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PROBLEM STATEMENT

 It is possible to gain significant added value by 

combining and analyzing confidential information

 Serious security issues arise

 Cryptography researchers have proposed several 

technical solutions to deal with the problem

 We want to implement Frequent Itemset Mining 

algorithms with provable security guarantees
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THE SECURE COMPUTATION PLATFORM

 We will implement our solution on the SHAREMIND secure 
multi-party computation platform

 It can sequentially and in parallel execute operations on 
private and public data

 Consists of 3 parties (miners) that process the data

 Uses the additive secret scheme in the ring 



 Proven to be secure in the honest-but-curious security 
model
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𝑠1 + 𝑠2 + ⋯ + 𝑠𝑛 = 𝑠 𝑚𝑜𝑑 232 



THE SHAREMIND DEPLOYMENT MODEL 1
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THE SECREC LANGUAGE

 Syntactically based on C, but

 Omits several features (e.g. pointers)

 Adds some new ones (e.g. vectorized operations)

 Separation of public and private data

 Explicit declassification
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WRITING PRIVACY-PRESERVING ALGORITHMS

 Declassify the private data as little as possible

 The control flow is public and must not be affected by private 
data

 Oblivious selection still allows to hide the selected branch from 
the observer by evaluating both branches
 if (a) x = y; else x = z; vs x = a*y + (1-a)*z

 Use aggregation techniques to maximize the entropy of the 
output results (e.g. sum)

 Take a reasonable amount of data
 Better contribution to the uncertainty of the final result

 Better statistical results

 Parallelize operations smartly for better execution-times
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WHAT IS FREQUENT ITEMSET MINING?

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1
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 What is the behavior of the customers in terms of 

purchased products? 

 What kind of products are frequently bought together?
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WHAT IS FREQUENT ITEMSET MINING? 1
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Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

Let 𝒜 =  𝑎1, … , 𝑎𝑚  be a list of all attributes. 

The transaction 𝒯 is then a subset of 𝒜. 

Thus, 𝒟𝑛×𝑚 =
𝒯1

⋮
𝒯𝑛

, so that 𝒟 𝑖, 𝑗 = 1 iff 𝑎𝑗 ∈ 𝒯𝑖 . 

support 𝒳  – number of transactions that contain all items of 𝒳. 

Frequent itemsets: support 𝒳 ≥ 𝑡 

cover 𝒳  – the set of transaction identifiers that contain the itemset 𝒳. 
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FREQUENT ITEMSET MINING & PRIVACY

 Transactions are associated with the customers
 One can find out and exploit habits of individuals

 Stripping the associations does not protect the privacy enough
 Having extra knowledge when analysing the transactions makes 

it possible to distinguish who is who

 We are thus motivated to use secure multi-party computation 
systems
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Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1
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FREQUENT ITEMSET MINING IN MPC 1
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Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

Then, given 𝑎 ∈ 𝒜 

cover  𝑎  = 𝒟 ∗, 𝑎  

cover 𝒳 ∪ 𝒴 = cover 𝒳 ⊙ cover 𝒴  

supp 𝒳 =  cover 𝒳  =  𝒙 = 𝑥1 + ⋯ + 𝑥𝑛  
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In privacy-preserving computations 

covers can be represented as index 

vectors 𝒙 such that: 

 𝑥𝑖 = 1 if 𝒳 ∈ 𝒯𝑖  and otherwise 𝑥𝑖 = 0. 
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FREQUENT ITEMSET MINING STRATEGIES 1
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Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

 Note, that support is an anti-
monotone function

 Subsets of frequent itemsets 
must also be frequent

(T       B       H       D)

(TB      TH      TD) (BH       BD) (HD)

(TBH        TBD) (THD)        (BHD)

(TBHD)

 Tree traversal 

problem

 Apriori – breadth-first

 Eclat – depth-first

𝒳 ⊆ 𝒴 ⟹ supp 𝒳 ≥ supp 𝒴  
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EXECUTING APRIORI

void main () {

public int[0][0] itemsets;

dbLoad ("dataTransactions");

itemsets = apriori (5000, 5, "mushroom");

matPrint (itemsets);

}

public int[][] apriori( public int threshold, 

public int setSize, 

public string table ) {

...

}
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DETERMINING FREQUENT COLUMNS IN DB

for (i = 0; i < dbColumns; i = i + 1) {

colName = "" + (i + 1);

z = dbGetColumn(colName, table);

frequency = vecSum(z);

isGood = (frequency >= threshold);

result = declassify(isGood);

if (result) {

*** cache the column data for reuse ***

}

}
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GENERATING CANDIDATES

for (i = 0; i < F_size; i = i + 1) {

for (j = i + 1; j < F_size; j = j + 1) {

prefixEqual = true;

for (n = 0; n < k - 1; n = n + 1) {

if (F[i][n] != F[j][n]) prefixEqual = false;    

}

// are the two itemsets suitable for constructing a new candidate?

if (prefixEqual && F[i][k-1] < F[j][k-1]) {

*** verify the new candidate ***

result = declassify(isGood);

if (result) {

matAppendRow(F_newcache, C_dot);

matResize(C, k, 1);

C = F[i][*];

matAddRow(C);

C[k] = F[j][k-1];

matAppendRow(F_new, C);

}

}

}

}
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C = F[i][*]  F[j][k-1];

// check if the prefix of

// two potential candidates

// are equal or not



VERIFYING CANDIDATES

if (prefixEqual && F[i][k-1] < F[j][k-1]) {

C_dot = F_cache[i][*];

z = F_cache[j][*];

C_dot = C_dot * z;

frequency = vecSum(C_dot);

isGood = (frequency >= threshold);

result = declassify(isGood);

if (result) {

matAppendRow(F_newcache, C_dot);

*** C = F[i][*]  F[j][k-1]; ***

matAppendRow(F_new, C);

}

}

1
1

 J
u

n
e

 2
0

1
0

15

C_dot = F_cache[i][*] * F_cache[j][*];



SECURITY

 As long as sensitive data stays in the private 
computation environment of SHAREMIND, it is fine.

 The only places in the code which declassify secret 
data, do not leak more information than needed

 Individual rows are not distinguished

 We only open answers to the question: is the itemset 
frequent or not?

 The final answer reveals the information about the 
intermediate results, so there is no sense in hiding them.
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PERFORMANCE

 Tested on the Mushroom dataset with 119 items, 8124 
transactions and data density of 19.3%.

 High Performance Computing Center @ UT
 Machines with 2.5GHz quad-core Intel Xeon CPUs, 32GB RAM and very 

fast network
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Thank You!

Questions?


