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PROBLEM STATEMENT

It is possible to gain significant added value by
combining and analyzing confidential information

Serious security issues arise

Cryptography researchers have proposed several
technical solutions to deal with the problem

We want to implement Frequent Itemset Mining
algorithms with provable security guarantees
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THE SECURE COMPUTATION PLATFORM

We will implement our solution on the SHAREMIND secure
multi-party computation platform

It can sequentially and in parallel execute operations on
private and public data

Consists of 3 parties (miners) that process the data

Uses the additive secret scheme in the ring Z. 32
S{ + 5, + -+ s, =smod 23

Proven to be secure in the honest-but-curious security
model
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THE SHAREMIND DEPLOYMENT MODEL
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THE SECREC LANGUAGE

Syntactically based on C, but
Omits several features (e.g. pointers)

Adds some new ones (e.g. vectorized operations)

Separation of public and private data

public public computation environment public
inputs == mmmmmmmm e outputs
qi ;; —)
private controlled interactions between public and private data private
inputs JU— Jg ________ ‘lr_ ________ 4: ________ ‘lf_ _________ , outputs
—) s

---------------------------------------------------

private computation environment

Explicit declassification
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WRITING PRIVACY-PRESERVING ALGORITHMS

Declassify the private data as little as possible

The control flow is public and must not be affected by private
data

Oblivious selection still allows to hide the selected branch from
the observer by evaluating both branches

if (@) x =Yy, else x = z; VS X =a*y + (1-a)*z

Use aggregation technigues to maximize the entropy of the
output results (e.g. sum)

Take a reasonable amount of data
Better contribution to the uncertainty of the final result
Better statistical results

Parallelize operations smartly for better execution-times
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WHAT IS FREQUENT ITEMSET MINING?

items / products
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— transactions

What is the behavior of the customers Iin terms of

purchased products?

What kind of products are frequently bought together?
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WHAT 1S FREQUENT ITEMSET MINING?
- RIEREEN Let A = (aq, ..., a,,) be alist of all attributes.
c 1 1 1 0

The transaction T is then a subset of A.

I
Thus, D™™ = i, sothat D[i,j] = 1iffq; € T;.
Tn

o O Bk
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1 0 1
1 1 0
0 1 1
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support(X) — number of transactions that contain all items of X.

Frequent itemsets: support(X) >t

cover(X) — the set of transaction identifiers that contain the itemset X.
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FREQUENT ITEMSET MINING & PRIVACY
__| Tea | Beer | Honey | Diapers
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Transactions are associated with the customers
One can find out and exploit habits of individuals

Stripping the associations does not protect the privacy enough

Having extra knowledge when analysing the transactions makes
it possible to distinguish who is who

We are thus motivated to use secure multi-party computation
systems
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FREQUENT ITEMSET MINING IN MPC
|| Tea | Beer | Honey | Diapers IS privacy-preserving computations
c 1 1 1 0

covers can be represented as index

vectors x such that:

o B
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Then, givena € A
1 1 1
cover({a}) = D[*,a] 0 0 0
cover(X U Y) = cover(X) © cover(Y) 1 © i
1 0 0
supp(X) = |cover(X)| = [x] = x; + -+ + x,, 0 1 0

x; = 11t X € J; and otherwise x; = 0.
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FREQUENT ITEMSET MINING STRATEGIES
| Tea | Beer | Honey | Diapers |
c 1 1 1 0
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Tree traversal

problem

Apriori — breadth-first

Eclat — depth-first
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Note, that support is an anti-
monotone function

X €Y = supp(X) = supp(Y)

Subsets of frequent itemsets
must also be frequent
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EXECUTING APRIORI

=
(@
5
void main () { e
public 1Int[0][0] itemsets; E
dbLoad ("dataTransactions");
itemsets = apriori (5000, 5, "mushroom");

matPrint (itemsets);

public int[][] apriori( public int threshold,
public int setSize,

public string table ) {




DETERMINING FREQUENT COLUMNS IN DB

for (1 = 0; 1 < dbColumns; 1 =1 + 1) {

colName = "" + (1 + 1);
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z = dbGetColumn (colName, table);
frequency = vecSum(z) ;
isGood = (frequency >= threshold);

result = declassify (isGood) ;

if (result) {

*** cache the column data for reuse ***




(GENERATING CANDIDATES

H
[N
(@
e
for (1 = 0; 1 < F size; 1 = i + 1) { ®
for (j =i + 1; J < F_size; j =3 + 1) { D
prefixEqual = true; 5

for (n = 0; n <k - 1; n=n+ 1) { // check 1if the prefix of

if (F[i][n] != F[J][n]) prefixEqual = false; // two potential candidates
} // are equal or not

// are the two itemsets suitable for constructing a new candidate?
if (prefixEqual && F[i]1[k-11 < F[3j1[k-11) {

*** yverify the new candidate ***

result = declassify(isGood) ;

if (result) {
matAppendRow (F newcache, C dot);

matResize (C, k, 1);

C = F[1]1[*];
matAddRow (C) ;

Cl[k] = F[J1[k-11;
matAppendRow (F _new, C);

C = F[i][*] © F[J]1[k-11;




VERIFYING CANDIDATES

1if (prefixEqual && F[1][k-1]1 < F[3]1[k-11) {
C dot = F cache[i][*];
z = F cache[j][*]; C dot = F cache[i][*] * F_cache[j]1[*];
C dot = C dot * z;
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frequency = vecSum(C dot);
isGood = (frequency >= threshold);
result = declassify(isGood);

if (result) {
matAppendRow (F_newcache, C dot);

*xx Co= FLL1[*] U FI3I[k-11; ***
matAppendRow (F new, C);




SECURITY

As long as sensitive data stays in the private
computation environment of SHAREMIND, it Is fine.

The only places in the code which declassify secret
data, do not leak more information than needed

Individual rows are not distinguished

We only open answers to the question: is the itemset
frequent or not?

The final answer reveals the information about the

Intermediate results, so there is no sense in hiding them.
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Running-time in seconds

PERFORMANCE
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Tested on the Mushroom dataset with 119 items, 8124

transactions and data density of 19.3%.

High Performance Computing Center @ UT
Machines with 2.5GHz quad-core Intel Xeon CPUs, 32GB RAM and very

b
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fast network
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Thank You!

Questions?




