
Anonymous email and messaging and their traffic analysis



 Networking

 Relation between identity and efficient routing

 Identifiers: MAC, IP, email, screen name

 No network privacy = no privacy!

 The identification spectrum today

Full
Anonymity

Strong
Identification

Pseudonymity

“The Mess” 
we are in!



NO ANONYMITY

 Weak identifiers 
everywhere:
 IP, MAC

 Logging at all levels

 Login names / authentication

 PK certificates in clear

 Also:
 Location data leaked

 Application data leakage

NO IDENTIFICATION

 Weak identifiers easy to 
modulate
 Expensive / unreliable logs.

 IP / MAC address changes

 Open wifi access points

 Botnets

 Partial solution
 Authentication

 Open issues:
 DoS and network level attacks
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MAC Address

No integrity or
authenticity



3.1.  Internet Header Format

A summary of the contents of the internet header follows:

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version|  IHL  |Type of Service|          Total Length         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|         Identification        |Flags|      Fragment Offset    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Time to Live |    Protocol   |         Header Checksum       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Source Address                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Destination Address                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Options                    |    Padding    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Example Internet Datagram Header

Figure 4.

Link different 
packets together

No integrity / authenticitySame for TCP, SMTP, IRC, HTTP, ...

Weak identifiers



 Motivation and properties

 Constructions
 Unconditional anonymity – DC nets
 Practical anonymity – Mix networks
 Practical robustness

 Traffic analysis
 Measuring anonymity
 Cryptographic attacks
 Statistical disclosure attacks



 Specialized applications
 Electronic voting
 Auctions / bidding / stock market
 Incident reporting
 Witness protection / whistle blowing
 Showing anonymous credentials!

 General applications
 Freedom of speech
 Profiling / price discrimination
 Spam avoidance
 Investigation / market research
 Censorship resistance



 Sender anonymity

 Alice sends a message to Bob. Bob cannot know 
who Alice is.

 Receiver anonymity

 Alice can send a message to Bob, but cannot find 
out who Bob is.

 Bi-directional anonymity

 Alice and Bob can talk to each other, but neither 
of them know the identity of the other.



 3rd party anonymity

 Alice and Bob converse and know each other, but 
no third party can find this out.

 Unobservability

 Alice and Bob take part in some communication, 
but no one can tell if they are transmitting or 
receiving messages.



 Unlinkability

 Two messages sent (received) by Alice (Bob) 
cannot be linked to the same sender (receiver).

 Pseudonymity

 All actions are linkable to a pseudonym, which is 
unlinkable to a principal (Alice)



 DC-nets

 Dining Cryptographers (David Chaum 1985)

 Multi-party computation resulting in a 
message being broadcast anonymously

 No one knows from which party

 How to avoid collisions

 Communication cost...



 “Three cryptographers are sitting down to 
dinner at their favourite three-star restaurant.

 Their waiter informs them that arrangements 
have been made with the maitre d'hotel for the 
bill to be paid anonymously. 

 One of the cryptographers might be paying for 
the dinner, or it might have been NSA (U.S. 
National Security Agency). 

 The three cryptographers respect each other's 
right to make an anonymous payment, but they 
wonder if NSA is paying.”



Wit

Adi

Ron

Did the
NSA pay?

I paid

I didn’t

I didn’t



Wit

Adi

Ron
I paid
mr = 1

I didn’t
mw = 0

I didn’t
ma = 0

Toss coin
car

Toss coin
caw

Toss coin
crw

ba = ma + car + caw

bw = mw + crw + caw

br = mr + car + crw

Combine:
B = ba + br + bw =
ma + mr +mw = mr (mod 2)



 Generalise
 Many participants

 Larger message size
▪ Conceptually many coins in parallel (xor)

▪ Or: use +/- (mod 2|m|)

 Arbitrary key (coin) sharing
▪ Graph G: 

▪ nodes - participants, 

▪ edges - keys shared

 What security?



 Derive coins

 cabi = H[Kab, i]
for round i

 Stream cipher 
(Kab)

 Alice broadcasts

 ba = cab + cac + maA
B

Shared key Kab

C



 If B and C corrupt

 Alice broadcasts

 ba = cab + cac + ma

 Adversary’s view

 ba = cab + cac + ma

 No Anonymity
A

B

Shared key Kab

C



 Adversary nodes partition the 
graph into a blue and green
sub-graph

 Calculate:
 Bblue = ∑bj, j is blue

 Bgreen = ∑bi, i is green

 Substract known keys

 Bblue + Kred-blue = ∑mj

 Bgreen + K’red-green = ∑mi

 Discover the originating 
subgraph.
 Reduction in anonymity

A
B

C

Anonymity set size = 4 
(not 11 or 8!)



 bi broadcast graph
 Tree – independent of key sharing graph
 = Key sharing graph – No DoS unless split in graph

 Collisions
 Alice says mA ≠ 0 and Bob says mB ≠ 0
 N collisions only require N rounds to be resolved!
 Intuition: collisions do destroy all information

▪ Round 1: B1=mA+mB Round 2: B2 = mB mA= ?

 Disruption? 
 Dining Cryptographers in a Disco



 Security is great!
 Full key sharing graph  perfect anonymity

 Communication cost – BAD
 (N broadcasts for each message!)
 Naive: O(N2) cost, O(1) Latency
 Not so naive: O(N) messages, O(N) latency

▪ Ring structure for broadcast

 Expander graph: O(N) messages, O(logN) latency?
 Centralized: O(N) messages, O(1) latency

 Not practical for large(r) N! 
 Local wireless communications?



 David Chaum (concept 1979 – publish 1981)
 Ref is marker in anonymity bibliography

 Makes uses of cryptographic relays
 Break the link between sender and receiver

 Cost
 O(1) – O(logN) messages
 O(1) – O(logN) latency

 Security
 Computational (public key primitives must be secure)
 Threshold of honest participants



The Mix

Alice
Bob

Adversary cannot
see inside the Mix

A->M: {B, Msg}Mix M->B: Msg



The Mix

Alice
Bob

A->M: {B, Msg}Mix M->B: Msg

1) Bitwise unlinkability

?

2) Traffic analysis resistance

?



 Bitwise unlinkability

 Ensure adversary cannot link messages in and out 
of the mix from their bit pattern

 Cryptographic problem

 Traffic analysis resistance

 Ensure the messages in and out of the mix cannot 
be linked using any meta-data (timing, ...)

 Two tools: delay or inject traffic – both add cost!



 Broken bitwise unlinkability

 The `stream cipher’ mix (Design 1)

 {M}Mix = {fresh k}PKmix, M xor Streamk

The 
Mix

Alice Bob

A->M: {B, Msg}Mix M->B: Msg  Active attack?
Tagging Attack

Adversary intercepts {B, Msg}Mix

and injects {B, Msg}Mix xor (0,Y).

The mix outputs message:
M->B: Msg xorY

And the attacker can link them.



 Mix acts as a service

 Everyone can send messages to it; it will apply an 
algorithm and output the result.

 That includes the attacker – decryption oracle, 
routing oracle, ...

 (Active) Tagging attacks

 Defence 1: detect modifications (CCA2)

 Defence 2: lose all information (Mixminion, Minx)



 Broken traffic analysis resistance

 The `FIFO*’ mix (Design 2)

 Mix sends messages out in the order they came in!

The 
Mix

Alice Bob

A->M: {B, Msg}Mix M->B: Msg  Passive attack?

The adversary simply counts the
number of messages, and assigns
to each input the corresponding

output.

* FIFO = First in, First out



 Mix strategies – ‘mix’ messages together
 Threshold mix: wait for N messages and output them 

in a random order.

 Pool mix: Pool of n messages; wait for N inputs; 
output N out of N+n; keep remaining n in pool.

 Timed, random delay, ...

 Anonymity security relies on others
 Mix honest – Problem 1

 Other sender-receiver pairs to hide amongst –
Problem 2



 Rely on more mixes – good idea
 Distributing trust – some could be dishonest

 Distributing load – fewer messages per mix

 Two extremes
 Mix Cascades

▪ All messages are routed through a preset mix sequence

▪ Good for anonymity – poor load balancing

 Free routing
▪ Each message is routed through a random sequence of mixes

▪ Security parameter: L then length of the sequence



M1

M3

M4

M2

M5 M6

M7

Alice
Bob

Free route
mix network

The Mix

(The adversary should
get no more information

than before!)

A->M2: {M4, {M1,{B, Msg}M1}M4}M2



 Bitwise unlinkability
 Length invariance
 Replay prevention

 Additional requirements – corrupt mixes
 Hide the total length of the route
 Hide the step number
 (From the mix itself!)

 Length of paths?
 Good mixing in O(log(|Mix|)) steps = log(|Mix|) cost
 Cascades: O(|Mix|)

 We can manage “Problem 1 – trusting a mix”



 The (n-1) attack – active attack

 Wait or flush the mix.

 Block all incoming messages (trickle) and injects 
own messages (flood) until Alice’s message is out.

The 
Mix

Alice Bob

Attacker

n

1



 Strong identification to ensure distinct identities
 Problem: user adoption

 Message expiry
 Messages are discarded after a deadline
 Prevents the adversary from flushing the mix, and injecting 

messages unnoticed

 Heartbeat traffic
 Mixes route messages in a loop back to themselves
 Detect whether an adversary is blocking messages
 Forces adversary to subvert everyone, all the time

 General instance of the “Sybil Attack”



 Malicious mixes may be dropping messages

 Special problem in elections

 Original idea: receipts (unworkable)

 Two key strategies to prevent DoS

 Provable shuffles

 Randomized partial checking



 Bitwise unlinkability: El-Gamal re-encryption
 El-Gamal public key (g, gx) for private x

 El-Gamal encryption (gk, gkx ∙M)

 El-Gamal re-encryption (gk’ ∙ gk , gk’xgkx ∙M)
▪ No need to know x to re-encrypt

▪ Encryption and re-encryption unlinkable

 Architecture – re-encryption cascade

 Output proof of correct shuffle at each step



 Proof of correct shuffle

 Outputs are a permutation of the decrypted inputs

 (Nothing was inserted, dropped, otherwise modified!)

 Upside: Publicly verifiable – Downside: expensive

El-Gamal
Encryption

Re-
enc

Re-
enc

Re-
enc

Threshold
Decryption

Alice’s input Mix 1 Mix 2 Mix 3

Proof Proof Proof Proof



 Applicable to any mix system

 Two round protocol
 Mix commits to inputs and outputs

 Gets challenge

 Reveals half of correspondences at random

 Everyone checks correctness

 Pair mixes to ensure messages get some 
anonymity



 Rogue mix can cheat with probability at most ½

 Messages are anonymous with overwhelming 
probability in the length L
 Even if no pairing is used – safe for L = O(logN) 

Mix i Mix i+1

Reveal half Reveal other half



 Cryptographic reply address

 Alice sends to bob: M1,{M2, k1,{A,{K}A}M2}M1

▪ Memory-less: k1 = H(K, 1) k2 = H(K, 2)

 Bob replies: 
▪ B->M1: {M2, k1, {A,{K}A}M2}M1, Msg

▪ M1->M2: {A,{K}A}M2 , {Msg}k1

▪ M2->A: {K}A, {{Msg}k1}k2

 Security: indistinguishable from other messages



 Anonymity requires a crowd
 Difficult to ensure it is not simulated – (n-1) attack

 DC-nets – Unconditional anonymity at high 
communication cost
 Collision resolution possible

 Mix networks – Practical anonymous messaging
 Bitwise unlinkability / traffic analysis resistance
 Crypto: Decryption vs. Re-encryption mixes
 Distribution: Cascades vs. Free route networks
 Robustness: Partial checking



 The anonymity set (size)

 Dining cryptographers
▪ Full key sharing graph = (N - |Adversary|)

▪ Non-full graph – size of graph partition

 Assumption: all equally likely

 Mix network context

 Threshold mix with N inputs: Anonymity = N

Mix
Anonymity

N = 4



 Example: 2-stage mix  Option 1:

 3 possible participants

 => N = 3

 Note probabilities!

 Option 2:

 Arbitrary min probability

 Problem: ad-hoc

Mix 1

Mix 2

Alice

Bob

Charlie
?

½ 

¼ 

¼ 



 Example: 2-stage mix  Define distribution of senders 
(as shown)

 Entropy of the distribution is 
anonymity

 E = -∑pi log2 pi

 Example:
E =  - 2 ¼ (-2) – (½) (-1) 

= + 1 + ½ = 1.5 bits

 (NOT N=3 => E = -log3 = 1.58 bits)

 Intuition: missing information 
for full identification!

Mix 1

Mix 2

Alice

Bob

Charlie
?

½ 

¼ 

¼ 



 Only the attacker can measure the anonymity of 
a system.
 Need to know which inputs, output, mixes are 

controlled

 Anonymity of single messages
 How to combine to define the anonymity of a 

systems?
 Min-anonymity of messages

 How do you derive the probabilities? (Hard!)
 Complex systems – not just examples



 Statistical Disclosure
 Tracing persistent communications

 Low-latency anonymity
 Onion-routing & Tor

▪ Tracing streams

▪ Restricted directories

▪ (Going fully peer-to-peer...)

 Crowds
▪ Predecessor attack



 Core:
 The Dining Cryptographers Problem: Unconditional Sender and 

Recipient Untraceability by David Chaum.
In Journal of Cryptology 1, 1988, pages 65-75.

 Mixminion: Design of a Type III Anonymous Remailer Protocol by 
George Danezis, Roger Dingledine, and Nick Mathewson.
In the Proceedings of the 2003 IEEE Symposium on Security and 
Privacy, May 2003, pages 2-15. 

 More
 A survey of anonymous communication channels by George 

Danezis and Claudia Diaz
http://homes.esat.kuleuven.be/~gdanezis/anonSurvey.pdf

 The anonymity bibliography
http://www.freehaven.net/anonbib/



Anonymous web browsing and peer-to-peer



 Mixes or DC-nets – setting

 Single message from Alice to Bob

 Replies

 Real communications

 Alice has a few friends that she messages often

 Interactive stream between Alice and Bob (TCP)

 Repetition – patterns -> Attacks



 Even perfect anonymity systems leak 
information when participants change

 Setting:

 N senders / receivers – Alice is one of them

 Alice messages a small number of friends:

▪ RA in {Bob, Charlie, Debbie}

▪ Through a MIX / DC-net

▪ Perfect anonymity of size K

 Can we infer Alice’s friends?



 Alice sends a single message to one of her friends

 Anonymity set size = K
Entropy metric EA = log K

 Perfect!

Alice

K-1 Senders
out of N-1

others

K-1 Receivers
out of N
others

rA in RA= {Bob, Charlie, Debbie}

Anonymity
System

(Model as random receivers)



 Observe many rounds 
in which Alice 
participates

 Rounds in which Alice 
participates will 
output a message to 
her friends!

 Infer the set of friends!

Alice

Others Others

rA1

Anonymity
System

Alice

Others Others

rA2

Anonymity
System

Alice

Others Others

rA3

Anonymity
System

Alice

Others Others

rA4

Anonymity
System

...

T1

T2

T3

T4

Tt



 Guess the set of friends of Alice (RA’)
 Constraint |RA’| = m

 Accept if an element is in the output of each 
round

 Downside: Cost
 N receivers, m size – (N choose m) options
 Exponential – Bad

 Good approximations...



 Note that the friends of Alice will be in the sets 
more often than random receivers

 How often? Expected number of messages per 
receiver:
 μother = (1 / N) ∙ (K-1) ∙ t

 μAlice = (1 / m) ∙ t + μother

 Just count the number of messages per receiver 
when Alice is sending!
 μAlice > μother



 Parameters: N=20 m=3 K=5 t=45 KA={[0, 13, 19]}

Round Receivers SDA SDA_error #Hitting sets
1 [15, 13, 14, 5, 9] [13, 14, 15] 2 685
2 [19, 10, 17, 13, 8] [13, 17, 19] 1 395
3 [0, 7, 0, 13, 5] [0, 5, 13] 1 257
4 [16, 18, 6, 13, 10] [5, 10, 13] 2 203
5 [1, 17, 1, 13, 6] [10, 13, 17] 2 179
6 [18, 15, 17, 13, 17] [13, 17, 18] 2 175
7 [0, 13, 11, 8, 4] [0, 13, 17] 1 171
8 [15, 18, 0, 8, 12] [0, 13, 17] 1 80
9 [15, 18, 15, 19, 14] [13, 15, 18] 2 41
10 [0, 12, 4, 2, 8] [0, 13, 15] 1 16
11 [9, 13, 14, 19, 15] [0, 13, 15] 1 16
12 [13, 6, 2, 16, 0] [0, 13, 15] 1 16
13 [1, 0, 3, 5, 1] [0, 13, 15] 1 4
14 [17, 10, 14, 11, 19] [0, 13, 15] 1 2
15 [12, 14, 17, 13, 0] [0, 13, 17] 1 2

16 [18, 19, 19, 8, 11] [0, 13, 19] 0 1
17 [4, 1, 19, 0, 19] [0, 13, 19] 0 1
18 [0, 6, 1, 18, 3] [0, 13, 19] 0 1
19 [5, 1, 14, 0, 5] [0, 13, 19] 0 1
20 [17, 18, 2, 4, 13] [0, 13, 19] 0 1
21 [8, 10, 1, 18, 13] [0, 13, 19] 0 1
22 [14, 4, 13, 12, 4] [0, 13, 19] 0 1
23 [19, 13, 3, 17, 12] [0, 13, 19] 0 1
24 [8, 18, 0, 10, 18] [0, 13, 18] 1 1

Round 16: 
Both attacks give correct result

SDA: Can give wrong results –
need more evidence



25 [19, 4, 13, 15, 0] [0, 13, 19] 0 1
26 [13, 0, 17, 13, 12] [0, 13, 19] 0 1
27 [11, 13, 18, 15, 14] [0, 13, 18] 1 1
28 [19, 14, 2, 18, 4] [0, 13, 18] 1 1
29 [13, 14, 12, 0, 2] [0, 13, 18] 1 1
30 [15, 19, 0, 12, 0] [0, 13, 19] 0 1
31 [17, 18, 6, 15, 13] [0, 13, 18] 1 1
32 [10, 9, 15, 7, 13] [0, 13, 18] 1 1
33 [19, 9, 7, 4, 6] [0, 13, 19] 0 1
34 [19, 15, 6, 15, 13] [0, 13, 19] 0 1
35 [8, 19, 14, 13, 18] [0, 13, 19] 0 1
36 [15, 4, 7, 13, 13] [0, 13, 19] 0 1
37 [3, 4, 16, 13, 4] [0, 13, 19] 0 1
38 [15, 13, 19, 15, 12] [0, 13, 19] 0 1
39 [2, 0, 0, 17, 0] [0, 13, 19] 0 1
40 [6, 17, 9, 4, 13] [0, 13, 19] 0 1
41 [8, 17, 13, 0, 17] [0, 13, 19] 0 1
42 [7, 15, 7, 19, 14] [0, 13, 19] 0 1
43 [13, 0, 17, 3, 16] [0, 13, 19] 0 1
44 [7, 3, 16, 19, 5] [0, 13, 19] 0 1
45 [13, 0, 16, 13, 6] [0, 13, 19] 0 1

SDA: Can give wrong results –
need more evidence



 Counter-intuitive
 The larger N the easiest the attack

 Hitting-set attacks
 More accurate, need less information
 Slower to implement
 Sensitive to Model 

▪ E.g. Alice sends dummy messages with probability p.

 Statistical disclosure attacks
 Need more data
 Very efficient to implement (vectorised) – Faster partial results
 Can be extended to more complex models (pool mix, replies, ...)

 The Future: Bayesian modelling of the problem



 Near-perfect anonymity is not perfect 
enough!

 High level patterns cannot be hidden for ever

 Unobservability / maximal anonymity set size 
needed

 Flavours of attacks

 Very exact attacks – expensive to compute

▪ Model inexact anyway

 Statistical variants – wire fast!



 Anonymising streams of messages

 Example: Tor

 As for mix networks

 Alice chooses a (short) path

 Relays a bi-directional stream of traffic to Bob

Onion
Router

Alice Bob

Cells of traffic

Onion
Router

Bi-directional

Onion
Router



 Setup route once per connection

 Use it for many cells – save on PK operations

 No time for delaying

 Usable web latency 1—2 sec round trip

 Short routes – Tor default 3 hops

 No batching (no threshold , ...)

 Passive attacks!



 Adversary observes all inputs and outputs of 
an onion router

 Objective link the ingoing and outgoing 
connections (to trace from Alice to Bob)

 Key: timing of packets are correlated

 Two techniques:
 Correlation

 Template matching



 Quantise input and output load in time
 Compute:

 Corr = ∑i INi∙OUTi

 Downside: lose precision by quantising

Onion
Router1 3 2 1 2 2 1 2 3 0 3 2

Number of cell
per time interval

T=0 T=0INi OUTi



 Use input and delay curve to make template
 Prediction of what the output will be

 Assign to each output cell the template value (vi) for its 
output time

 Multiply them together to get a score (∏ivi)

Onion
Router

INTemplate

Compare with template

Input Stream Output Stream

vi



 Cannot withstand a global passive adversary
 (Tracing attacks to expensive to foil)

 Partial adversary
 Can see some of the network
 Can control some of the nodes

 Secure if adversary cannot see first and last node of 
the connection
 If c is fraction of corrupt servers
 Compromize probability = c2

 No point making routes too long



 Forward secrecy
 In mix networks Alice uses long term keys

A->M2: {M4, {M1,{B, Msg}M1}M4}M2

 In Onion Routing a bi-directional channel is 
available

 Can perform authenticated Diffie-Hellman to 
extend the anonymous channel

 OR provides better security against 
compulsion



Alice OR1 OR2 OR3 Bob
Authenticated DH

Alice – OR1

Authenticated DH, Alice – OR2

K1

Encrypted with K1

K2
Authenticated DH, Alice – OR3

Encrypted with K1, K2

TCP Connection with Bob, Encrypted with K1, K2, K3
K3



 Encryption of input and output streams under 
different keys provides bitwise unlinkability
 As for mix networks

 Is it really necessary?

 Authenticated Diffie-Hellman
 One-sided authentication: Alice remains anonymous

 Alice needs to know the signature keys of the Onion 
Routers

 Scalability issue – 1000 routers x 2048 bit keys



 Show that:
 If Alice knows only a small subset of all Onion 

Routers, the paths she creates using them are not 
anonymous.

 Assume adversary knows Alice’s subset of nodes.

 Hint: Consider collusion between a corrupt middle and last node – then corrupt last 
node only.

 Real problem: need to ensure all clients know 
the full, most up-to-date list of routers.



 Anonymous routing immune to tracing
 Reasonable latency?

 Yes, we can!
 Tracing possible because of input-output 

correlations

 Strategy 1: fixed sending of cells 
(eg. 1 every 20-30ms)

 Strategy 2: fix any sending schedule 
independently of the input streams



 Mixes and OR – heavy on cryptography

 Lighter threat model

 No network adversary

 Small fraction of corrupt nodes

 Anonymity of web access

 Crowds: a groups of nodes cooperate to 
provide anonymous web-browsing



Bob
(Website)

Alice

Probability p
(Send out request)

Reply

Probability 1-p
(Relay in crowd)

Crowd – (Jondo)

Example:
p = 1 / 4



 Final website (Bob) or corrupt node does not 
know who the initiator is
 Could be the node that passed on the request

 Or one before

 How long do we expect paths to be?
 Mean of geometric distribution

 L = 1 / p – (example: L = 4)

 Latency of request / reply



 Consider the case of a corrupt insider
 A fraction c of nodes are in fact corrupt

 When they see a request they have to decide 
whether 
 the predecessor is the initiator 

 or merely a relay

 Note: corrupt insiders will never pass the 
request to an honest node again!



Bob
(Website)

Alice Probability 1-p
(Relay in crowd)

Crowd – (Jondo)

Corrupt node

What is the 
probability my 

predecessor is the 
initiator?



Initiator

p

1 - p

Req

Relay

c

1 - c

Corrupt

Honest

1 - p

p
Req

Relay

c

1 - c

Corrupt

Honest

1 - p

p
Req

Relay

c

1 - c

Corrupt

Honest

Predecessor is initiator 
& corrupt final node

Predecessor is random 
& corrupt final node

pI = (1-p) c / c ∑i=1..inf (1-p)i(1-c)i-1

pI = 1 – (1-p)(1-c)

pI grows as (1) c grows (2) p grows

Exercise: What is the information theoretic amount of anonymity of crowds in this context



 What about repeated requests?

 Alice always visits Bob

 E.g. Repeated SMTP connection to microsoft.com

 Adversary can observe n times the tuple

 2 x (Alice, Bob)

 Probability Alice is initiator (at least once)

▪ P = 1 – [(1-p)(1-c)]n

 Probability of compromize reaches 1 very fast!



 Fast routing = no mixing = traffic analysis attacks

 Weaker threat models
 Onion routing: partial observer
 Crowds: insiders and remote sites

 Repeated patterns
 Onion routing: Streams vs. Time
 Crowds: initiators-request tuples

 PKI overheads a barrier to p2p anonymity



 Core:

 Tor: The Second-Generation Onion Router by Roger Dingledine, Nick 
Mathewson, and Paul Syverson. In the Proceedings of the 13th USENIX 
Security Symposium, August 2004.

 Crowds: Anonymity for Web Transactions by Michael Reiter and Aviel Rubin.
In ACM Transactions on Information and System Security 1(1), June 1998.

 More:

 An Introduction to Traffic Analysis by George Danezis and Richard Clayton.
http://homes.esat.kuleuven.be/~gdanezis/TAIntro-book.pdf

 The anonymity bibliography
http://www.freehaven.net/anonbib/


