PRIVACY-PRESERVING
FREQUENT ITEMSET MINING
@ WiTH THE SECREC LANGUAGE

Py Roman Jagomagis

Theory days, Elva 2010

PROBLEM STATEMENT

It is possible to gain significant added value by
combining and analyzing confidential information

Serious security issues arise

Cryptography researchers have proposed several
technical solutions to deal with the problem

We want to implement Frequent Itemset Mining
algorithms with provable security guarantees

0TOZ aunrC 1T

THE SECURE COMPUTATION PLATFORM

We will implement our solution on the SHAREMIND secure
multi-party computation platform

It can sequentially and in parallel execute operations on
private and public data

Consists of 3 parties (miners) that process the data

Uses the additive secret scheme in the ring Z. 32
S{ + 5, + -+ s, =smod 23

Proven to be secure in the honest-but-curious security
model

0TOZ aunrC 1T

THE SHAREMIND DEPLOYMENT MODEL

, ----------------- \
q Miner 1

5 /

Clients enter Secure multi-party
transactional data computation

3

& &
!

S SED GER GEL GED SED GED GEL GEL SED GED GEL GED SED GED GEn eEm =

=

Access results
from data mining
and aggregation
algorithms

Miner 3

- e aas s S s SEs TES SIS SES SES TES SEe SEn SEe s Tm

&
1l

0TOZ aunrC 1T

THE SECREC LANGUAGE

Syntactically based on C, but
Omits several features (e.g. pointers)

Adds some new ones (e.g. vectorized operations)

Separation of public and private data

public public computation environment public
inputs == mmmmmmmm e outputs
qi ;; —)
private controlled interactions between public and private data private
inputs JU— Jg ________ ‘lr_ ________ 4: ________ ‘lf_ _________ , outputs
—) s

private computation environment

Explicit declassification

0TOZ aunrC 1T

WRITING PRIVACY-PRESERVING ALGORITHMS

Declassify the private data as little as possible

The control flow is public and must not be affected by private
data

Oblivious selection still allows to hide the selected branch from
the observer by evaluating both branches

if (@) x =Yy, else x = z; VS X =a*y + (1-a)*z

Use aggregation technigues to maximize the entropy of the
output results (e.g. sum)

Take a reasonable amount of data
Better contribution to the uncertainty of the final result
Better statistical results

Parallelize operations smartly for better execution-times

0TOZ aunrC 1T

WHAT IS FREQUENT ITEMSET MINING?

items / products

|
| 1
T Tea beor | Honey | Diapers
c 1 1 1 0)

-

customers — C
A

N

0
1
1
0

1
0
1
1

0
1
0
1

R, O O

— transactions

What is the behavior of the customers Iin terms of

purchased products?

What kind of products are frequently bought together?

0TOZ aunrC 1T

WHAT 1S FREQUENT ITEMSET MINING?
- RIEREEN Let A = (aq, ..., a,,) be alist of all attributes.
c 1 1 1 0

The transaction T is then a subset of A.

I
Thus, D™™ = i, sothat D[i,j] = 1iffq; € T;.
Tn

o O Bk

0 1 0
1 0 1
1 1 0
0 1 1

@ > O W
=

support(X) — number of transactions that contain all items of X.

Frequent itemsets: support(X) >t

cover(X) — the set of transaction identifiers that contain the itemset X.

0TOZ aunrC 1T

FREQUENT ITEMSET MINING & PRIVACY
__| Tea | Beer | Honey | Diapers

™ > O ©® O

©O B B O B
N N =
P O kB O B
P O O B O

Transactions are associated with the customers
One can find out and exploit habits of individuals

Stripping the associations does not protect the privacy enough

Having extra knowledge when analysing the transactions makes
it possible to distinguish who is who

We are thus motivated to use secure multi-party computation
systems

0TOZ aunrC 1T

FREQUENT ITEMSET MINING IN MPC
|| Tea | Beer | Honey | Diapers IS privacy-preserving computations
c 1 1 1 0

covers can be represented as index

vectors x such that:

o B

®® > O W
o

0 1 0
1 0 1
1 1 0
0 1 1

=

Then, givena € A
1 1 1
cover({a}) = D[*,a] 0 0 0
cover(X U Y) = cover(X) © cover(Y) 1 © i
1 0 0
supp(X) = |cover(X)| = [x] = x; + -+ + x,, 0 1 0

x; = 11t X € J; and otherwise x; = 0.

0TOZ aunrC 1T

FREQUENT ITEMSET MINING STRATEGIES
| Tea | Beer | Honey | Diapers |
c 1 1 1 0

0
1
1
0

W > O W

Tree traversal

problem

Apriori — breadth-first

Eclat — depth-first

1
0
1
1

0
1
0
1

P O O Kk

Note, that support is an anti-
monotone function

X €Y = supp(X) = supp(Y)

Subsets of frequent itemsets
must also be frequent

(TB

TH

Q)

(///<77¥<T\\\)
AN

TD)

SN N

(TBH

/

(TBHD)

TBD)

(THD)

(BH

\

(BHD)

BD)

0TOZ aunrC 1T

(HD)

EXECUTING APRIORI

=
(@
5
void main () { e
public 1Int[0][0] itemsets; E
dbLoad ("dataTransactions");
itemsets = apriori (5000, 5, "mushroom");

matPrint (itemsets);

public int[][] apriori(public int threshold,
public int setSize,

public string table) {

DETERMINING FREQUENT COLUMNS IN DB

for (1 = 0; 1 < dbColumns; 1 =1 + 1) {

colName = "" + (1 + 1);

[—
[E
[
c
)
@D
N
o
=
o

z = dbGetColumn (colName, table);
frequency = vecSum(z) ;
isGood = (frequency >= threshold);

result = declassify (isGood) ;

if (result) {

*** cache the column data for reuse ***

(GENERATING CANDIDATES

H
[N
(@
e
for (1 = 0; 1 < F size; 1 = i + 1) { ®
for (j =i + 1; J < F_size; j =3 + 1) { D
prefixEqual = true; 5

for (n = 0; n <k - 1; n=n+ 1) { // check 1if the prefix of

if (F[i][n] != F[J][n]) prefixEqual = false; // two potential candidates
} // are equal or not

// are the two itemsets suitable for constructing a new candidate?
if (prefixEqual && F[i]1[k-11 < F[3j1[k-11) {

*** yverify the new candidate ***

result = declassify(isGood) ;

if (result) {
matAppendRow (F newcache, C dot);

matResize (C, k, 1);

C = F[1]1[*];
matAddRow (C) ;

Cl[k] = F[J1[k-11;
matAppendRow (F _new, C);

C = F[i][*] © F[J]1[k-11;

VERIFYING CANDIDATES

1if (prefixEqual && F[1][k-1]1 < F[3]1[k-11) {
C dot = F cache[i][*];
z = F cache[j][*]; C dot = F cache[i][*] * F_cache[j]1[*];
C dot = C dot * z;

0TOZ aunrC 1T

frequency = vecSum(C dot);
isGood = (frequency >= threshold);
result = declassify(isGood);

if (result) {
matAppendRow (F_newcache, C dot);

xx Co= FLL1[] U FI3I[k-11; ***
matAppendRow (F new, C);

SECURITY

As long as sensitive data stays in the private
computation environment of SHAREMIND, it Is fine.

The only places in the code which declassify secret
data, do not leak more information than needed

Individual rows are not distinguished

We only open answers to the question: is the itemset
frequent or not?

The final answer reveals the information about the

Intermediate results, so there is no sense in hiding them.

0TOZ aunrC 1T

Running-time in seconds

PERFORMANCE

-

o
)
|

-
o

—

o
%)
|

-

D\
wn
|

Tested on the Mushroom dataset with 119 items, 8124

transactions and data density of 19.3%.

High Performance Computing Center @ UT
Machines with 2.5GHz quad-core Intel Xeon CPUs, 32GB RAM and very

b
]

fast network

Running—time

Algorithms

Apriori
-4 Eclat
== Hybrid 200
—— Hybrid 500
Hybrid 1000

#

| | | | | | |
2000 2500 3000 3500 4000 4500 5000
Minimum support

Peak consumption in MBs

Memory consumption

1400

1200

1000

800 —

600 —

400

200 —

Algorithms
Apriori
-4 Eclat

== Hybrid 200
—— Hybrid 500
Hybrid 1000

| | | | | | |
2000 2500 3000 3500 4000 4500 5000

Minimum support

0102 Ae\ 02

[—
[E
[
c
)
@D
N
o
=
o

Thank You!

Questions?

