
PRIVACY-PRESERVING

FREQUENT ITEMSET MINING

WITH THE SECREC LANGUAGE

Roman Jagomägis

Theory days, Elva 2010

PROBLEM STATEMENT

 It is possible to gain significant added value by

combining and analyzing confidential information

 Serious security issues arise

 Cryptography researchers have proposed several

technical solutions to deal with the problem

 We want to implement Frequent Itemset Mining

algorithms with provable security guarantees

1
1

 J
u

n
e

 2
0

1
0

2

THE SECURE COMPUTATION PLATFORM

 We will implement our solution on the SHAREMIND secure
multi-party computation platform

 It can sequentially and in parallel execute operations on
private and public data

 Consists of 3 parties (miners) that process the data

 Uses the additive secret scheme in the ring



 Proven to be secure in the honest-but-curious security
model

1
1

 J
u

n
e

 2
0

1
0

3

𝑠1 + 𝑠2 + ⋯ + 𝑠𝑛 = 𝑠 𝑚𝑜𝑑 232

THE SHAREMIND DEPLOYMENT MODEL 1
1

 J
u

n
e

 2
0

1
0

4

THE SECREC LANGUAGE

 Syntactically based on C, but

 Omits several features (e.g. pointers)

 Adds some new ones (e.g. vectorized operations)

 Separation of public and private data

 Explicit declassification

1
1

 J
u

n
e

 2
0

1
0

public computation environmentpublic
inputs

public
outputs

private
inputs

private
outputs

controlled interactions between public and private data

private computation environment

5

WRITING PRIVACY-PRESERVING ALGORITHMS

 Declassify the private data as little as possible

 The control flow is public and must not be affected by private
data

 Oblivious selection still allows to hide the selected branch from
the observer by evaluating both branches
 if (a) x = y; else x = z; vs x = a*y + (1-a)*z

 Use aggregation techniques to maximize the entropy of the
output results (e.g. sum)

 Take a reasonable amount of data
 Better contribution to the uncertainty of the final result

 Better statistical results

 Parallelize operations smartly for better execution-times

1
1

 J
u

n
e

 2
0

1
0

6

WHAT IS FREQUENT ITEMSET MINING?

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

1
1

 J
u

n
e

 2
0

1
0

items / products

transactionscustomers

 What is the behavior of the customers in terms of

purchased products?

 What kind of products are frequently bought together?
7

WHAT IS FREQUENT ITEMSET MINING? 1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

Let 𝒜 = 𝑎1, … , 𝑎𝑚 be a list of all attributes.

The transaction 𝒯 is then a subset of 𝒜.

Thus, 𝒟𝑛×𝑚 =
𝒯1

⋮
𝒯𝑛

, so that 𝒟 𝑖, 𝑗 = 1 iff 𝑎𝑗 ∈ 𝒯𝑖 .

support 𝒳 – number of transactions that contain all items of 𝒳.

Frequent itemsets: support 𝒳 ≥ 𝑡

cover 𝒳 – the set of transaction identifiers that contain the itemset 𝒳.

8

FREQUENT ITEMSET MINING & PRIVACY

 Transactions are associated with the customers
 One can find out and exploit habits of individuals

 Stripping the associations does not protect the privacy enough
 Having extra knowledge when analysing the transactions makes

it possible to distinguish who is who

 We are thus motivated to use secure multi-party computation
systems

1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

9

FREQUENT ITEMSET MINING IN MPC 1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

Then, given 𝑎 ∈ 𝒜

cover 𝑎 = 𝒟 ∗, 𝑎

cover 𝒳 ∪ 𝒴 = cover 𝒳 ⊙ cover 𝒴

supp 𝒳 = cover 𝒳 = 𝒙 = 𝑥1 + ⋯ + 𝑥𝑛

10

In privacy-preserving computations

covers can be represented as index

vectors 𝒙 such that:

 𝑥𝑖 = 1 if 𝒳 ∈ 𝒯𝑖 and otherwise 𝑥𝑖 = 0.

T

1

0

1

1

0

H

1

0

1

0

1

TH

1

0

1

0

0

FREQUENT ITEMSET MINING STRATEGIES 1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

 Note, that support is an anti-
monotone function

 Subsets of frequent itemsets
must also be frequent

(T B H D)

(TB TH TD) (BH BD) (HD)

(TBH TBD) (THD) (BHD)

(TBHD)

 Tree traversal

problem

 Apriori – breadth-first

 Eclat – depth-first

𝒳 ⊆ 𝒴 ⟹ supp 𝒳 ≥ supp 𝒴

11

(Ø)

EXECUTING APRIORI

void main () {

public int[0][0] itemsets;

dbLoad ("dataTransactions");

itemsets = apriori (5000, 5, "mushroom");

matPrint (itemsets);

}

public int[][] apriori(public int threshold,

public int setSize,

public string table) {

...

}

1
1

 J
u

n
e

 2
0

1
0

12

DETERMINING FREQUENT COLUMNS IN DB

for (i = 0; i < dbColumns; i = i + 1) {

colName = "" + (i + 1);

z = dbGetColumn(colName, table);

frequency = vecSum(z);

isGood = (frequency >= threshold);

result = declassify(isGood);

if (result) {

*** cache the column data for reuse ***

}

}

1
1

 J
u

n
e

 2
0

1
0

13

GENERATING CANDIDATES

for (i = 0; i < F_size; i = i + 1) {

for (j = i + 1; j < F_size; j = j + 1) {

prefixEqual = true;

for (n = 0; n < k - 1; n = n + 1) {

if (F[i][n] != F[j][n]) prefixEqual = false;

}

// are the two itemsets suitable for constructing a new candidate?

if (prefixEqual && F[i][k-1] < F[j][k-1]) {

*** verify the new candidate ***

result = declassify(isGood);

if (result) {

matAppendRow(F_newcache, C_dot);

matResize(C, k, 1);

C = F[i][*];

matAddRow(C);

C[k] = F[j][k-1];

matAppendRow(F_new, C);

}

}

}

}

1
1

 J
u

n
e

 2
0

1
0

14

C = F[i][*]  F[j][k-1];

// check if the prefix of

// two potential candidates

// are equal or not

VERIFYING CANDIDATES

if (prefixEqual && F[i][k-1] < F[j][k-1]) {

C_dot = F_cache[i][*];

z = F_cache[j][*];

C_dot = C_dot * z;

frequency = vecSum(C_dot);

isGood = (frequency >= threshold);

result = declassify(isGood);

if (result) {

matAppendRow(F_newcache, C_dot);

*** C = F[i][*]  F[j][k-1]; ***

matAppendRow(F_new, C);

}

}

1
1

 J
u

n
e

 2
0

1
0

15

C_dot = F_cache[i][*] * F_cache[j][*];

SECURITY

 As long as sensitive data stays in the private
computation environment of SHAREMIND, it is fine.

 The only places in the code which declassify secret
data, do not leak more information than needed

 Individual rows are not distinguished

 We only open answers to the question: is the itemset
frequent or not?

 The final answer reveals the information about the
intermediate results, so there is no sense in hiding them.

1
1

 J
u

n
e

 2
0

1
0

16

PERFORMANCE

 Tested on the Mushroom dataset with 119 items, 8124
transactions and data density of 19.3%.

 High Performance Computing Center @ UT
 Machines with 2.5GHz quad-core Intel Xeon CPUs, 32GB RAM and very

fast network

2
0

 M
a

y
 2

0
1

0

17

1
1

 J
u

n
e

 2
0

1
0

18

Thank You!

Questions?

