# Strong forward security in signcryption schemes

Madeline González Muñiz



#### What is Signcryption?

- Sign-then-Encrypt for authenticity and confidentiality
- Combine both and achieve efficiency with signcryption primitive
- Goal: Achieve confidentiality, unforgeability, and nonrepudiation
- Setup has sender and receiver
  - \* Let Alice be the sender
  - \* Let Bob be the receiver
  - \* Let Eve be an adversary

#### Scheme Setup

- Signcryption scheme **SC**={K, SE, VD}, **U**={SK<sub>U</sub>, PK<sub>U</sub>}
- Correctness  $VD_B(c)=m$  for  $c=SE_A(m)$ 
  - \*\* Alice computes  $SE_A(m)$  using  $SK_A$ ,  $PK_B$
  - \*\* Bob computes  $VD_B(c)$  using  $SK_B$ ,  $PK_A$

#### Outsider Security

- Eve has access to the public keys of Alice and Bob
- **\*\*** EUF-CMA
  - Eve has to come up with a valid signcryption of new message m that Bob designcrypts successfully
- **IND-CCA** 
  - \*\* Eve chooses two messages, one of which is signcrypted and Eve must guess which one

#### **Insider Security**

- Induced signature scheme from SC
  - ★ Signing key is SK<sub>A</sub>, PK<sub>B</sub>
  - ★ Verification key is SK<sub>B</sub>, PK<sub>A</sub>
    - Make SK<sub>B</sub> public
- Induced encryption scheme from SC
  - ★ Encryption Key is SK<sub>A</sub>, PK<sub>B</sub>
    - Make SK<sub>A</sub> public
  - ★ Decryption Key is SK<sub>B</sub>, PK<sub>A</sub>
- Apply EUF-CMA, IND-CCA security definitions to induced schemes

#### Bilinear Map

- Let  $G_1$  (additive) and  $G_2$  (multiplicative) be two groups of prime order q and e:  $G_1 \times G_1 \rightarrow G_2$  a bilinear map:
- 1. Bilinear: for all P, Q in  $G_1$ , for all a, b in  $Z_q^*$ ,  $e(aP, bQ) = e(P, Q)^{ab}$
- 2. Non-degenerate: for any P in  $G_1$ , e(P, Q)=1 for all Q in  $G_1$  iff P=0
- 3. Computable: there exists an efficient algorithm to compute e(P, Q) for all P, Q in  $G_1$

#### Bilinear Diffie-Hellman Problem

- For  $G_1$ ,  $G_2$ , q, and e as described in the previous slide, and a generator P of  $G_1$ , the BDHP is to computer  $e(P, P)^{abc}$  given (P, aP, bP, cP).
- The decisional bilinear Diffie-Hellman Problem is to decide whether  $h = e(P, P)^{abc}$  for given (P, aP, bP, cP) and h in  $G_2$ .

#### Identity-Based Cryptography

- User identifier information serves as a public key (such as email address)
- Trusted third party is the Private Key Generator
- Using the public key of the PKG and Bob's identity, Alice can encrypt to Bob
- Using the public key of the PKG and Alice's identity, Bob can verify signatures from Alice

#### Example: Signcryption Scheme

Let 
$$H_1: \{0, 1\}^* \to G_1$$
,  $H_2: G_2 \to \{0, 1\}^n$ ,  $H_3: \{0, 1\}^* \times G_2 \to Z_q$ 

$$P_{pub}$$
= $sP$ ,  $Q_{ID}$ = $H_1(ID)$ ,  $d_{ID}$ = $sQ_{ID}$ 

Signcrypt: to send a message m to Bob, Alice follows the steps below

- 1. Compute  $Q_{ID_B} = H_1(ID_B) \in \mathbb{G}_1$ .
- 2. Choose  $x \leftarrow_R \mathbb{F}_q^*$ , and compute  $k_1 = \hat{e}(P, P_{pub})^x$  and  $k_2 = H_2(\hat{e}(P_{pub}, Q_{ID_B})^x)$ .
- 3. Compute  $c = E_{k_2}(m)$ ,  $r = H_3(c, k_1)$  $S = xP_{pub} - rd_{ID_A} \in \mathbb{G}_1$ .

The ciphertext is  $\sigma = (c, r, S)$ .

Unsigncrypt: when receiving  $\sigma = (c, r, S)$ , Bob performs the following tasks

- 1. Compute  $Q_{ID_A} = H_1(ID_A) \in \mathbb{G}_1$
- 2. Compute  $k_1 = \hat{e}(P, S)\hat{e}(P_{pub}, Q_{ID_A})^r$
- 3. Compute  $\tau = \hat{e}(S, Q_{ID_B})\hat{e}(Q_{ID_A}, d_{ID_B})^r$ and  $k_2 = H_2(\tau)$ .
- 4. Recover  $m = D_{k_2}(c)$  and accept  $\sigma$  if and only if  $r = H_3(c, k_1)$ .

#### Public Ciphertext Verifiability

- Why not public message verifiability?
- In the IND-CCA game, Eve selects messages  $m_1$  and  $m_2$ .
- Eve gets a signcryption of  $m_1$  or  $m_2$
- With public message verifiability, Eve can check whether  $m_1$  or  $m_2$  was signcrypted, thus distinguishing
- For non-repudiation of message *m*, use zero-knowledge proof

#### Forward Security

- Forward security in encryption schemes
  - \*\* Compromise of the current secret key does not allow an adversary to decrypt in the past
- Forward security in signature schemes
  - Compromise of the current secret key does not allow an adversary to forge in the past
- Strong forward security in signcryption achieves both

### Example: Signcryption Scheme with Encryption Forward Security

Note that only Bob can recover  $e(R, d_B)$  since Alice cannot recover r from R.

Authenticrypt: to send a message m to Bob, Alice follows the steps below

- 1. Compute  $Q_{ID_B} = H_1(ID_B) \in \mathbb{G}_1$ .
- 2. Choose  $x \leftarrow_R \mathbb{F}_q^*$ , and compute  $(k_1, k_2) = H_2(\hat{e}(P_{pub}, Q_{ID_B})^x)$ .
- 3. Compute  $c = E_{k_2}(m)$ ,  $r = H_3(c, k_1)$ ,  $S = xP_{pub} rd_{ID_A} \in \mathbb{G}_1$  and  $R = rQ_{ID_A}$ .

The ciphertext is  $\sigma = (c, R, S)$ .

Authentidecrypt: when receiving  $\sigma = (c, R, S)$ , Bob performs these tasks

- 1. Compute  $Q_{ID_A} = H_1(ID_A) \in \mathbb{G}_1$ .
- 2. Compute  $\tau = \hat{e}(S, Q_{ID_B})\hat{e}(R, d_{ID_B})$  and  $(k_1, k_2) = H_2(\tau)$ .
- 3. Recover  $m = D_{k_2}(c)$ .
- 4. Compute  $r = H_3(c, k_1)$  and  $rQ_{ID_A}$ .
- 5. Accept  $\sigma$  if and only if  $R = rQ_{ID_A}$ .

#### Non-Interactive Key Exchange

- Using pairings Alice and Bob can non-interactively compute a secret key in the identity-based setting:
  - \*\* Alice computes  $e(d_A, Q_B)$
  - \*\* Bob computes  $e(Q_A, d_B)$
  - $**e(d_A, Q_B) = e(sQ_A, Q_B) = e(Q_A, Q_B)^s = e(Q_A, sQ_B) = e(Q_A, d_B)$
- If the state of either Alice or Bob is compromised, the shared secret key is also compromised

### Partial Forward Secret Key Exchange

- Alice does the following:
  - \*\* Computes  $Q_{\mathsf{B}}$
  - \*\* Randomly selects x in  $\mathbb{Z}_q^*$

  - \*\* Sets  $r=H_2(t, k_t)$ ,  $R=rQ_A$ , and  $S=xP_{pub}-rd_A$
  - \*\* Sends Bob (t, R, S)
- If the sender's state becomes compromised, still secure because Alice cannot recover r given R

### Partial Forward Secret Key Exchange

- Bob can do the same for randomly selected x in  $Z_q^*$  and (t, R', S') where  $R'=r'Q_B$
- Then the agreed key becomes  $k_t = e(rd_A, R') = e(R, r'd_B)$
- If either the sender or receiver's state becomes compromised, still secure because Alice cannot recover r given R and Bob cannot recover r given R?
- What if both states are compromised?

### Partial Forward Secret Key Exchange

- What if both states are compromised?
- Alice needs to encrypt to Bob in a way that he cannot decrypt past messages, and vice versa
- We need forward-secure encryption

#### Forward-Secure Encryption

- Recall that compromise of the current secret key does not allow an adversary to decrypt in the past
- Decryption keys are generated via one-way functions in such a way that even the rightful user cannot decrypt in the past
- Seed used to generate the decryption keys may be stored in a separate/secure device to recover decryption keys from past periods
- Canetti et al. make use of binary trees to create a forward-secure encryption scheme

## Strong Forward-Secure Signcryption

- Use the concept of a binary tree so that each user updates their secret key
- Alice and Bob can signcrypt messages to each other in such a way that an adversary cannot decrypt nor forge in the past

28. juuni 2010. a. 18

