocol
 Blinded issuing



 Assume p a large prime 
 (>1024 bits—2048 bits)
 Detail: p = qr+1 where q also large prime
 Denote the field of integers modulo p as Zp

 Example with p=5
 Addition works fine: 1+2 = 3, 3+3 = 1, ...
 Multiplication too: 2*2 = 4, 2*3 = 1, ...
 Exponentiation is as expected: 22 = 4

 Choose g in the multiplicative group of Zp

 Such that g is a generator 
 Example: g=2

0

1

23

4

2

4

3

1



 Exponentiation is computationally easy:
 Given g and x, easy to compute gx

 But logarithm is computationally hard:
 Given g and gx, difficult to find x = logg gx

 If p is large it is practically impossible

 Related DH problem
 Given (g, gx, gy) difficult to find gxy

 Stronger assumption than DL problem



 Efficient to find inverses
 Given c easy to calculate g-c mod p

▪ (p-1) – c  mod p-1

 Efficient to find roots
 Given c easy to find g1/c mod p

▪ c (1/c) = 1 mod (p-1)

 Note the case N=pq (RSA security)

 No need to be scared of this field.



 Exemplary of the zero-knowledge protocols credentials 
are based on.

 Players
 Public – g a generator of Zp

 Prover – knows x (secret key)
 Verifier – knows y = gx (public key)

 Aim: the prover convinces the verifier that she knows an x 
such that gx = y
 Zero-knowledge – verifier does not learn x!

 Why identification?
 Given a certificate containing y



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x Knows: y=gx

P->V: gw = a (witness)

V->P: c (challenge)

P->V: cx+w = r (response)

Check: 
gr = yc a

g cx+w = (gx)cgw

Random: w



 Assume that Peggy (Prover) does not know x?

 If, for the same witness, Peggy forges two valid 
responses to two of Victor’s challenges

r1 = c1 x + w

r2 = c2 x + w

 Then Peggy must know x

▪ 2 equations, 2 unknowns (x,w) – can find x 



 The verifier learns nothing new about x.
 How do we go about proving this?

 Verifier can simulate protocol executions

▪ On his own!

▪ Without any help from Peggy (Prover)

 This means that the transcript gives no 
information about x

 How does Victor simulate a transcript?

 (Witness, challenge, response)



 Need to fake a transcript (gw’, c’, r’)
 Simulator:
 Trick: do not follow the protocol order!

 First pick the challenge c’

 Then pick a random response r’
▪ Then note that the response must satisfy:

gr’ = (gx)c’ gw’ -> gw’ = gr’ / (gx)c’

 Solve for gw’

 Proof technique for ZK 
 but also important in constructions (OR)



 Schnorr’s protocol
 Requires interaction between Peggy and Victor
 Victor cannot transfer proof to convince Charlie

▪ (In fact we saw he can completely fake a transcript)

 Fiat-Shamir Heuristic
 H[∙] is a cryptographic hash function
 Peggy sets c = H[gw]
 Note that the simulator cannot work any more

▪ gw has to be set first to derive c

 Signature scheme
 Peggy sets c = H[gw, M]



 Traditional Schnorr

 For fixed g, p and public key h = gx

 Peggy proves she knows x such that h = gx

 General problem

 Fix prime p, generators g1, ..., gl

 Public key h’=g1
x1g2

x2 ... gl
xl

 Peggy proves she knows x1, ..., xl such that 
h’=g1

x1g2
x2 ... gl

xl



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, ..., xl 

Knows: 
h = g1

X1g2
X2 ... gl

Xl

P->V: ∏0<i<l g
wi = a (witness)

V->P: c (challenge)

P->V: r1, ..., rl (response)

Check: 

(∏0<i<l gi
ri) = hca

l random: wi

ri = cxi+wi

Let’s convince ourselves: (∏0<i<l gi
ri) = (∏0<i<l gi

xi)c(∏0<i<l gwi) = hc a



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, ..., xl 

Knows: 
h = g1

X1g2
X2 ... gl

Xl

P->V: ∏0<i<l g
wi = a (witness)

V->P: c (challenge)

P->V: r1, ..., rl (response)

Check: 

(∏0<i<l gi
ri) = hca

l random: wi

ri = cxi+wi

Lets convince ourselves: (∏0<i<l gi
ri)= (∏0<i<l gi

xi)c(∏0<i<l gwi) = hc a



 Relation to DL representation

 Credential representation:
 Attributes xi

 Credential h =g1
X1g2

X2 ... gl
Xl, SigIssuer(h)

 Credential showing protocol
 Peggy gives the credential to Victor
 Peggy proves a statement on values xi

▪ Xage = 28 AND xcity = H[Cambridge]

 Merely DL rep. proves she knows xi



 Remember:
 Attributes xi , i = 1,...,4

 Credential h =g1
x1g2

x2 g3
x3 g4

x4, SigIssuer(h)

 Example relation of attributes:
 (x1 + 2x2 – 10x3 = 13) AND (x2 – 4x3 = 5)

 Implies: (x1 = 2x3+3) AND (x2 = 4x3+5)

 Substitute into h
▪ h = g1

2x3+3 g2
4x3+5 g3

x3 g4
x4= (g1

3g2
5)(g1

2g2
4g3)x3 g4

x4

▪ Implies: h / (g1
3g2

5) = (g1
2g2

4g3)x3 g4
x4



 Example (continued)

 (x1 + 2x2 – 10x3 = 13) AND (x2 – 4x3 = 5)

 Implies: h / (g1
3g2

5) = (g1
2g2

4g3)x3 g4
x4

 How do we prove that in ZK?

 DL representation proof!

▪ h’ = h / (g1
3g2

5)

▪ g1’ = g1
2g2

4g3 g2’ = g4

 Prove that you know x3 and x4

such that h’ = (g1’)x3 (g2’)x4



Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, x2, x3, x4

Knows: 
h = g1

X1g2
X2 g3

X3g4
X4

P->V: g1’w1 g2’w2  = a’ (witness)

V->P: c (challenge)

P->V: r1, r2 (response)

Check: 

(g1’)r1 (g2’)r2 = (h’)ca

random: w1, w2

r1 = cx3+w1

r2 = cx4+w2



 Reminder
▪ h = g1

X1g2
X2 g3

X3g4
X4

▪ h’ = h / (g1
3g2

5) g1’ = g1
2g2

4g3 g2’ = g4

▪ a = g1’w1 g2’w2  r1 = cx3+w1 r2 = cx4+w1

 Check:

 (g1’)r1 (g2’)r2 = (h’)ca =>  
(g1’)(cx3+w1) (g2’)(cx4+w1) = (h / (g1

3g2
5))c g1’w1 g2’w2 =>

(g1
2x3+3g2

4x3+5 g3
x3g4

x4) = h 

x1 x2



 Showing any relation implies knowing all 
attributes.

 Can make non-interactive (message m)

 c = H[h, m, a’]

 Other proofs:

 (OR) connector (simple concept)

▪ (xage=18 AND xcity=H[Cambridge]) OR (xage=15)

 (NOT) connector

 Inequality (xage > 18) (Yao’s millionaire protocol)



 Standard tools

 Schnorr – ZK proof of knowledge of discrete log.

 DL rep. – ZK proof of knowledge of 
representation.

 Credential showing

 representation + certificate

 ZK proof of linear relations on attributes (AND)

 More reading: (OR), (NOT), Inequality



Issuer

Prover Verifier

1.
Issuing protocol: 

Prover
gets a certified 

credential.

2.
Showing Protocol:

Prover makes assertions 
about some attributes

Cannot learn 
anything

Credential 
h =g1

X1g2
X2 ... gl

Xl

SigIssuer(h)



 Prover cannot falsify a credential

 Unlinkability
 Issuer cannot link a showing transcript to an 

instance of issuing

 h, Sigissuer(h) have to be unlinkable to issuing

 Achieving unlinkability
 Issuer’s view: h = g1

X1g2
X2 ...gl

Xl

 Prover uses: h’ = g1
X1g2

X2 ...gl
Xlg0

a1



Public: g, p
Knows: x1, x2, ..., xl Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Rand: w0

Issuer

Prover

Private: x0, (y1, ..., yl)
Public: h0 = gx0, gi = gyi

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

r0 = c0(x0 + ∑i xiyi) +w0

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]



Public: g, p
Knows: x1, x2, ..., xl Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Rand: w0

Issuer

Prover

Private: x0, (y1, ..., yl)
Public: h0 = gx0, gi = gyi

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

r0 = c0(x0 + ∑i xiyi) +w0

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1
ZK knowledge proof of the 
representation of h0h = gx0∏ gi

xi

Non interactive signature: c0 = H[h, a0]

= g(x0 + ∑i xiyi) : just Schnorr ! 



Public: g, p , h0 = gx0, gi = gyi
Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Prover

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]

Schnorr
Verification: 

Issuer 
knows the 

representation 
of (h0h)!



Public: g, p , h0 = gx0, gi = gyi
Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Prover

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]

My Goal

Unlinkable

1) Set c0

2) Get r0 such 
that...



Public: g, p , h0 = gx0, gi = gyi
Knows: x1, x2, ..., xl

I->P: gw0 = a0 (witness)

P->I: c0 (challenge)

I->P: r0 (response)

Prover

Rand: a1, a2, a3

h’ = h∙ga1

c’0 = H[h’, ga2(h0h)a3a0]
c0 = c’0 + a3

Check: gro = (h0h)c0a0

r’0 = r0 + a2 + c’0a1

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]

?



 Goal:

 c’0 = H[h’, ga2(h0h)a3a0] = H[h’, gr’0(h0h’)-c’0]

▪ So ga2(h0h)a3a0 = gr’0(h0h’)-c’0 must be true

 Lets follow:

▪ gr’0(h0h’)-c’0 = ga2(h0h)a3a0 

▪ g(r0 + a2 + c’0a1) (h0h)-(c0+a3)g-c0a1 = ga2(h0h)a3 a0

▪ (gr0(h0h)-c0) (ga
2(h0h)a

3 ) = (ga
2(h0h)a

3 ) a0

Substitute r’0 and c’0

TRUE



 Issuer sees: co, r0, h
 Such that gro = (h0h)c0a0

 Verifier sees: c’0, r’0, h’

 Relation:
 Random: a1, a2, a3

▪ h’ = h∙ga1

▪ c0 = c’0 + a3

▪ r’0 = r0 + a2 + c’0a1

 Even if they collude they cannot link the 
credential issuing and showing



 Authentication between Issuer and Peggy

 Need to check that Peggy has the attributes 
requested

 Issuing protocol should not be run in parallel!

 (simple modifications are required)



 Putting it all together:

 Issuer and Peggy run the issuing protocol.

▪ Peggy gets: 

 Peggy and Victor run the showing protocol

▪ Victor checks the validity of the credential first

▪ Peggy shows some relation on the attributes
▪ (Using DL-rep proof on h’)

Credential: h’ = ga1 ∏ gi
xi Signature: (c’0, r’0)

Check: c’0 = H[h’, gr’0(h0h’)-c’0]



 Credential issuing

 Proof of knowledge of DL-rep & x0 of issuer

 Peggy assists & blinds proof to avoid linking

 Further topics

 Transferability of credential

 Double spending



 Attribute based access control

 Federated identity management

 Electronic cash
 (double spending)

 Privacy friendly e-identity
 Id-cards & e-passports

 Multi-show credentials!



 Core:
 Claus P. Schnorr. Efficient signature generation by smart 

cards. Journal of Cryptology, 4:161—174, 1991.

 Stefan Brands. Rethinking public key infrastructures and 
digital certificates – building in privacy. MIT Press.

 More:
 Jan Camenisch and Markus Stadler. Proof systems for general 

statements about discrete logarithms. Technical report TR 
260, Institute for Theoretical Computer Science, ETH, Zurich, 
March 1997.

 Jan Camenisch and Anna Lysianskaya. A signature scheme 
with efficient proofs. (CL signatures)



 Peggy wants to prove (A OR B)
 Say A is true and B is false

 Simple modification of Schnorr
 Peggy sends witness
 Victor sends commitment c
 Peggy uses simulator for producing a response rB for B

▪ (That sets a particular cB)
▪ Peggy chooses cA such that c = cA + cB

 Then she produces the response rA for A

 Key concept: simulators are useful, not just proof 
tools!



 Designated verifier proof

 A OR knowledge of verifier’s key

 Simulate the second part

 Third parties do nor know if A is true or the 
statement has been built by the designated 
verifier!

 Non-interactive proof not transferable!


