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Formal (“Dolev-Yao”) view

■ Messages — elements of a term algebra.
■ Possible operations on messages are enumerated.
■ Choices in semantics — non-deterministic.

◆ Protocol and the adversary are easily represented in some
process calculus.

Computational view

■ Messages — bit strings.
■ Possible operations on messages — everything in PPT.
■ Choices in semantics — probabilistic.

◆ Protocol and adversary — a set of probabilistic interactive
Turing machines.
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Formal (“Dolev-Yao”) view

■ Messages — elements of a term algebra.
■ Possible operations on messages are enumerated.
■ Choices in semantics — non-deterministic.

◆ Protocol and the adversary are easily represented in some
process calculus.

■ Simpler to analyse.

Computational view

■ Messages — bit strings.
■ Possible operations on messages — everything in PPT.
■ Choices in semantics — probabilistic.

◆ Protocol and adversary — a set of probabilistic interactive
Turing machines.

■ Closer to the real world.
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■ take a look at cryptographic protocols using “classical” primitives

◆ symmetric / asymmetric encryption, signatures, nonces, hash
functions;

■ see, what it takes to specify them

◆ programming language, semantics and execution environment,
interacting with the adversary;

◆ semantics — probabilistic, works with bit-strings;

■ look at the methods to deal with the computational semantics

◆ assuming we can handle perfect cryptography.
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■ The Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.

■ Translating protocol traces between formal and computational world.
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The atomic building blocks:

■ Formal keys k, k1, k2, k
′, k′′, . . . ∈ Keys

■ Formal coins r, r1, r2, r
′, r′′, . . . ∈ Coins

■ Bits b ∈ {0, 1}
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The atomic building blocks:

■ Formal keys k, k1, k2, k
′, k′′, . . . ∈ Keys

■ Formal coins r, r1, r2, r
′, r′′, . . . ∈ Coins

■ Bits b ∈ {0, 1}

A formal expression e ∈ Exp is

e ::= k
| b
| (e1, e2)
| {e′}rk

If {e}rk and {e′}rk′ both occur in an expression then k = k′ and e = e′.

■ e is similar to Dolev-Yao messages.
■ We can also interpret it as a program for computing a message.
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■ Let 〈·, ·〉 : ({0, 1}∗)2 → {0, 1}∗ be easily computable and invertible
injective function.
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■ A symmetric encryption scheme (K,E,D):

◆ K (1η) — generates keys;
◆ E (1η, k, x) — encrypts x with k;
◆ D(1η, k, y) — decrypts y with k.

K and E — probabilistic, D — deterministic.
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■ Let 〈·, ·〉 : ({0, 1}∗)2 → {0, 1}∗ be easily computable and invertible
injective function.

■ A symmetric encryption scheme (K,E,D):

◆ Kr(1η) — generates keys from random coins r;
◆ Er(1η, k, x) — encrypts x with k using the random coins r;
◆ D(1η, k, y) — decrypts y with k.

K and E — probabilistic, D — deterministic.

Correctness:

∀η, x, r, r′ :

k := Kr(1η)
y := Er

′

(1η, k, x)
x′ := D(1η, k, y)
(x = x′)?
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■ For each k ∈ Keys let sk ← K(1η)
■ For each r ∈ Coins let sr ∈R {0, 1}

ω.

Define

[[k]]η = sk

[[b]]η = b

[[(e1, e2)]]η = 〈[[e1]]η, [[e2]]η〉

[[{e′}rk]]η = E
sr(1η, sk, [[e

′]]η)
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■ For each k ∈ Keys let sk ← K(1η)
■ For each r ∈ Coins let sr ∈R {0, 1}

ω.

Define

[[k]]η = sk

[[b]]η = b

[[(e1, e2)]]η = 〈[[e1]]η, [[e2]]η〉

[[{e′}rk]]η = E
sr(1η, sk, [[e

′]]η)

[[·]] assigns to each formal expression a family of probability distributions
over bit-strings
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algorithms A:
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η, b

∗ ← A(1η, x)] = 1/2 + ε(η)

for some negligible function ε.
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We are looking for sufficient conditions in terms of e1 and e2 for

[[e1]] ≈ [[e2]] .

Two families of probability distributions over bit-strings D0 = {D0
η}η∈N

and D1 = {D1
η}η∈N are computationally indistinguishable if for all PPT

algorithms A:

Pr[b = b∗ | b ∈R {0, 1}, x← Db
η, b

∗ ← A(1η, x)] = 1/2 + ε(η)

for some negligible function ε.
A function ε is negligible if

lim
η→∞

ε(η) · p(η) = 0

for all polynomials p.
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e1 ⊢ e2

The value of e1 tells us the value of e2

⇒e ⊢ e

e ⊢ (e1, e2)⇒ e ⊢ e1 ∧ e ⊢ e2

e ⊢ {e′}rk ∧ e ⊢ k ⇒ e ⊢ e′

Examples:

({1011}rk1
, {k1}

r′

k2
, k2) ⊢ 1011

({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k3
) 6⊢ 1011

({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k1
) 6⊢ 1011

Let openkeys(e) = {k ∈ Keys | e ⊢ k}.
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■ Enlarge the set Exp: e ::= . . . |2r.
■ For a set K ⊆ Keys define

pat(k,K) = k

pat(b,K) = b

pat((e1, e2),K) = (pat(e1,K), pat(e2,K))

pat({e}rk,K) =

{

{pat(e,K)}rk, if k ∈ K

2
r, if k 6∈ K

■ Let pattern(e) = pat(e, openkeys(e)).
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■ Enlarge the set Exp: e ::= . . . |2r.
■ For a set K ⊆ Keys define

pat(k,K) = k

pat(b,K) = b

pat((e1, e2),K) = (pat(e1,K), pat(e2,K))

pat({e}rk,K) =

{

{pat(e,K)}rk, if k ∈ K

2
r, if k 6∈ K

■ Let pattern(e) = pat(e, openkeys(e)).
■ Define e1

∼= e2 if pattern(e1) = pattern(e2)σKσR for some

◆ σK — a permutation of the keys Keys;
◆ σR — a permutation of the random coins Coins.
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pattern(({1011}rk1
, {k1}

r′

k2
, k2)) = ({1011}rk1

, {k1}
r′

k2
, k2)

pattern(({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k3
)) = (2r,2r′ ,2r′′)

pattern(({1011}rk1
, {k1}

r′

k2
, {k2}

r′′

k1
)) = (2r,2r′ ,2r′′)

pattern(({1}r1

k2
, {k2}

r2

k3
, {{0}r4

k2
}r3

k1
, k1)) = (2r1,2r2, {2r4}r3

k1
, k1)

pattern(({k4, 0}
r1

k3
, {k3}

r2

k2
, {{11}r4

k4
}r3

k1
, k1)) = (2r1,2r2, {2r4}r3

k1
, k1)
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■ Encrypting oracle O
IND−CPA
1 :

Initialization:
k← K(1η)

method encrypt(x)
y← E(k, x)
return y

■ Constant-encrypting oracle O
IND−CPA
0 :

Initialization:
k← K(1η)

method encrypt(x)
l := length(x)
y← E(k, 0l)
return y

(K,E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ε, such that

Pr[b = b∗ | b ∈R {0, 1}, b
∗ ← A

O
IND−CPA
b (1η)] = 1/2 + ε(η)
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■ Encrypting oracle O
IND−CPA
1 :

Initialization:
k← K(1η)

method encrypt(x)
y← E(k, x)
return y

■ Constant-encrypting oracle O
IND−CPA
0 :

Initialization:
k← K(1η)

method encrypt(x)
l := length(x)
y← E(k, 0l)
return y

(K,E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ε, such that

Pr[b = b∗ | b ∈R {0, 1}, b
∗ ← A

O
IND−CPA
b (1η)] = 1/2 + ε(η)

In other words: O
IND−CPA
1 ≈ O

IND−CPA
0 .
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■ Oracle with two keys O
hide−key
1 :

Initialization:
k1 ← K(1η)
k2 ← K(1η)

method encrypt1(x)
y← E(k1, x)
return y

method encrypt2(x)
y← E(k2, x)
return y

■ Oracle with one key O
hide−key
0 :

Initialization:
k← K(1η)

method encrypt1(x)
y← E(k, x)
return y

method encrypt2(x)
y← E(k, x)
return y

(K,E,D) hides the identities of keys / is which-key concealing if
O

hide−key
1 ≈ O

hide−key
0 .
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■ Oracle with two keys O
hide−key
1 :

Initialization:
k1 ← K(1η)
k2 ← K(1η)

method encrypt1(x)
y← E(k1, x)
return y

method encrypt2(x)
y← E(k2, x)
return y

■ Oracle with one key O
hide−key
0 :

Initialization:
k← K(1η)

method encrypt1(x)
y← E(k, x)
return y

method encrypt2(x)
y← E(k, x)
return y

(K,E,D) hides the identities of keys / is which-key concealing if
O

hide−key
1 ≈ O

hide−key
0 .

IND-CPA-secure which-key concealing encryption schemes are easily
constructed (CCA- or CTR-mode of operation of block ciphers).
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■ An encryption scheme is length-concealing if the length of the
plaintext cannot be determined from the ciphertext.

■ Achievable by padding the plaintexts.

◆ Questionable for nested encryptions. . .

■ For simplicity, we will assume that our encryption scheme is
length-concealing.

◆ And also which-key concealing and IND-CPA-secure.

■ Otherwise we’d need to define lengths of formal expressions.



IND-CPA, which-key and length-concealing:
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Let 0 be a fixed bit-string.

■ Oracle O
type−0
1 :

Initialization:
k1 ← K(1η)
k2 ← K(1η)

method encrypt1(x)
y← E(k1, x)
return y

method encrypt2(x)
y← E(k2, x)
return y

■ Oracle O
type−0
0 :

Initialization:
k← K(1η)

method encrypt1(x)
y← E(k,0)
return y

method encrypt2(x)
y← E(k,0)
return y

(K,E,D) has all three listed properties if O
type−0
1 ≈ O

type−0
0 .



Theorem of equivalence
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Theorem. Let e1, e2 ∈ Exp. If e1
∼= e2 then∗ [[e1]] ≈ [[e2]].
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■ Let D0 = {D0
η}η∈N and D1 = {D1

η}η∈N be two families of probability
distributions.

■ Let p be a positive polynomial.
■ Let ~Db

η be a probability distribution over tuples

(x1, x2, . . . , xp(η)) ∈ ({0, 1}∗)p(η)

such that

◆ each xi is distributed according to Db
η;

◆ each xi is is independent of all other x-s.
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■ Let D0 = {D0
η}η∈N and D1 = {D1

η}η∈N be two families of probability
distributions.

■ Let p be a positive polynomial.
■ Let ~Db

η be a probability distribution over tuples

(x1, x2, . . . , xp(η)) ∈ ({0, 1}∗)p(η)

such that

◆ each xi is distributed according to Db
η;

◆ each xi is is independent of all other x-s.

■ To sample ~Db
η, sample Db

η p(η) times and construct the tuple of
sampled values.
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If ••• ≈ ••• then • ≈ •.

Contrapositive: if • 6≈ • then ••• 6≈ •••
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for some polynomial q and infinitely many η.
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Theorem. If ~D0 ≈ ~D1 then D0 ≈ D1.
If ••• ≈ ••• then • ≈ •.

Contrapositive: if • 6≈ • then ••• 6≈ •••
If • 6≈ • then there exists a PPT distinguisher A:

Pr[A(η, x) = 0 |x← D0
η]− Pr[A(η, x) = 0 |x← D1

η] ≥ 1/q(η)

for some polynomial q and infinitely many η.

Let B(η, (x1, . . . , xp(η))) = A(η, x1).
Then B distinguishes ••• and •••.

I.e. we can distinguish ••• from ••• by just considering the first
elements of the tuples.
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(Interesting) theorem. If D0 ≈ D1 and there exist polynomial-time
algorithms D0 and D1, such that the output distribution of Db(η) is

equal to Db
η, then ~D0 ≈ ~D1.
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(Interesting) theorem. If D0 ≈ D1 and there exist polynomial-time
algorithms D0 and D1, such that the output distribution of Db(η) is

equal to Db
η, then ~D0 ≈ ~D1.

If • ≈ • then ••• ≈ •••.

Contrapositive: if ••• 6≈ ••• then • 6≈ •.
If ••• 6≈ ••• then there exists a PPT distinguisher A:

Pr[A(η, ~x) = 0 | ~x← ~D0
η]− Pr[A(η, ~x) = 0 | ~x← ~D1

η] ≥ 1/q(η)

for some polynomial q and infinitely many η.

Assume for now that the polynomial p is a constant. I.e. the length of
the vector ~x does not depend on the security parameter η.
Let p be the common value of p(η) for all η.
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If ••• 6≈ ••• then

(••• 6≈ •••) ∨ (••• 6≈ •••) ∨ (••• 6≈ •••)

Let ~Ek
η , where 0 ≤ k ≤ p, be a probability distribution over tuples

(x1, . . . , xp), where

■ each xi is independent of all other x-s;
■ x1, . . . , xk are distributed according to D0

η;
■ xk+1, . . . , xp are distributed according to D1

η.

Thus ~E0
η = ~D1

η and ~Ep
η = ~D0

η. Define P k
η = Pr[A(η, ~x) = 0 | ~x← ~Ek

η ].
Then for infinitely many η:

1/q(η) ≤ P p
η − P 0

η =

p
∑

i=1

(P i
η − P i−1

η ) .

And for some jη, P
jη
η − P

jη−1
η ≥ 1/(p · q(η)).
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There exists j, such that j = jη for infinitely many η. Thus

Pr[A(η, ~x) = 0 | ~x← ~Ej
η]− Pr[A(η, ~x) = 0 | ~x← ~Ej−1

η ] ≥ 1/q(η)

for infinitely many η. We have ~Ej−1 6≈ ~Ej.
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There exists j, such that j = jη for infinitely many η. Thus

Pr[A(η, ~x) = 0 | ~x← ~Ej
η]− Pr[A(η, ~x) = 0 | ~x← ~Ej−1

η ] ≥ 1/q(η)

for infinitely many η. We have ~Ej−1 6≈ ~Ej.

If we can distinguish

~Ej = •• · · · •
︸ ︷︷ ︸

j−1

• •• · · · •
︸ ︷︷ ︸

p−j

from
~Ej−1 = •• · · · •

︸ ︷︷ ︸

j−1

• •• · · · •
︸ ︷︷ ︸

p−j

using A, then how do we distinguish • and •?
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On input (η, x):

1. Let x1 := D0(η), . . . , xj−1 := D0(η).
2. Let xj := x
3. Let xj+1 := D1(η), . . . , xp := D1(η)
4. Let ~x = (x1, . . . , xp).
5. Call b∗ := A(η, ~x) and return b∗.

The advantage of this distinguisher is at least 1/(p · q(η)).
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On input (η, x):

1. Let x1 := D0(η), . . . , xj−1 := D0(η).
2. Let xj := x
3. Let xj+1 := D1(η), . . . , xp := D1(η)
4. Let ~x = (x1, . . . , xp).
5. Call b∗ := A(η, ~x) and return b∗.

The advantage of this distinguisher is at least 1/(p · q(η)).

Unfortunately, the above construction was not constructive.
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For infinitely many η we had

1/q(η) ≤ P p
η − P 0

η =

p
∑

i=1

(P i
η − P i−1

η ) .

Hence the average value of P j
η − P j−1

η is ≥ 1/(p · q(η)).
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For infinitely many η we had

1/q(η) ≤ P p
η − P 0

η =

p
∑

i=1

(P i
η − P i−1

η ) .

Hence the average value of P j
η − P j−1

η is ≥ 1/(p · q(η)).

Consider the following distinguisher B(η, x):

1. Let j ∈R {1, . . . , p}.
2. Let x1 := D0(η), . . . , xj−1 := D0(η).
3. Let xj := x
4. Let xj+1 := D1(η), . . . , xp := D1(η)
5. Let ~x = (x1, . . . , xp).
6. Call b∗ := A(η, ~x) and return b∗.
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If (for example) p = 5, then B tries to distinguish

••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5
••••• and ••••• with probability 1/5

The advantage of B is 1/p times the sum of A’s advantages of
distinguishing these pairs of distributions.

The advantage of B is

1

p

p
∑

j=1

P j
η − P j−1

η =
1

p
(P p

η − P 0
η ) ≥

1

p · q(η)
.
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B(η, x) is:

1. Let j ∈R {1, . . . , p(η)}.
2. Let x1 := D0(η), . . . , xj−1 := D0(η).
3. Let xj := x
4. Let xj+1 := D1(η), . . . , xp(η) := D1(η)
5. Let ~x = (x1, . . . , xp(η)).
6. Call b∗ := A(η, ~x) and return b∗.

The advantage of B is at least 1/(p(η) · q(η)).
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■ For each k ∈ Keys let sk ← K(1η)
■ For each r ∈ Coins let sr ∈R {0, 1}

ω

■ Let k2 ← K(1η).

Define

[[k]]η = sk

[[b]]η = b

[[(e1, e2)]]η = 〈[[e1]]η, [[e2]]η〉

[[{e′}rk]]η = E
sr(1η, sk, [[e

′]]η)

[[2r]]η = E
sr(1η, k2,0)



Replacing one key
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■ For a key k ∈ Keys define

replacekey(k, k) = k

replacekey(b, k) = b

replacekey((e1, e2), k) = (replacekey(e1, k), replacekey(e2, k))

replacekey({e}rk, k) =

{

2
r, if k = k

{replacekey(e, k)}rk, if k 6= k

replacekey(2r, k) = 2
r

■ Lemma. Let e ∈ Exp. Let key k occur in e only as encryption key.
Then [[e]] ≈ [[replacekey(e, k)]].
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Assume that B distinguishes [[e]] from [[replacekey(e, k)]].
Let AO(1η) work as follows:

■ Let sk ← K(1η) for all keys k occurring in e, except k.
■ Let sr ∈R {0, 1}

ω for all r occurring in e, except as {. . .}r
k
.

■ Let k2 ← K(1η).
■ Let L = {} (empty mapping).
■ Compute the “semantics” v of e as follows by invoking SemO(e)

◆ Sem
O(e) = [[e]] if O = O

type−0
1 .

◆ SemO(e) = [[replacekey(e, k)]] if O = O
type−0
0 .

■ return B(1η, v).

A can distinguish O
type−0
1 and O

type−0
0 as well as B can distinguish [[e]]

and [[replacekey(e, k)]].
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SemO(e) is: case e of

■ k: return sk (note that k 6= k)
■ b: return b
■ (e1, e2): let vi = Sem

O(ei); return 〈v1, v2〉
■ 2

r: return O.encrypt2(0)
■ {e}rk: let v = Sem

O(e);

◆ If k 6= k then return Esr(1η, sk, v)
◆ If k = k and L(r) is not defined then

■ let L(r) = O.encrypt1(v);
■ return L(r)

◆ If k = k and L(r) is defined then return L(r)
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1. replacekey(replacekey(· · · replacekey(e, k1), k2) · · · , kn) =
pattern(e)
if {k1, . . . , kn} are all keys in e that the adversary cannot obtain.
Denote this set of keys by hidkeys(e).

2. Apply the lemma sequentially to each key in hidkeys(e), thereby
establishing

[[e]] ≈ [[pattern(e)]].

∗ In general, not all orders of keys in hidkeys(e) are suitable.

3. Permuting the formal keys and coins does not change the generated
probability distribution over bit-strings.

If e1
∼= e2 then∗ [[e1]] ≈ [[pattern(e1)]] = [[pattern(e2)]] = [[e2]].



Example 1

31 / 45

[[({k4, 0}
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k3
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k3
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k1
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pattern(({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)) = (2r1,2r2 , {2r4}r3

k1
, k1)

[[({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
, k1)]]

〈cannot apply the lemma〉
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■ Let e be a formal expression.
■ Consider the following directed graph G = (V,E):

◆ V = hidkeys(e)
◆ (ki → kj) ∈ E if e has a subexpression of the form

{· · · kj · · ·}
r
ki

(we say that ki encrypts kj)

■ e has no encryption cycles if G does not contain directed cycles.
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■ Let e be a formal expression.
■ Consider the following directed graph G = (V,E):

◆ V = hidkeys(e)
◆ (ki → kj) ∈ E if e has a subexpression of the form

{· · · kj · · ·}
r
ki

(we say that ki encrypts kj)

■ e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then [[e]] ≈ [[pattern(e)]].

“No encryption cycles” is sufficient, but not necessary condition for the
sequential applicability of our lemma.

Example: ({k3}
r1

k2
, {k4}

r2

k3
, {{k2}

r4

k4
}r3

k1
) is OK.
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■ The Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.

■ Translating protocol traces between formal and
computational world.
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■ Extend the construction of the set of formal messages by

◆ keypairs kp ∈ EKeys for encryption and kp ∈ SKeys for
signing;

◆ operations kp+ and kp− to take the public and secret
components of keys;

◆ public-key encryptions {[e]}r
kp+ and signatures [{e}]r

kp−.

■ Fix a public-key encryption scheme (Kp,Ep,Dp) and a signature
scheme (Ks, Ss,Vs).

◆ Use Kp, Ep, Ks, Ks to define the semantics of new constructs.

■ Similar results can be obtained with {[·]}
·
in messages.

◆ If secret keys are not part of messages then encryption cycles are
not an issue.
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■ A set P of principals (some of them possibly corrupted). Each one
with fixed keypairs for signing and encryption.

◆ There are keys ek(P ), dk(P ), sk(P ), vk(P ) for each principal P .

■ A set of roles.

◆ A list of pairs of incoming and outgoing messages.
◆ May contain nonces.
◆ Also may contain message variables and principal variables.
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Needham-Schroeder-Lowe public-key protocol:

A−→B : {[NA, A]}ek(B)

B−→A : {[NA, NB, B]}ek(A)

A−→B : {[NB]}ek(B)

■ Initiator role:

(Start , {[NA, XInit]}ek(XResp))

({[NA, XN , XResp]}ek(XInit)
, {[XN ]}ek(XResp))

■ Responder role:

({[XN , XInit]}ek(XResp), {[XN , NB, XResp]}ek(XInit)
)

({[NB]}ek(XResp),Ok)
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■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.
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◆ P1, . . . , Pn are names of principals that fulfill the roles
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is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

■ When a principal Pi running the role Ri = (mi,mo) :: R′

i in the run
sid will receive a message m, then it will

◆ match m with mi;
◆ generate a new message m′ by instantiating the outgoing

message mo and send it: send(sid , Ri,m
′);

◆ Set Ri to R′

i (in sid only).

■ Decompose m according to mi.

◆ Use dk(Pi) to decrypt messages encrypted with ek(Pi).
◆ The keys for symmetric encryption are contained in mi.

■ Verify the equality of instantiated parts of mi to the corre-
sponding parts of m′.

■ Initialize the new variables in mi with the corresponding parts
of m′.

■ Verify the signatures in m′.
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■ Adversary may start new runs by stating new(sid ;P1, . . . , Pn).

◆ sid is the unique session identifier of the run.
◆ P1, . . . , Pn are names of principals that fulfill the roles

R1, . . . , Rn.

■ Adversary may send messages by stating recv(sid , Ri,m) where m
is a message.

◆ The role Ri in the run sid will receive the message m and
process it.

■ When a principal Pi running the role Ri = (mi,mo) :: R′

i in the run
sid will receive a message m, then it will

◆ match m with mi;
◆ generate a new message m′ by instantiating the outgoing

message mo and send it: send(sid , Ri,m
′);

◆ Set Ri to R′

i (in sid only).

■ Use the values of already known keys, nonces, variables, etc.

■ Generate new values for keys and nonces that occur first time
in mo.
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■ An execution trace is a sequence of new-, recv- and
send-statements.

■ We have traces in both models — there are

◆ formal traces — sequences of terms over a message algebra with
a countable number of atoms for keys, nonces, random coins;

◆ computational traces — sequences of bit-strings.

■ A formal trace is valid if each message in a recv-statement can be
generated from messages in previous send- and recv-statements.
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■ A formal trace tf is a sequence consisting of principal names and
formal messages.

■ Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

■ Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.

■ Extend c to the entire trace, giving the computational trace c(tf ).
■ Denote tf ≤ tc if the computational trace tc can be obtained as a

translation of the formal trace tf .
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■ A formal trace tf is a sequence consisting of principal names and
formal messages.

■ Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

■ Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.

■ Extend c to the entire trace, giving the computational trace c(tf ).
■ Denote tf ≤ tc if the computational trace tc can be obtained as a

translation of the formal trace tf .

Lemma. If the used cryptographic primitives are secure then for any
computational adversary A, if tc is a computational trace of the protocol
running together with A then with overwhelming probability there exists
a valid formal trace tf , such that tf ≤ tc.
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■ The encryption systems must be IND-CCA secure.

◆ Adversary may not be able to distinguish E(k, π1(·, ·)) and
E(k, π2(·, ·)) even with access to D(k, ·).

◆ Results from the encryption oracle may not be submitted to the
decryption oracle.
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■ The encryption systems must be IND-CCA secure.

◆ Adversary may not be able to distinguish E(k, π1(·, ·)) and
E(k, π2(·, ·)) even with access to D(k, ·).

◆ Results from the encryption oracle may not be submitted to the
decryption oracle.

■ The signature system must be EF-CMA secure.

◆ Adversary may not be able to produce a valid
(message,signature)-pair, even when interacting with a signing
oracle.

◆ Messages submitted to the oracle do not count.

■ The message must be recoverable from the signature (and the
verification key).
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■ the set K of secret decryption keys of participants.

Iterate:
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■ for M , record that it is a pair 〈M1,M2〉.
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Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like a symmetric key then

■ add M to K;
■ pick a new formal symmetric key K and associate it with M .

Concerning symmetric encryption, attention has to be paid to encryption
cycles.
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Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like an encryption then try to decrypt it with all
keys in K. If M0 = D(Mk,M) for some Mk ∈ K, then

■ add M0 to M;
■ for M , record that it is an encryption of M0 with the formal key

corresponding to the encryption key of Mk.
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Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
If some M ∈M looks like a signature then try to verify it with all
verification keys in M. If V(Mk,M) is successful, then

■ add M0 = get message(M) to M;
■ for M , record that it is the signature of M0 verifiable with the formal

key corresponding to Mk.
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Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

Iterate:
etc. Try to decompose the messages in M as much as possible.
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Consider

■ a computational trace,

◆ Actually, the set M of messages appearing in it.

■ the set K of secret decryption keys of participants.

In the end:

■ for each uninterpreted message in M: associate it with a new formal
nonce.

■ Construct the formal trace using the structure of messages that we
recorded.
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If the trace is invalid, then the adversary did one of the following:

■ forged a signature;
■ guessed a nonce, symmetric key, or signature that it had only seen

encrypted.

We run the protocol while using the encryption / signing oracles to
encrypt / sign. We guess at which point the break happens.

■ We use the oracles for this particular key.
■ A forged signature promptly gives us a break of UF-CMA.
■ For guessed nonce, key or signature we generate two copies of it and

use the messages derived from these two copies as the inputs to the
oracle E(k, πb(·, ·)).

◆ After learning the nonce / key / signature, we learn b.
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■ A trace property of P is a subset of the set of all formal traces.
■ A protocol formally satisfies a trace property P if all its formal traces

belong to P .
■ A protocol computationally satisfies a trace property P if for almost

all computational traces tc of the protocol there exists a trace
tf ∈ P , such that tf ≤ tc.

Theorem. If a protocol formally satisfies some trace property P , then it
also computationally satisfies P .
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■ In the formal setting, the confidentiality of a certain nonce N means
that N will not be included in the knowledge set of the adversary.

■ In the computational setting, the confidentiality of a certain nonce N
means that no PPT adversary A can guess b from the following:

◆ Run the protocol normally, with A as the adversary, until. . .
◆ A denotes one of the just started protocol sessions as “under

attack”.
◆ Generate a random bit b and two nonces N0 and N1.
◆ Use Nb in the attacked session in the place of N .
◆ Continue executing the protocol until A stops it.
◆ Give N0 and N1 to A.

Theorem. Formal confidentiality of a nonce implies its computational
confidentiality.
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