
Optimizing MPC for robust and scalable integer
and floating-point arithmetic

Liisi Kerik1, Peeter Laud1, and Jaak Randmets1,2

1 Cybernetica AS, Tartu, Estonia
2 University of Tartu, Tartu, Estonia

{liisi.kerik, peeter.laud, jaak.randmets}@cyber.ee

Abstract. Secure multiparty computation (SMC) is a rapidly matur-
ing field, but its number of practical applications so far has been small.
Most existing applications have been run on small data volumes with
the exception of a recent study processing tens of millions of education
and tax records. For practical usability, SMC frameworks must be able
to work with large collections of data and perform reliably under such
conditions. In this work we demonstrate that with the help of our re-
cently developed tools and some optimizations, the Sharemind secure
computation framework is capable of executing tens of millions integer
operations or hundreds of thousands floating-point operations per sec-
ond. We also demonstrate robustness in handling a billion integer inputs
and a million floating-point inputs in parallel. Such capabilities are ab-
solutely necessary for real world deployments.

Keywords: Secure Multiparty Computation, Floating-point operations,
Protocol design

1 Introduction

Secure multiparty computation (SMC) [19] allows a group of mutually distrust-
ing entities to perform computations on data private to various members of the
group, without others learning anything about that data or about the intermedi-
ate values in the computation. Theory-wise, the field is quite mature; there exist
several techniques to achieve privacy and correctness of any computation [19,
28, 15, 16, 21], and the asymptotic overheads of these techniques are known. In
practical terms, the search for best implementations and deployment strategies
for performing computations on real-world scale is still ongoing. There exist sev-
eral SMC platforms [4, 17, 9, 13, 20, 31, 35, 29] and independent implementations
of SMC protocols for complex computational tasks [11, 25] looking for the right
trade-offs.

Sharemind [9, 10] is one of the most mature SMC platforms and the base
of some of the largest SMC deployments until now. With the help of Share-
mind, we have performed statistical analyses over tens of millions of records [22,
Chap. 6], and searched for anomalies in a set of 100 million records [5]. Share-
mind achieves the versatility and scalability through a simple security model



(enabling efficient protocols) and a large set of composable protocols for primi-
tive operations, which can be used as building blocks for large applications. The
total number of implemented primitive protocols for integer, fixed- and floating-
point operations for arguments of various sizes is significantly over 100. While
historically the protocols have been implemented in C++, with more complex
protocols invoking simpler ones in hierarchic manner, recently we have intro-
duced a domain-specific language (the Protocol DSL) for specifying them [27].
The Protocol DSL brings at least two benefits. First, it allows tighter composi-
tion of protocols, enabling subprotocols with data dependencies to run in parallel
without any additional effort from the developer of the protocol set. Second, it
allows the developer to try out different implementation options for complex
protocols with an effort that is orders of magnitude smaller compared to using
C++.

In this paper, we report on our optimizations for the protocols in Share-
mind’s protocol set, enabled by the Protocol DSL. Many of the improved pro-
tocols are used for operations on private floating-point numbers. Our reported
optimizations may be useful for other SMC platforms and protocol sets provid-
ing private floating-point numbers, as several of our optimizations are not that
dependent on particular details of Sharemind. In addition to optimizations of
private floating-point operations, we also show how the protocol construction
toolchain, central to which is the Protocol DSL, allowed us to implement a ma-
jor architectural change of all protocols with relatively little effort. This provides
additional validation of the choices made in [27].

This paper has the following structure. In Sec. 2 we give an overview of
Sharemind and the protocols it uses, as well as the related work on privacy-
preserving floating-point operations. In Sec. 3 we describe our improvements
to various floating-point protocols, both generic changes and modifications of
specific protocols, as well as the constructions of protocols for new operations.
In Sec. 4 we describe another optimization that applies to all protocols in the
main protocol set of Sharemind. We show that the optimizations in this and
previous section improve the performance of protocols for various operations.
In Sec. 5 we give a more thorough description on how we have measured the
performance of the protocols of Sharemind. We provide precise running times
of certain protocols, thereby making clear the current state of the art. Finally,
we conclude in Sec. 6.

2 Background

In a Sharemind deployment, the involved parties are divided into three classes
which may overlap: the input parties provide inputs to the private computation,
the computation parties execute the SMC protocols for performing operations
with private data, and result parties learn the result(s) of the computation [6].
While the architecture of Sharemind supports the use of several SMC protocol
sets [8], the main set in use is based on additively sharing the private values
among three computing parties [10]. The sharing can be over any finite ring



and there are protocols to convert between different rings. Hence the input par-
ties secret share their inputs among computation parties, and the result parties
recombine the shares of outputs they receive from computation parties. The
computation parties follow the description of the private functionality specified
in the SecreC language [8], invoking the SMC protocols in specified order.

Sharemind’s protocol set provides security against one passively corrupted
party. Its security and privacy guarantees are composable, allowing the security
of complex protocols to be deduced from the security of its component proto-
cols [7]. The development of secure protocols is also greatly assisted by a protocol
privacy checker [32] for the Protocol DSL [27].

Typically, rings Z2n are used in Sharemind applications and supported by
the Protocol DSL. In the following, we let JxK denote the value x which has been
secret-shared among the computing parties, and JxKi denotes the i-th party’s
share.

For private numeric computations (e.g. for the satellite collision analysis [23]),
Sharemind features a set of protocols for working with secret-shared fixed-point
and floating-point numbers [23, 26]. In this protocol set, a floating-point number
x is represented as x = (−1)s ·f ·2e, where s ∈ {0, 1} is the sign bit, f ∈ Z2m the
significand, and e ∈ Z2n the exponent. The representation with (m,n) = (32, 8)
[resp. (m,n) = (64, 11)] is called single precision [resp. double precision]. For a
private value, each part is separately secret-shared among the computing parties.
The same representation (plus an indication whether the number is 0) is used
also by Aliasgari et. al [3] who have built a private floating-point protocol set
implementing arithmetic operations and a number of elementary functions on
top of Shamir’s threshold secret sharing [34]. In a different line of work, protocols
for private floating-point operations have been built atop garbled circuits or the
GMW protocol set [30, 18] with various optimizations.

Internally, many of our floating-point protocols call protocols for computa-
tions on private fixed-point numbers. In our protocols, a fixed-point number x
is represented as an integer x · 2M for a suitable M . Several sets of SMC pro-
tocols for fixed-point computations (including both arithmetic operations and
elementary functions) have been proposed [14, 26]. Our Protocol DSL has al-
lowed us to experiment with the details of these protocols and propose more
efficient implementations.

3 Improvements in protocol design

In our floating-point protocols, we use the following operations as primitive build-
ing blocks:

– Zero-extension of secret shared integers denoted with Extend(JuK, n) where
JuK ∈ Z2m . This operation converts a private integer from Z2m to Z2n+m

without changing its value.
– Dropping some least-significant bits of a secret shared integer, denoted with

Cut(JuK, n) where JuK ∈ Z2m and n ≤ m. The cut operation removes n



Algorithm 1: Protocol PowArr for integer powers of a fixed-point number.
Data: Jx̃K, k, n, n′

Result: Computes the powers of a secret fixed-point number. Takes in a secret
fixed-point number Jx̃K with 0 bits before and n bits after the radix
point. Outputs a secret fixed-point array {Jx̃iK}k

i=1 with n′ + n bits
before and n bits after the radix point.

1 if k = 0 then
2 return {}
3 else
4 l← dlog2 ke
5 Jx̃1K← Extend(Jx̃K, n′ + (l + 1)n)
6 for i← 0 to l − 1 do
7 {Jx̃jK}2i+1

j=2i+1 ← MultArr(Jx̃2iK, {Jx̃jK}2i

j=1)
8 for j ← 1 to 2i+1 do in parallel
9 Jx̃jK← Cut(Jx̃jK, n)

10 end
11 end
12 return {Jx̃iK}k

i=1
13 end

least significant bits of JuK and results in an (m−n)-bit integer. It computes
bu/2nc more efficiently than division or shift-right operation.

– Multiplication of integer with an array of integers MultArr(JuK, {JviK}k
i=1),

where JuK ∈ Z2n and JviK ∈ Z2n for every i ∈ {1, . . . , k}. The operation
results in an array {JwiK}k

i=1 ∈ Zk
2n where wi = u ·vi. The implementation is

straightforward based on regular integer multiplication protocol. Efficiency
is improved by sending the shares of u only once instead of k times.

We do not describe the implementations of those operations here. However, all
of them are relatively straightforward to implement using the tools provided
in [10].

3.1 Efficient polynomial evaluation

Most of our floating-point functions are implemented using polynomial approxi-
mation. For example, when computing the square root of 2e · f we approximate
the square root of fixed-point f with a polynomial and return 2e/2 ·

√
f [26, Alg.

5]. Fast and precise fixed-point polynomial evaluation is important to ensure the
speed and accuracy of floating-point operations. Recall that fixed-point addition
is just regular integer addition. Multiplication requires extending both inputs to
larger integers, integer multiplication and dropping the lowest bits.

We have significantly improved upon the fixed-point polynomial evaluation
presented in [26, Alg. 1]. Improved protocol for polynomial evaluation is pre-
sented in Alg. 2 and a helper function for evaluating integer powers of a fixed-



Algorithm 2: Fixed-point polynomial evaluation protocol.
Data: Jx̃K, {c̃i}k

i=0, n, n′

Result: Computes a public polynomial on a secret fixed-point number. Takes in
a secret fixed-point number Jx̃K with 0 bits before and n bits after the
radix point and public fixed-point coefficients {c̃i}k

i=0 with n′ + n bits
before and n bits after the radix point (the highest n bits are empty).
Outputs a secret fixed-point number JỹK with 0 bits before and n bits
after the radix point that is the value of the polynomial at x.

1 {Jx̃iK}k
i=1 ← PowArr(Jx̃K, k, n, n′)

2 Jz̃0K← Share(c̃0)
3 for i← 1 to k do in parallel
4 Jz̃iK← c̃i · Jx̃iK
5 end
6 for i← 0 to k do in parallel
7 Jz̃′iK← Trunc(Jz̃iK, n′)
8 end
9 JỹK← Cut(Sum({Jz̃′iK}

k
i=0), n)

10 return JỹK

point number is presented in Alg. 1. First, polynomial coefficients are now rep-
resented in two’s complement form as opposed to using sign bits. This means we
do not need to pick different multiplication results depending on the sign bits.
Second, we have improved the efficiency of fixed-point multiplications which are
used to evaluate the polynomial. The algorithm in [26] uses ordinary fixed-point
multiplications throughout. Fixed-point multiplication requires extending the
operands beforehand, multiplying, and then cutting off the lowest bits. This ap-
proach is costly, and we would like to avoid extending the operands before each
multiplication. So, we extend the argument of the polynomial only once, in the
beginning, by a sufficient number of bits to allow for all subsequent cuts. This
approach is analogous to the one used in [27, Alg. 8] for computing the product
of several fixed-point numbers. Third, we have made the last round of polyno-
mial evaluation more efficient; while in [26, Alg. 1] the powers of the argument
are multiplied by the corresponding coefficients, the lowest bits of the results
are cut off, and then they are added up to find the value of the polynomial, we
first perform the summation and then cut off the lowest bits of the sum, thus
replacing k cut operations with 1. In addition to efficiency this shortcut slightly
improves precision as it results in smaller rounding error of the end result.

Our polynomial evaluation algorithm is in a way less general than [26, Alg.
1] as both the argument and the result have to be in range [0, 1). However, this
approach is sufficient for all the floating-point functions that we have imple-
mented. In fact, this striction offers an advantage as it ensures that the powers
of x do not overflow. Note that we do not place any restrictions on the size of
the coefficients, while [26, Alg. 1] requires the coefficients to fit into the same
fixed-point format as the argument and the result. In [26, Alg. 5], when com-



puting the square root of a fixed-point number in range [0.5, 1), the argument
has to be shifted right in order to achieve a fixed-point format with enough bits
before radix point to fit in the coefficients; our approach allows for coefficients
that are larger than the argument, and therefore, no precision is lost through
shifting out the lowest bits of the argument.

We, similarly to [26], approximate functions by interpolating through Cheby-
shev nodes [12, p. 521]. We have implemented two adjustments which result in
better approximations.

First, sometimes we want the result to be in a certain range. For example, we
assume that the result of 2x−1 where x ∈ [0, 1) ought to be in range [0.5, 1). How-
ever, approximation errors might cause results outside the range and overflows.
In [26] this problem was solved by the so-called correction protocol which nor-
malizes the result into the correct range. We get a suitable result directly, with
no need for the correction step. If we interpolate function f(x) in range (a, b) and
we need f(a) to be rounded upwards and f(b) to be rounded downwards we pick
a small positive constant ε and interpolate function f(x) + ε · (a+ b−2x)/(b−a)
instead. The small linear term ensures that approximation errors are in the right
direction. If we want to round f(a) downwards and f(b) upwards then ε has to
be negative. Should need arise to achieve errors in the same direction on both
ends a small quadratic term added to the function can achieve this result.

Second, large coefficients pose a problem: due to the particularities of fixed-
point polynomial evaluation they can result in large approximation errors and
make the algorithm too imprecise for practical use in some cases. For example,
interpolating erf(8x) in range [0.125, 0.25) with 17 nodes results in coefficients
that are larger than 230 and therefore need 31 bits before radix point; when eval-
uating this polynomial, the rounding errors inherent to fixed-point computations
result in an extremely imprecise approximation. We can improve the situation
by noting that the first three bits of the input are always the same (001) and
shifting the input 3 bits to the left, which amounts to multiplying it by 8 and
subtracting 1. The initial range [0.125, 0.25) is mapped into [0, 1) and the new
function that has to be interpolated is erf(x + 1). Interpolation with 17 nodes
yields coefficients which are less than 1 and therefore require 0 bits before radix
point and thus, precision is improved, and in this example the length of most
variables in polynomial computation is reduced by almost 4 bytes. This approach
of shifting out the known highest bit(s) of the argument and modifying the func-
tion for interpolation has improved the efficiency and precision of square root,
logarithm, and error function.

As a result of aforementioned changes, evaluating a polynomial of degree 16
on a 64-bit fixed-point number takes 57 rounds and 7.5 KB of communication,
while with the old algorithm, it takes 89 rounds and 27 KB of communication.

3.2 Additional improvements to floating-point protocols

In addition to improvements made to polynomial evaluation that benefit most
floating-point functions, we have also modified other protocols from [26], namely
inverse, square root, exponent function, and error function.



The new inverse protocol has been presented in [27, Alg. 8]. We have found
that correction of fixed-point inverse approximation results is not necessary as
with this method 0.5−1 is always rounded down and 1−1 is always rounded up.

Computation of exponent function begins by separating the input x into
whole part and fractional part. In [26, Alg. 6] the whole part bxc is computed in
integer format and converted to floating-point format. The fractional part {x}
is computed through floating-point subtraction: {x} = x − bxc. Then {x} has
to be converted to fixed-point format in order to approximate 2x. Instead of
combining costly integer to floating-point conversion and floating-point subtrac-
tion, we have designed a special separation protocol which efficiently separates a
floating-point number into whole and fractional part (in integer and fixed-point
format, respectively) by obliviously choosing between all possible results.

Another optimization we have devised for exponent function is an improve-
ment to the computation of polynomials on {x} and 1−{x}. Instead of computing
the powers of 1−{x} in ordinary manner we use the powers of {x} and binomial
coefficients. This employs only fast, local operations - multiplication by a public
integer and addition. (For why we need to compute the value of a polynomial
on both {x} and 1− {x} see [26, Alg. 6].)

When 2{x} has been found and converted to floating-point format, the end
result is computed as 2bxc · 2{x}. In [26, Alg. 6] this is achieved through floating-
point multiplication. We have found a more efficient approach: since 2{x} is a
floating-point number we can just add bxc to the exponent (which allows us to
avoid an integer to floating-point conversion and a floating-point multiplication).

Finally, we have added a new feature to exponent function. When 2x becomes
so small it cannot be represented accurately, we round the result down to zero.

In [26, Alg. 7] erf(x) is approximated by 2x/
√
π if x < ε and 1 if x > 4. The in-

terval [ε, 4) is divided into 4 pieces and in each one the function is approximated
with a different polynomial. In our implementation, double-precision erf(x) is
approximated by 1 if x > 8. The interval [ε, 8) is divided into 8 pieces; in first six
the function is approximated with polynomials and in last two with constants.
We compute several different polynomials (4 in single-precision case and 6 in
double-precision case) on the same number and perform oblivious choices in the
end. We can optimise this calculation by computing the powers of the argument
only once as they are the same for all polynomials. But the main improvement
in performance comes from restructuring the algorithm to compute only the cor-
rect value of erf(x) instead of computing several different values and obliviously
choosing between them in the end. In [26, Alg. 7] several possible shift rights
of the significand are computed (essentially giving us several possible results of
the floating-point to fixed-point conversion). On all of them, error function is
computed, and finally, the correct result is picked obliviously. We have reversed
the order of the last two steps: first, we obliviously pick the correct shift right of
the significand (essentially performing a floating-point to fixed-point conversion)
and then we compute the error function on the single correct value.

Our improvements have increased precision compared to [26]. The maximum
relative error of inverse is 2.69 · 10−9 for single precision and 7.10 · 10−19 for



double precision (compared to 1.3 · 10−4 and 1.3 · 10−8 in [26]). For square root
our errors are respectively 4.92 ·10−9 and 1.30 ·10−15 (compared to 5.1 ·10−6 and
4.1 · 10−11 in [26]). In a few cases we have achieved better accuracy guarantees
than what IEEE 754 single- and double-precision floating-point numbers allow.
This is possible because we are using slightly longer fractional parts.

3.3 New floating-point protocols

In addition to improving the floating-point protocols published in [23, 26, 27] we
have also designed a few new ones, namely logarithm, sine, floor and ceiling.
Here we shall present a short explanation of logarithm and sine.

In order to compute the binary logarithm of a floating-point number we note
that log2(2e · f) = e + log2 f . As f is in range [0.5, 1) its binary logarithm
is in range [−1, 0). However, in order to easily convert it to a floating-point
number, we would like to get a result in range [0.5, 1). Therefore, we transform
the expression above as follows: e+log2 f = (e−2)+2(log4 f+1). If f is in range
[0.5, 1) then the value of log4 f + 1 is in range [0.5, 1). This is the function that
we approximate with a fixed-point polynomial. For double precision, we split the
interval into two equal parts and use two different polynomials. Finally, e − 2
is converted to floating-point format and the end result is computed through
floating-point addition. Near 1 we use second degree Taylor polynomial log2 x ≈
log4 e · (x − 1)(3 − x) to achieve better precision. In order to convert binary
logarithm to natural logarithm we use the conversion ln x = ln 2 · log2 x.

The algorithm for computing the sine is relatively straightforward as we can
use to our advantage all kinds of symmetry inherent to the function. First, we
divide the argument by 2π and find the fractional part in fixed-point format,
thus reducing the computation to two full turns (from −2π to 2π). We note
that sin (−x) = − sin x, sin (x+ π) = − sin x, and sin (π/2− x) = sin (π/2 + x).
Thus, we have reduced the computation to one quarter-turn (from 0 to π/2).
Then we use fixed-point polynomial approximation and convert the end result to
floating-point format. When the argument is near zero we use the approximation
sin x ≈ x to achieve better precision.

4 Optimization techniques

The Protocol DSL has allowed us to easily apply certain optimizations across
the entire suite of protocols employed in Sharemind. They are described in
the following. The optimizations are specific to the “main” protocol set [10]
of Sharemind based on additive secret sharing over finite rings, using three
computing parties.

4.1 Shared random number generators

To ensure that a party’s view in a protocol could be generated from only its
inputs, we commonly use the resharing protocol, to ensure independence from



Table 1. Speedups of shared RNG (SRNG) and symmetric multiplication protocols
over the regular multiplication. The speedups have been measured from 1 element
inputs to 108 element input vectors.

Bit-width SRNG Symmetric SRNG & Symmetric

100 102 104 106 108 100 102 104 106 108 100 102 104 106 108

64 1.03 1.03 1.48 1.44 1.61 1.08 1.09 1.13 1.08 1.04 1.10 1.12 1.67 1.55 1.68
32 0.95 0.98 1.34 1.45 1.30 1.09 1.08 1.14 1.02 1.08 1.04 1.06 1.53 1.48 1.41
16 0.85 0.90 1.14 1.36 1.41 1.18 1.12 1.17 1.02 1.02 1.00 1.01 1.34 1.39 1.43
8 0.96 0.96 1.03 1.11 1.01 1.04 1.03 0.91 1.03 1.07 0.99 0.98 0.95 1.14 1.08

other parties’ inputs and outputs. For example, usually every input of a protocol
is explicitly reshared. The resharing protocol takes a private value JuK ∈ R and
returns a JvK ∈ R such that u = v and all shares JvKi are uniformly distributed
and independent of the shares JuKj . The protocol is implemented as follows: each
party Pi generates a random value ri ← R and sends it to the next computing
party Pn(i), adds the generated value ri to the input share JuKi, and subtracts
the random number rp(i) received from the previous computing party Pp(i). The
shares of the output JvK of the protocol are (JuK1 + r1− r3, JuK2 + r2− r1, JuK3 +
r3 − r2). We see that v = JvK1 + JvK2 + JvK3 = JuK1 + JuK2 + JuK3 = u.

We can spot a common pattern that occurs in resharing (and in some other
primitive protocols): a party generates a random number and sends it to some
other party. This pattern can be optimized by letting both parties generate
the same random number using a common random number generator (RNG).
Analysis of our protocols shows that network communication can be reduced
by 30% to 60% using this technique (exactly 60% in the case of integer multi-
plication protocol). This optimization is not new and has previously been used
in [24]. Our toolchain around the Protocol DSL allows this optimization to be
automatically introduced, with no changes to the specification of the protocols.
The optimization itself is straightforward on our intermediate representation:
we detect randomness nodes that are sent to one other computing party, and
transform them to instead take use of shared randomness nodes.

We have manually implemented this optimization for the multiplication pro-
tocol (for which the Protocol DSL has not been used) and compared the perfor-
mance to the unoptimized version to validate the effectiveness of this modifica-
tion. Multiplication protocol has been chosen because of its simplicity, efficiency,
ubiquity in application, and because it is one of the least computation heavy pro-
tocols. The comparison was performed using the methodology described in Sec. 5
and the results are displayed in Table 1. We see a slowdown of at most 15% on
small input lengths (up to one hundred elements), but for large inputs we see
a universal speedup that reaches up to 60%. The performance of 64-bit multi-
plication has been universally improved. The slowdown on small inputs can be
explained by a slight increase in computation overhead (critical path became
longer due to invoking the shared RNG in the end of the protocol) and the



Algorithm 3: Multiplication protocol.
Data: Shared values JuK, JvK ∈ R
Result: Shared value JwK ∈ R such that uv = w.

1 JuK ← Reshare(JuK)
2 JvK ← Reshare(JvK)
3 All parties Pi perform the following:
4 Send JuKi and JvKi to Pn(i)
5 Receive JuKp(i) and JvKp(i) from Pp(i)
6 JwKi ← JuKi · JvKi + JuKp(i) · JvKi + JuKi · JvKp(i)
7 JwK ← Reshare(JwK)
8 return JwK

Algorithm 4: Symmetric multiplication protocol.
Data: Shared values JuK, JvK ∈ R
Result: Shared value JwK ∈ R such that uv = w.

1 JuK ← Reshare(JuK)
2 JvK ← Reshare(JvK)
3 All parties Pi perform the following:
4 Send JuKi to Pn(i) and JvKi to Pp(i)
5 Receive JuKp(i) from Pp(i) and JvKn(i) from Pn(i)
6 JwKi ← JuKi · JvKi + JuKp(i) · JvKi + JuKp(i) · JvKn(i)
7 JwK ← Reshare(JwK)
8 return JwK

speedup can be explained by the decrease in network communication. In fact,
network communication is reduced by exactly 60%.

4.2 Symmetric protocols

Multiplication protocol in additive schemes is commonly presented as Alg. 3
such as in [10] and [27]. The given protocol is perfectly reasonable when the
SRNG optimization is not used: the resharing sub-protocol sends the network
messages in one direction and the multiplication protocol itself in the other. As
a result the communication channels are under similar workload. However, using
the SRNG optimization results in a protocol that sends network messages only
over one of the two network channels. We propose a small modification in the
form of Alg. 4 as an alternative multiplication protocol that uses the network in
a balanced manner. The correctness and security of the algorithm can be shown
the same way as it was shown for the multiplication protocol in [10].

The symmetric protocol provides a small performance gain over the SRNG
optimized protocol. The comparison against our legacy multiplication protocol
(see Table 1) shows better results and disappearance of the slowdown present
with only the SRNG optimization. Only the 8-bit multiplication experiences a
small slowdown in a few cases. We predict that the speedups will be greater in



Table 2. Speedup of optimized floating-point protocols.

Operation Precision Speedup on given input length

100 101 102 103 104 105 106

JxK + JyK single 1.04 1.13 1.48 1.94 1.73 1.71 1.73
double 0.97 1.03 1.38 1.67 1.61 1.69 1.77

JxK× JyK single 0.91 0.92 1.04 1.42 1.60 1.45 1.57
double 1.03 1.08 1.28 1.81 1.82 1.80 1.79√

JxK single 0.91 0.98 1.33 1.82 1.73 1.66 1.64
double 1.06 1.22 1.71 1.86 1.85 1.85 1.87

a setting where network latency is worse or the available bandwidth is smaller
because in these cases the network will become the dominant bottleneck. This
claim is supported by the evidence that the speedups improve as the proto-
cols need to send more data over the network (larger bit-widths or larger input
vectors).

This modification can be applied to many other protocols, but a few of the
protocols are inherently asymmetric (such as squaring a value, or finding the
bitwise conjunction of a single bit with a 64-bit integer). For all asymmetric
protocols we can implement two versions that are unbalanced in different direc-
tions, and pick versions of them such that overall the communication is roughly
balanced (we do not expose this facility to the end user). This optimization has
been applied manually as the set of primitive protocols is manageable and the
protocol DSL enables such changes easily. We have not explored the possibility
of automatically performing communication balancing.

4.3 Speedup over previous results

We have applied the systematic optimizations presented in this section to all
our protocols and compared the results against operations without those opti-
mizations. In addition to the optimizations mentioned previously we have also
eliminated many resharing calls (this optimization does not reduce network com-
munication) as allowed by [7] and verified the security of resulting protocols using
our privacy analyser [32]. Table 2 shows comparison results for floating-point ad-
dition, multiplication and square root. These protocols provide a rough idea of
how the optimizations fare across all protocols.

Table 2 shows an almost universal improvement in performance. In a few
cases single-precision floating-point operations perform slightly worse (less than
10%) but only on small input sizes. In the case of inputs of length 100 and more
we see significant speedups across the board. In a few cases speedups reach over
80%.



5 Large-scale performance evaluation

Benchmarking was performed on a dedicated cluster of three computers con-
nected with 10Gbps Ethernet. Each computer was equipped with 128GB DDR4
memory, two 8-core Intel Xeon (E5-2640 v3) processors and was running Debian
8.2 Jessie (15th Sep 2015). Both memory overcommit and swap were disabled.
During benchmarking only the necessary system processes and some low over-
head services (such as SSH and monitoring) were enabled.

A single run-time measurement was computed by taking the running times of
each of the computing parties and finding the maximum of those. This is neces-
sary as a protocol may terminate faster for some participants and the maximum
reflects the time it takes for the result of the operation to become available to
all. The average running time was estimated by computing the mean of all the
measurements. On every input length we performed at least 5 repetitions (10
for integer operations) and, to reduce variance, significantly more on small input
lengths (up to 10000 repetitions). Measurements were performed in a random-
ized order because we found that running the tests sequentially in an increasing
size of inputs gave significantly better performance results. Sequential order re-
sults in a steady increase of network load which is predictable for the networking
layer but is not a very realistic scenario for all SMC applications.

Performance results for floating-point operations are presented in Table 3.
We have measured addition, multiplication, comparison, reciprocal, square root,
exponentiation, natural logarithm, sine, and error function from 1 element input
to one million element input vectors. All the results have been presented in
operations per millisecond (thousands of operations per second). Looking at the
table, it is clear that performance scales very well with vectorization: only a
few hundred scalar operations can be executed per second but by computing on
many inputs in parallel we can perform hundreds of thousands of operations per
second.

We have also thoroughly measured the performance of integer and fixed-
point multiplication operations (Table 4). The fixed-point operations, especially
addition and multiplication, have turned out to be useful tools in implementing
efficient higher-level applications. As the respective floating-point operations are
rather slow, the computations relying heavily on them may become impractical
(for example, floating-point addition [23, Alg. 4] requires private shifts which
makes it a costly operation). While not a universal solution, efficient signed
fixed-point operations alleviate the problem in many cases.

We have also evaluated private integer multiplication to establish a baseline,
against which to compare more complex protocols when choosing the operations
to be used in a larger application. We have limited the performance evaluation of
multiplication to 109 element input vectors. This is due to memory limitations:
a single 1010 element vector of 64-bit integers takes roughly 80 gigabytes of
RAM (it would be possible to only allocate a single vector and use that as both
input and output, but this would compute square and not product). Capability
to handle arrays of 109 elements with ease demonstrates the robustness of our
platform.



Table 3. Performance (in operations per millisecond) of optimized floating-point op-
erations. Combing all manual and automatic optimizations presented in this work.
Variables x and y denote floating-point numbers.

Operation Precision OP/ms on given input length

100 101 102 103 104 105 106

JxK + JyK single 0.32 3.0 20.4 54.3 60.6 52.8 53.1
double 0.27 2.4 12.9 24.5 22.9 23.9 25.3

JxK× JyK single 0.52 4.8 36.1 140 231 172 185
double 0.54 4.8 32.2 111 131 107 106

JxK < JyK single 1.14 10.5 78.8 210 237 199 209
double 0.97 9.0 62.3 133 120 111 118

JxK−1 single 0.30 2.7 18.1 48.7 52.4 45.5 49.4
double 0.23 1.9 9.0 16.8 16.9 17.6 18.6√

JxK single 0.26 2.4 16.4 44.8 48.7 45.1 44.1
double 0.21 1.7 6.5 10.4 9.4 11.2 11.2

exp JxK single 0.18 1.7 11.4 28.8 33.1 30.4 29.2
double 0.16 1.3 5.4 9.1 8.8 9.5 9.9

ln JxK single 0.14 1.2 6.8 12.3 12.0 11.2 11.1
double 0.12 1.0 3.3 4.2 4.0 4.4 4.6

sin JxK single 0.14 1.2 6.3 9.4 8.4 8.8 9.3
double 0.12 0.9 2.7 2.8 2.8 3.3 3.4

erf JxK single 0.23 2.0 12.1 24.2 24.1 23.5 23.7
double 0.18 1.3 4.2 5.9 5.5 6.7 6.8

We have compared the performance of arithmetic operations and square root
against previous works. Unfortunately it was not possible to provide comparison
in an identical setups as both previous works we compare against have the per-
formance measures on a 1 Gbps Ethernet connection over LAN (opposed to our
10 Gbps connection over LAN). However, we found that we never came close
to saturating a 1 Gbps of the connection. Performance in [33] was measured on
cluster of three nodes each equipped with 48 GB of RAM and 12-core 3 GHz
Intel CPUs supporting AES-NI and HyperThreading. Performance in [18] was
measured on two desktop computers each equipped with a 3.5 GHz Intel Core
i7 CPU and 16 GB of RAM (the number of cores was unspecified).

In the case of additive 3-party secret sharing the best results so far have
been obtained in [33]. In the case of scalar operations our results show 132 fold
speedup for addition, 67 fold speedup for multiplication and 618 fold speedup
for square root. The speedups also remain good for 104 element input vectors:
16, 14 and 416 fold respectively. Additionally [33] reports the performance of
garbled circuit based on IEEE 754 floating-point numbers. Compared to those



Table 4. Performance of optimized integer and signed fixed-point multiplication. Num-
bers are provided in operations per second with suffix K denoting thousands and M
denoting millions.

Type 100 101 102 103 104 105 106 107 108 109

uint8 7.4K 71.6K 703.5K 5.8M 24.1M 38.9M 40.1M 28.0M 37.9M 41.5M
uint16 7.0K 68.4K 663.4K 5.4M 22.0M 34.0M 29.5M 29.3M 35.0M 37.1M
uint32 6.6K 65.7K 629.7K 5.0M 17.1M 22.4M 18.8M 20.7M 22.1M 21.4M
uint64 6.4K 63.5K 586.9K 4.3M 11.2M 12.1M 10.5M 12.1M 13.7M 13.3M

fix32 640 6.0K 51.2K 270.8K 435.4K 344.1K 361.1K 369.4K 351.6K
fix64 680 6.2K 46.6K 187.3K 226.2K 184.3K 186.0K 187.6K 179.0K

we provide 13, 20 and 27 fold speedups in the case of scalars and 102, 364 and
495 fold speedups in the case of 104 element input vectors.

While garbled circuit approach is not directly comparable to secret sharing
we also compare our results against [18] which provides, to our knowledge, as
of now, the best performance for 2-party garbled circuit approach. For scalar
operations we are, at worst, 80% slower, and in case of 104 element input vectors
at worst 50% slower, and at best 4.6 times faster. This is considering only online
time. When offline time is also taken into account we report similar performance
for scalar operations and significant speedups for vectorized ones (over 40 fold).
These comparisons are against the better of GMW (vector operations) and Yao
(scalar operations).

6 Conclusions

We have demonstrated the current state of the art in the performance of SMC
protocols for numeric computations. Our results show that with careful design
and the right set of tools, significant performance improvements are still pos-
sible. But currently, as Table 4 shows, the performance of SMC operations on
modern but reasonably-spec’d hardware is comparable to a computer with a
80386 processor.

References

1. 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. ACM (2013)

2. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-6, 2015. ACM (2015)

3. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: 20th Annual Network and Distributed System Security Sympo-
sium, NDSS 2013, San Diego, California, USA, February 24-27, 2013. The Internet
Society (2013)



4. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security. pp. 257–266. ACM (2008)

5. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: A Short Paper on How the National
Tax Office Evaluated a Tax Fraud Detection System Based on Secure Multi-party
Computation. In: Proceedings of 19th International Conference on Financial Cryp-
tography and Data Security (2015)

6. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste, R.,
Willemson, J.: Privacy-preserving statistical data analysis on federated databases.
In: Privacy Technologies and Policy - Second Annual Privacy Forum, APF 2014,
Athens, Greece, May 20-21, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8450, pp. 30–55. Springer (2014)

7. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally
composable secure multi-party computation primitives. In: IEEE 27th Computer
Security Foundations Symposium, CSF 2014. pp. 184–198. IEEE (July 2014)

8. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of
privacy-preserving applications. In: Proceedings of the Ninth Workshop on Pro-
gramming Languages and Analysis for Security, PLAS@ECOOP 2014, Uppsala,
Sweden, July 29, 2014. p. 53. ACM (2014)

9. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: ESORICS. Lecture Notes in Computer Science, vol.
5283, pp. 192–206. Springer (2008)

10. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

11. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T.P., Krøi-
gaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M.I.,
Toft, T.: Secure multiparty computation goes live. In: Financial Cryptography and
Data Security, 13th International Conference, FC 2009, Accra Beach, Barbados,
February 23-26, 2009. Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 5628, pp. 325–343. Springer (2009)

12. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edition. Brooks/Cole (2011)
13. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-

preserving aggregation of multi-domain network events and statistics. In: USENIX
Security Symposium. pp. 223–239. Washington, DC, USA (2010)

14. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Fi-
nancial Cryptography and Data Security, 14th International Conference, FC 2010,
Tenerife, Canary Islands, January 25-28, 2010, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 6052, pp. 35–50. Springer (2010)

15. Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: EUROCRYPT. Lecture Notes in Com-
puter Science, vol. 1807, pp. 316–334. Springer (2000)

16. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: EUROCRYPT. Lecture Notes in Computer Science,
vol. 2045, pp. 280–299. Springer (2001)

17. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty
Computation: Theory and Implementation. In: Public Key Cryptography. Lecture
Notes in Computer Science, vol. 5443, pp. 160–179. Springer (2009)

18. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni,
S.: Automated synthesis of optimized circuits for secure computation. In: Proceed-



ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015 [2], pp. 1504–1517

19. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In: STOC. pp. 218–
229. ACM (1987)

20. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY:
tool for automating secure two-party computations. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security. CCS’10. pp. 451–
462. ACM (2010)

21. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: TCC.
Lecture Notes in Computer Science, vol. 4392, pp. 575–594. Springer (2007)

22. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu (2015)

23. Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite
collision analysis. Int. J. Inf. Sec. 14(6), 531–548 (2015)

24. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013 [1],
pp. 549–560

25. Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh,
S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain
management. IEEE Computer 44(9), 38–43 (2011)

26. Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers in se-
cure multiparty computations. In: Information Security - 17th International Con-
ference, ISC 2014, Hong Kong, China, October 12-14, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8783, pp. 179–197. Springer (2014)

27. Laud, P., Randmets, J.: A Domain-Specific Language for Low-Level Secure Mul-
tiparty Computation Protocols. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015 [2], pp. 1492–1503

28. Lindell, Y., Pinkas, B.: A Proof of Security of Yao’s Protocol for Two-Party Com-
putation. J. Cryptology 22(2), 161–188 (2009)

29. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014. pp. 623–638. IEEE Computer Society (2014)

30. Liu, Y.C., Chiang, Y.T., Hsu, T.S., Liau, C.J., Wang, D.W.: Floating point arith-
metic protocols for constructing secure data analysis application. Procedia Com-
puter Science 22, 152 – 161 (2013), 17th International Conference in Knowledge
Based and Intelligent Information and Engineering Systems - KES2013

31. Malka, L.: VMCrypt: modular software architecture for scalable secure computa-
tion. In: Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011. pp. 715–724.
ACM (2011)

32. Pettai, M., Laud, P.: Automatic Proofs of Privacy of Secure Multi-Party Computa-
tion Protocols Against Active Adversaries. In: 2015 IEEE 28th Computer Security
Foundations Symposium (CSF 2015) (2015)

33. Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient
private ieee 754 floating-point computations. In: Financial Cryptography and Data
Security - FC 2015 Workshops, BITCOIN, WAHC and Wearable 2015, San Juan,
Puerto Rico, January 30, 2015, Revised Selected Papers, LNCS, vol. 8976, pp.
172–183. Springer (2015)



34. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
35. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private

distributed computation. In: 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013 [1], pp.
813–826


