Universally Composable Time-Stamping Schemes with
Audit *

Ahto Buldag 2:3:**, Peeter Lauti?>* * *, Mart Saarepera, and Jan Willemsdn

L University of Tartu, Liivi 2, 50409 Tartu, Estonia.
2 Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia.
3 Tallinn University of Technology, Raja 15, 12618 TallinrstEnia.
4 Playtech Estonia.

Abstract. We present a Universally Composable (UC) time-stampin@mseh
based on universal one-way hash functions. The model weargains an ideal
auditing functionality, the task of which is to check tha¢ tftounds’ digests are
correctly computed. Our scheme uses hash-trees and isglighamodification

of the known schemes of Haber-Stornetta and Benaloh-de,Ntateboth the

modifications and the audit functionality are crucial fooyable security. We
prove that our scheme is nearly optimal — in every UC timeapiag scheme,
almost all time stamp requests must be communicated to titoau

1 Introduction

Time-stamping is an important data integrity protectiorch@ism the main objective
of which is to prove that electronic records existed at éetiene. The scope of appli-
cations of time-stamping is very large and the combinedsrighated to time stamps
are potentially unbounded. Hence, the standard of sedorityme-stamping schemes
must be very high. It is highly unlikely that currently populrusted third party so-
lutions are sufficient for all needs, since the practice hasva that insider threats by
far exceed the outside ones. This motivates the developohénie-stamping schemes
that are provably secure even against malicious insiders.

Several constructions of potentially insider-resistametstamping schemes have
been proposed [6, 15,16, 7, 20] based on collision-registash functions, but only
few analytical arguments confirm the security of these saseMwo early attempts to
sketch a security proof [6, 16] were recently shown to be fthj@. Presently, there
are two schemes with correct security proofs: a non-inte@atime-stamping scheme
in the bounded storage model [20] and a bounded hash-chaémecin the standard
model [9]. However, the schemes in use (like [26—28]) salvéno security proofs.

The formal security conditions for time-stamping schemesstill a subject un-
der discussion. The early works [6, 15, 16] focused ondbmesistency of databases
maintained by time-stamping service providers. It was ireguto be hard to change
the database without compromising its consistency withgastipublished in a secure

* This paper is an extended abstract. Proofs of the resulfgrasented in the full version [8].
** Supported by Estonian SF grant no. 5870.
*** Supported by Estonian SF grant no. 6095.

repository. In [9] it was pointed out that one of the impliagsumptions of the con-
sistency condition — the adversary knows at least one paginof a published digest
— may be unjustified for malicious service providers. An ipeledent security con-
dition was proposed [9] in which the stream of time stamp estgiis modeled as a
high-entropy distribution. Considering the wide rangeimig-stamping applications, it
cannot be taken for granted that these two conditions afieiguit. Universal Compos-
ability (UC) framework{1-4, 10, 22—24] provides a more general approach to sgcurit
— rather than studyingd hocbehavior of adversaries, it is proved that real security
primitives faithfully implement a certaiideal primitivethe security of which is evi-
dent. Thereforeall security features of the ideal primitive (including thd hocones
mentioned above) are transferred to the real primitive.

In this paper, we construct universally composable tinagaging schemes under
an assumption that they contain a third party auditing fiometiity. The idea of third-
party audit in time-stamping schemes is natural and cdytaot new. It has been pro-
posed as one of the additional security measures in comahéinee-stamping schemes
[26]. still, the formal security conditions presented tHasdo not include the audit
explicitly. We include audit functions into a general tirsmping scheme and present
new security conditions that reflect two different typeswdigability — audit-supported
publishing and multi-round audit. We present a practicalstaiction of an auditable
time-stamping scheme that uses slightly modified Merklesf&¢9] and collision resis-
tant (or universal one-way) hash functions. We prove thatsttheme is secure in the
sense of conventional security conditions, assuming tieatihderlaying hash function
is collision-resistant. The auditor is crucial in the scleemthe negative results in [9]
imply that the ordinary reduction techniques are insuffitfer such proofs in case no
additional functionalities are added to the time-stamgicizeme.

We also prove that our construction of a time-stamping sehith audit-supported
publishing is universally composable, if the hash functisad is universally one-way.
Our construction turns out to be nearly optimal in the sefis®mmunication between
the time-stamping service and the auditor.

In Section 2, we present notations and definitions. In Se@jave define auditable
time-stamping schemes and the corresponding securitgneotin Section 4, we con-
struct an auditable time-stamping scheme based on colligisistant hash functions.
In Section 5, we outline a proof that our construction givasiaversally composable
time-stamping scheme with audit-supported publishingéntion 6, we prove that our
construction is nearly optimal.

2 Notation and Definitions

By x «— D we mean that is chosen randomly according to a distributibn If A is
a probabilistic function or a Turing machine, then— A(y) means that: is chosen
according to the output distribution & on an inputy. By i,, we denote the uni-
form distribution on{0,1}". If D4, ..., D,, are distributions and’(x1,...,z,,) is a
predicate, thefr[x; « D1,...,2m < Dp: F(x1,...,2,)] denotes the probability
that F'(z1, ..., x,,) is true after the ordered assignmentgf . . ., z,,. For functions
f,9:N — R, we write f(k) = O(g(k)) if there arec, ky € R, so thatf (k) < cg(k)

(Vk > ko). We write f(k) = w(g(k)) if lim 40 = 0.1f f(k) = k=), then f is

negligible A Turing machineM is polynomial-time(poly-tim if it runs in time x°(1),
wherek denotes the input size. LEP be the class of all functiong {0,1}* — {0,1}*
computable by a poly-timkl. A distributionD on {0, 1}* is poly-sampleablé it is an
output distribution of a poly-time Turing machine. A polgrapleable distributio® is
unpredictabléf Pr[L « M(1%),z « D:z € L] = k=~ for every predictofl € FP.
We say thatD;, andD areindistinguishablgand writeD, ~ D) if for every distin-
guisherA € FP: | Prz « Dy: A(1%,2) = 1] = Pr[z « Do: A(1%,2) = 1] |= k~«(),
A collision-resistant hash functiois a family h = {hy:{0,1}* — {0,1}*}xen,
such that (k) = Pr[h — &, (z,2') «— A(1*, hy):z # 2/, hi(z) = hi(2)] = k—D)
for everyA € FP. Here,§ is a poly-sampleable distribution dif. A familiy A, such
thatPriz «— A (1%),hy — §, 2" «— Ag(hg,z):2 # o', hi(x) = hi(2))] = k~«®)
for every (A1,A2) € FP, is called aUniversal One-Way Hash Functiqy OWHF).
UOWHFs can be built from one-way functions [21]. We writer) instead ofhy, (z).

3 Auditable Time-Stamping Schemes

3.1 General Definition of a Time-Stamping Scheme

A time-stamping schemeS is capable of: (1) assigning a time-valtiec N to each
request: € {0, 1}*, and (2) verifying whether was time-stamped during theh time
unit (hour, day, week, etc.). Time-stamping schemes cbofike following processes:

— Repository — a write only database that receivesdit digests, adds them to a list
9. Repository also receives queriese N and return®|r] if 7 <|D|. Otherwise,

Repository returnsNIL. We assume that the repository is updated in a regular way

(say daily), and the update time/date is known to the usettseofystem. This is a
link between the real time and the modeled time valug®|. Practical schemes
[26] use newspaper-publishing as Repository. Hence, it is reasonable to assume
thatRepository is costly and to keep the number of stored bits as small astpess

— Stamper — operates in discrete time intervals caltednds During thet-th round,
Stamper receives requests and returns pairgz,t). We assume thaftamper
"knows” how many digests have been storetRipository. Let L; be the list of
all requests received during theh round. In the end of the roun8tamper cre-
ates ecertificatec = Stp(x; Ly, Li—1,. .., L1) for each request € L,. Besides,
Stamper computes a digest, = Pub(Ly, ..., L1) and sendd; to Repository.

— Verifier — a computing environment for verifying time stamps. In picg each
user may have its owMerifier but for the security analysis, it is sufficient to have
only one. It is assumed thaferifier has a tamperproof accessRepository. On
input (x, t), Verifier obtains a certificate from Stamper, and a digestt = D[]
from Repository, and returnd/er(x, ¢, d) € {yes,no}. It is not specified how is
transmitted fronBtamper to Verifier. In practicec can be stored together with
Hence, the size af should be reasonable. Note thatan be verified only after the

digestd; is sent toRepository. This is acceptable, because in the applications we

addressg is verified long after stamping.

— Client — any application-environment that usgamper andVerifier.

Definition 1 (Correctness).A triple TS = (Stp, Pub, Ver) is atime-stamping scheme
if Ver(xy, Stp(z, L), Pub(L)) = yes for everyl = (L4, ..., L1), andz € L.

3.2 Security Conditions

It is assumed that an adversakys able to corrupStamper, some instances @flient
and some instances Werifier. The Repository is assumed to be non-corrupting. After
closing thet-th round (i.e. after publishing;) it should be impossible to add a new
requestr to the setl; of requests and prove to\érifier thatx € L, by finding a
suitable certificate. This suggests the following security condition:

Definition 2 (Consistency) A time-stamping schemedensistentf for everyA € FP:
Pr((Ly,. ... L1,c,x)—A1"): 2 & Ly, Ver(z, ¢, Pub(Ly, . .., L1)) =vyes| = k=M . (1)

The condition (1) is not completely satisfactory becauseativersary has to explic-
itly construct the listd,, . .., L, of time-stamped requests. Back-dating attacks can be
possible withoutA creating these lists. For exampke,may publish a value which
is not necessarily computed by using thé function and then, after obtaining a new
(random)z, to find ¢ so thatVer(x, ¢, d) = yes. This suggests a different condition [9]:

Definition 3 (Security against random back-dating).A time-stamping scheme is se-
cure if for every unpredictable distributic® on {0, 1}* and (A, Ay) € FP:

Pr((d, a)—A;(1%), 2D, c—Ay(z, a): Ver(z, ¢, d) =yes] = k1) 2

In some applications, additional security features (likaf@dentiality of messages,
availability etc.) of time-stamping schemes are requivéel do not study these features.

3.3 Time-Stamping Schemes with Audit

It is essential for the security of time-stamping that a gptedStamper is not able
to publish a valuel in Repository without actually knowing a database, ..., z,)
such thatPub(zy,...,z,) = d. Otherwise, it could be difficult (or even impossible)
to find a security proof [9]. The easiest way to prove such Kadge is sending the
requestsey, ..., z, to a trustedAuditor who checks ifPub(z1,...,z,) = d. Audit
can be performed before or after publishing. We observe fifferent audit models:

— Audit-Supported Publishingdn this model, the roles ®epository andAuditor are
merged. If the-th round is closed, thAuditor/Repository receives a lisL, of bit-
strings and an audit report froftamper and checks their correctness. The digest
is not published if the audit report is incorrect.

— Multi-Round Audit In this model, audit reports are checked long after pulrigsh
which is much more close to the real-life (yearly) audit.

We define two additional functionBep for creating arepont, = Rep(Ly, ..., L1),
andAud for checking the consistency ef andd; = Pub(Ls, ..., L1).

Definition 4. A 5-tupleATS = (Stp,Pub,Ver,Rep,Aud) is anauditable time-stamping
schemef Aud(Rep(L),Pub(L)) = yes, forany L = (L,..., L) (properly created
audit reports verify successfully), ai@tp, Pub, Ver) is a time-stamping scheme.

In this paper, we assume thatd(L,, ..., L) depends only on the first argument
L,. The results we obtain for such schemes can be easily gesetal

Schemes with Audit-Supported Publishing. The audit is performed during (or be-
fore) publishing. The auditor is a trusted middle-man bem&tamper andPublisher.
After the ¢-th round,Stamper computes a digest; = Pub(Ly, ..., L) and an audit
reportr; = Rep(Ly,...,L1). Having sent a paifd, r), the auditor checks whether
Aud(r,d) = yes and sendg to Repository. Hence, a successful publishing is possible
only if a correct audit report is sent to the auditor. A timarsping scheme with audit-
supported publishing is secure against random back-di&fimgevery unpredictabl®
and for every(A;, As) € FP:

Pr((d,r,a)—A1 (1%), 2D, c—As (z,a): Ver(x,c,d) =yes = Aud(r, d)] =k~“1) . (3)

Schemes with Multi-Round Audit. Publishing is done like in the schemes with-
out audit. The audit function is performed after publishiffg/N rounds are passed,
Stamper computes audit reports = Rep(Ly), ...,7x = Rep(Ly, ..., L1) and sends
(r1,...,rn) to the auditor. Fot = 1...N, the auditor obtaing; from Repository
and computedwud(ry, d;). If for somet the result imo then all users are informed. A
time-stamping scheme with multi-round audit is securerajaandom back-dating if
for every unpredictabl® and for every(A;, Ay) € FP:

Pr((d,a)—A1 (1%), 2D, (., —As (z, a): Ver (z,c,d) =yes =Aud(r,d)]| = k1) . (4)

3.4 Records of Arbitrary Length

The definitions above assume that all time stamp requestsatelong. To time-stamp
longer records, practical schemes use collision-registash functions (at the client
side) to make requests shorter. Since these hash functawesitifluence on security,
they have to show up in the security conditions.

Definition 5. A time-stamping scheme with audit-supported publishirsg&ure rela-
tive to a client side hash functidn {0, 1}* — {0, 1}* if for every unpredictabl® on
{0,1}* and for every(A;, Az) € FP:

Pr((d,r,a)—A; (1F), XD, c—As (X ,a): Ver(b(X),c,d)=yes =Aud(r,d)|=k V) . (5)

A time-stamping scheme with multi-round audit is said todmige relative to a client
side hash function if for every unpredictabl® and for every(A;, As) € FP:

Pr[(d,a)—A, (1%),X <D, (c,r)—As (X,a): Ver(h(X),c,d)=yes=Aud (r, d)|=k~“1) . (6)
Lemma 1. If Dis unpredictable and is collision-resistant theh (D) is unpredictable.

In spite of Lemma 1, a secure auditable scheme in the sen8} of (4) is not neces-
sarily secure relative to every collision-resistant hastcfion ((5),(6)) because, in (5)
and (6),A2 has more information (ah-pre-imageX of x) than in (3) and (4).

4 Construction of an Auditable Time-Stamping Scheme

Let i be a collision-resistant hash function, or a UOWHF chosefRdppsitory. We
defineATS" = (Pub”, Stp”, Ver" Rep”, Aud”) and prove that this 5-tuple of func-
tions form a secure time-stamping scheme with audit.lL.et (x,...,z,—1) be all
requests received during theh round. For simplicity, we assume that= 2°.

The publishing functiorPubh(L) builds a complete binary tree of height¢ach vertex

v of which has gk + 1)-bit label A[v] = b||H [v], whereb € {0, 1} indicates whether
vis aleaf ¢ = 0iff v is aleaf) andH [v] € {0,1}* is a hash value computed by the
following (inductive) scheme. For the-th leafv, we defineH[v] = z,,, andH[v] =
h(A[vg]||Alvg]) for any non-leab, wherev;, andvy, are the left- and the right child of
v, respectively. As a resulBub™ (L) returns ak + 1)-bit root label of the tree.

The stamping functiorStp™ (L, n) builds the same tree as above. kebe then-th
leaf andv = wg,v1,...,v—1,v¢ be the unique path from to the root vertex),
i.e.v; is a child ofv;, for everyi € {0,...,¢ — 1}. Letvg,vy,...,v,_, denote the
siblings ofuvg, v1, ..., ve—1, respectively. Let; = A[v]] for everyi € {0,...,£ — 1}
andz = (zo, ..., 2_1). The certificate i = Stp™ (L, n) = (n, 2).

The verification functionVer” (z, (n, z), d) recomputes! (based on: and(n, z)) and
compares the results. Let= ny_1ny o ... no be the binary representation efand
z=(20,21,..-,20—1). The functionVer" computes sequencas= (Ao, A1, .-) €
({0,1}"‘“)2 andx = (X0, X1,--->X¢") € ({0,1}’“)e inductively, so thaty, = z,
Ao := 0|z, and for everyi > 0, \; = 1||x;, where

i) if i =1
T {h(/\mllzi) ifn,_1=0 " @)
The verification procedure outpufss, iff Ay = d.

The report functionis trivial, i.e. Rep” (L) = L for every list L. The audit function
Aud"(L, d) computes!’ = Pub” (L) and returnses iff d’ = d.

Lemma 2. (A)If z ¢ L, andAud”"(L,d) = Ver"(z,c,d) = yes then theh-calls of
Ver" andPub” contain a collision forh. (B) If L # L’ andPub” (L) = Pub™(L’) then
the h-calls performed byub” contain a collision forh.

Theorem 1. If h is collision resistant then a time-stamping sche&T&" with audit-
supported publishing is secure relative to a client-sidsthfunction..

Theorem 2. If h is collision resistant then a time-stamping sche#i&” with multi-
round audit is secure relative to a client-side hash functio

Proofs of these results are presented in the full versian [8]

Lemma 2 directly implies the consistency condition (1) AFS". Hence, we have
proved that our construction is secure in the conventioeass. Note also that it is

probablynot possibleto prove that the schemi&S" without audit is secure against
random back-dating (2), based on the collision-resistafée The reason is that one
can find an oracl® and choose a hash functiaén(that uses?) so thath is collision-
resistant bufr'S™ is still insecure [9]. As the ordinary reduction techniquekativize,
the security ofTS" cannot be proved (in ordinary way) in the real world eitherthis
sense, the audit functionality is crucial for provable s&gu

5 Universally Composable Time-Stamping Schemes

5.1 Universal Composability Framework

To prove that a cryptographic primitive is secureewvery reasonable applicatiaine
universal composabilitfC) paradigm is used [1-4, 10-12,22-24]. If the readeris no
familiar with the UC paradigm, we recommend to study the saiivorks by Canetti
[11,12] and the monograph on composability by Lindell [JRéather than usingd hoc
behavior of adversaries, the UC paradigm definddeal primitivewhich is "obviously
secure” and then proves thatAf € FP is an adversary for an application of the real
primitive then there is another adversaryc FP for the same application in which the
real primitive is replaced with the ideal primitive. Loogspeaking, no security incident
in any application of the primitive is caused by the diffaremetween the real and the
ideal primitives —the real functionality faithfully implements the ideal &tionality.

We use the language of Finite State Machine (FSM) theoryolgad from Pfitz-
mann [24] when describing the UC formalism. Every compoméithe system (for a
fixed value ofk) is a (probabilistic) FSM with input- and output ports. Egmirt has
a name and a typén(or out). By a composition(M;, Ms) of two machinesM; and
M2 we mean a network of machines obtained by connecting the arpioutput port
pairs in a certain (pre-defined) way. For example, pairs wd#ntical names can be
connected. The precise formalism for describing the caiimrezis unimportant in this
paper, because the networks we use are very simple. We asksatreach input port
is buffered, whereas the length of the buffer is unlimiteché analyzing a particular
machine, we use the following abbreviations. By — = we denote the event that
the machine has input in the portin,. By y — out,, we mean thay is sent to the
output portout,.. To overcome the difficulties related to the asynchronotmabier of
the network, it is assumed that no two machines run at the sameTechnically, this
is achieved by introducing the clock-ports to the systenthEaachine, after finishing
its work, can clock (give the token to) only one machine. lis ffaper, we use clocked
output signals. By: = out, we mean that: is sent to the output port namedand the
token is given to the machine with input pant,. By theviewof M; in a composition
M = (M4,...,M,) we mean the sequence of all input/output signalslpfn a partic-
ular run ofM. The view is denoted by Mwy, (M4,...,M,,). In general, the view is a
probability space.

In the UC framework, we have an ideal time-stamping sché&8\e a real scheme
TSg, and an environmer@lient. A composition(Client, TSg) is called areal appli-
cation, while (Client, TS;) is called anideal application Each machine has special
input/output ports for an adversafy

Definition 6 (Universal Composability). TSg is universally composab)éf for every
A € FP thereis aA’ € FP, so that for everflient € FP: VIEW(jient (Client, TSg,A) ~
VIEWC“ent(CIient,TSI,A’).

Informally, this condition means that anything that may eapto the real application
(Client, TSg) may also happen to the ideal applicati@iient, TSy).

In the proofs of UC, a simulatd$ is constructed that uses as a black-box, i.e.
A’ = (S, A). Itis then proved tha{TS;, S) and TSr behave identically, except when
certain cryptographic primitives (used Bpg) are broken. Hence, if the primitives are
believed to be secure, this implies the indistinguishibilf views and also the security
of TSy in the strongest possible sense. To prove the identicaMataf (TS, S) and
TSr, abisimulationbetween these two machines is constructed.

5.2 Onthe Model

Some primitives are hard to cast in terms of the UC framewbhke.commitment prob-
lemoccurs, meaning that a simulator that acts as an intermeuatween the real-world
adversary and the ideal functionality has to fix the value ofiain data item without
knowing all the components it was created from, and alsoawitthe ability to present
instead of this data item something that is and remainstindisishable from it. Canetti
and Fishlin proved [13] that UC bit-commitment is impossilnl the "plain model” (i.e.

a model without ideal functionalities) but it becomes pbigsin theCommon Reference
String (CRS)Model, where a common (and accessible) random string isdaddibe
system as an ideal functionality. Similar problems occuemtrying to define univer-
sally composable time-stamping schemes, but fortunatedyproblems dissapear if an
ideal audit functionalityrepresented in our model Repository that is merged with
Auditor) is added to the system. The universal composability canrtveed based on
theuniversal one-wayness a hash functiork, assuming that a new random instance
of h is generated (bRepository) during each round. The reduction we obtain is linear-
preserving and gives good practical security guarantees.

Hence, our UC Time-Stamping scheme construction is no&ptain model. How-
ever, adding the trustelflepository to the system is reasonable because: (1) there are
real-life systems that behave in a similar way (e.g. newspgp(2) it is possible to
implement similar functionalities in the CRS model by uspnublic-key cryptography.

5.3 Ideal Time-Stamping Scheme

The ideal scheme is a secure host that stores for each roumdenti a setL; of all
bit-strings that were stamped during théh round. The value of is initially 0 and is
incremented each time the round is closed. In our real schemallow the stamp-
ing functionality to be corrupted. This is reflected in theatlscheme by giving the
adversary complete control on which bit-strings will be sidlered stamped during the
currentround. As we shall see, at the end of the rduthd adversary sends the contents
of L, to the secure host. Hence no availability is guaranteediffipertant property is,
however, that once theth round has ended, no more bit-strings can be addéd te-
back-datings not possible.

In the real world, the verification of a time-stamp may fail onumber of reasons
that are under the control of the adversary. For exampleetesitory may be currently
unavailable or it may be available but not yet contain theestigof the round we are
interested in. In this case we cannot rely on the time-stamdpvaust behave as if it was
invalid. In the ideal world we model this situation by allowithe adversary to declare
any verification attempt unsuccessful. However, the adwgris unable to declare a
time-stamp valid if it really was not.

The internal state of the ideal time-stamping schélSe consists of an indexed
list £; each element;[t] of which is a set ofk-bit strings. Initially, £; = ||. The
ideal schemd'S; (Fig. 1, left) offers service on ports,eq, outst, inver, @andout,es. The
other ports §utreq, inst, iNaud, OUtyer, aNdinys) are intended for communication with an
adversanA’. In the following, we describe the behaviord$, by defining its reaction
to any possible input.

— If infeg — z thenz — outyeq.

— If inge — (z,t) then(z,t) — outreq.

— If ingug — L theng; := £1||L

If inyer — (x,7) then(z,7) — outyer.

If ines — (2,0, 7) thenb := b&True(z € £1[7]) and(z,b,7) — outes.

Stamper
ou.treq INreq ouFreq Nreq ouFreq INreq ou.treq Nreq
INst outst INst outst INst outst INst outst
(z,1) (2,1) (2,1) (2,1)
. ’ : Repository
Client TS; I A Client D (r,d) A
. iNaud outyyd
MNaud outyyg outgir iNnum
dr\y T
(z,7) | (z,7) | (z,7) [Maig ovtmam] (. 7) |
outyer INver OUtyer Nver outyer INver OUtyer Nver
iNres OUtres iNres = Outres iNres OUtres iNcert Outcert
(vaaT) ,81 (vaaT) (:L',b,’]') Verifier (:L',C,T)

Fig. 1. The ideal schem&S; and the real schemESg = (Stamper, Repository, Verifier).

5.4 Real Scheme

In the real scheme, the trusted host is replaced by a numbéridier hosts. Some of
them may be corrupted but we observe only one non-corrifiefier. This is allowed
because in the standard time-stamping setting, there ismoncinication between ver-
ifiers. We assume that the channel betwBepository and (non-corruptedyerifier is

tamperproof. It is a reasonable practical assumption Iseceliannels with similar se-
curity properties (e.g. newspapers) exist in the real life.

Having obtained a verification request, t) (which reads "Wase time-stamped
during thet-th round?”),Verifier obtains the corresponding from Repository and
applies thever" procedure. Howevekerifier needs a certificatefor verification. We
take into account possible (malicious) modification of tedificate before verification.
Therefore, itis natural to assume that the certificate isenprovided by the adversary
A. The real schem&Sg, (Fig. 1, right) consists of three components:

— Stamper — a prototype for a server that receives time stamp requestsedurns
time stamps tcClient. As we assume that the adversdhas full control over
Stamper, we defineStamper as a stateless intermediary betwedient and A.
Stamper offers service on portd., andouts. Two other portsdutreq anding)
are for the communication witA. The behavior obtamper is defined as follows:

o If ineqg — 2 thenz — outyeq.
o If ingg — (z,t) then(z,t) — outs.

— Repository — a prototype for a secure repository that publishes thestSgd rounds.
The internal state dRepository consists of a (initially empty) lisD of k-bit strings.
Repository offers service on ports,,, andouty;,. The third portin,q4 is for the
communication withA. The behavior oRepository is defined as follows:

o If inyum — 7 andr <|9|, thend, := D[r] andd, — outgjg.
o If inpym — 7 andr >|9|, thenNIL — outgjg.
o If inyug — (r,d) andAud(r, d) = yes then® := D||d.

— Verifier — a prototype for a real verification environment, which tglly is a trusted
client computerVerifier receives verification requests and answers with a veri-
fication result. It is assumed th&krifier is able to obtain the digests. form
Repository in a tamperproof way. The internal state \drifier consists of a bit-
string variablex. Initially, t = |]. Verifier offers service on portge, andoutyes.
Two ports —out,,m andingiz — are for requesting the digests frdtapository, and
two last ports §ut.er andingig) are for the communication with. Lety 2, out,
denote the event thatis sent to the output channelit. and the corresponding
connection is clocked. The behavior\&rifier is defined as follows:

o If inye — (z,7) then(z, 7) — outye.

o If incer — (z,¢,7) thent := (z,¢,7) andr 2 outnym.

o If ingg — d. € {0,1}* andt = (z,c,7), thenb := Ver(z,c,d,) and
(,b,T) — OUtyes.

o If ingig — NIL andr = (z, ¢, 7), then(x, no, 7) — outyes.

For completing the description of the real scheme, it is cigffit to give efficient
constructions foPub, Aud, andVer, i.e. exactly the components of an auditable time-
scheme that appear in the security conditions (3), (4),a%), (6). Hence, for any au-
ditable time-stamping scheme it is reasonable to speaktaimversal composability
as a security condition

5.5 Simulator for ATS"

We define a simulator for the scherA&S", we presented in Section 4. The internal
state of the simulatd$ (Fig. 2, right) consists of two listéDy, €;) and a bit-string;.
The elements ob; arek-bit strings, while the elements @f are sets ok-bit strings.
Initially, ©1 = ||, €1 = (0,0, ...), ande; = ||. The simulator has five port8i(eq, outst,
Outaud, iNver, aNdoutyes) for communicating withT'S; and five portsqutreq, inst, inaud,
outyer, andinget) for communicating withA. The behavior of is defined as follows:

— If infeg — z thenz — outyeq.

— If inge — (z,t) then(z,) = outs.

— If inaua — (L,d) andd = Pub(L), then®; := ©||d, andL = out,yq.

— If inye — (z,7) then(z, 7) — outyer.

— If incet — (z,¢,7) thenty := (z,¢,7), b := 7 <|D1| & Ver(z,c,D1[7]), and
(2,0,7) 5 outyes. If b = yes then€y[7] := &;[7] U {}.

Stamper
T _f. X xr - x Y
——=7|inreq Outreq [“[inreq Outreq iNreq OUtreq f—=>
<——Joutst ing | - out in out ingt |<——
(2,t) L= (1) @l - el T T @
ReposnFory L (r,d) 5 . I . : rd
. Mayd |- . MNaud outyyd INaud |
19 £ [: .
Ay hr | T > |
(x,7)| Verifier |(z,7) (x,7): (x,7) H(z,7)
—=]inyer oOUtyer | “liner OUtyer iNver OUtyer f——=
<——outres iNcert |* Joutres iNres — OUtres iNcert [<——
(:L',b,’]') (‘: ;(EC,C,T) (IE,b,T)E EI (SE,b,T) @I Q:I E(IL‘,C,’T)
Mg : M :

Fig. 2. The real machin®g, the simulatosS, and the ideal machingl; = (TS, S).

5.6 Bisimilarity of the Real- and the Ideal Machines

We start the proof by augmenting the state of the comporiupissitory and Verifier
of the real functionality. From the following descriptidns obvious that this extra state
has no influence on the behavior of these components as stegxparts make no use
of the new state. We add an initially empty |8tof sets ofk-bit strings to the state of
Repository. We also replace the third item in the description of its védreby

— If ingug — (r,d) andAud(r, d) = yes then® := D||d, andg := £||r.

We add a list of sets ofk-bit strings to the state &ferifier. Initially, € = (0,0, ..).
We replace the third item in the description of the behavioveifier by

— If ingig — dr € {0,1}* andr = (z, ¢, 7), thenb := Ver(x,c,d,) and(z,b,7) —
Outres. If b = yes then€|r] := €[r] U {z}.

Let Mg = TSg be the real machine and; = (TS;,S) be the ideal machine
(Fig. 2). A states = (£,9, ¢, ¢) is said to bdaultyif 37: &[r] £[r]. Let Sg andS;
be the sets of states M andMy, respectively. Lef’g and I be the corresponding
sets of faulty states. LétandO be the sets of inputs and outputs (commonMgy and
Mi). Letdr: I x Sg — Sgr be the next-state function &g andAg: I x Sg — O be
the output function oMr. We defines; and\; analogously foM;. Let s%; ands! be
the initial states of the corresponding machines. By Lempiadhe of the machines
reaches a faulty state then thecalls performed so far comprise a collision far

Definition 7. Two machined$/r andM; are said to bebisimilar with error(Fg, F1),
if there is a binary relation (called &isimulatior) 3 C Sg x Si such that(s%, s¥) €
@ and for any pair of stategsg, s;) € 8 and for any inputi € I, at least one of
the following three conditions hold$1) or (i, sr) € Fr, (2) d1(i,s1) € Fi, or (3)
(6R(’i, SR), 61(i, SI)) ep and)\R(i, SR) =)\I(i, SI).

Theorem 3. The machinedlg = TSg andM; = (TS, S) are bisimilar with error
(Fr, F1), whereas the bisimulatiofi is defined as follows:

(£,9,€,0) 3(L,D1,€L,t) = (£=2L1)&D =D1)&(€=¢E)&(v=1) .

Corollary 1. If h is a collision-resistant (or universal one-way) hash fumetthen
ATS" is a UC time-stamping scheme with audit-supported pulsigshi

Proofs of these results are presented in the full versian [8]

6 Size of the Audit Report

In ATS", theRep function is not length-decreasing which means that the orkttoad
(and the computations) are doubled, compared to the scheithesit audit. It is natural
to ask whether the length of the report can be reduced. Theeartsirns out to be
negative: in every UC time-stamping scheme with audit-sutggl publishingr;|~|L.|.

We construct &lient and an adversan (for (Client, TSg)) so that no efficient
adversanA’ (for (Client, TS1)) can simulaté\ unlessRep(r;)|~|L:|. Our construction
exploits the commitment problem — the adversafyor a simulator) knows onlg; but
has to send.; to TSy, and hencd.; should be efficiently computable frod.

The internal state oflient consists of @(k)-elementarray. = (z1, ..., Zym)) €
{0, 1}*#*P(k) (wherep(k) = kW), a k-bit string z (initially 0), and a boolean value
RoundOver that is initially false. Client reacts to the input events as follows:

— If ina — init then theClient generates, . .., z,() independently at random,
computes = Rep(L), d = Pub(L), and outputgr, d) — outa.

— If ina — round then theClient outputs(0¥, 1) = outyer.

If inyer — (0%, yes, 1) (a confirmation that the round is closed) then @iient sets
RoundOver := true and outputd, — outa (revealsL to the adversary).

— If ina — verify thenClient generates < {1,...,p(k)} uniformly at random, sets
z := x; and outputgz, 0) - outyer.

If inyer — (2, yes,0) andRoundOver = yes thenClient outputsyes — outa.

The adversary is defined as follows. The internal state Afconsists of a(k)-
elementarrayLa = (ai, ..., ayx)) € {0, 1}**P*) (wherep(k) = k°W). First of all,
the adversanA outputsinit — outcjient and then reacts to the input events as follows:

— If inclient — (7, d) thenA outputs(r, d) , outayy. After getting control again, the
adversaryA outputs(Rep(0), Pub(0%)) = out,,q. Finally, A outputsround =
outclient-

If inyer — (0, 1) thenA outputs(0¥, Stp(0¥,1),0) — outcer.

If inciient — L thenA setsLa := L and outputserify — outcjient.

If inyer — (2,0) thenA finds ani, such thatLy = z, computes: := Stp(i, La),
and outputgz, ¢,0) — oute:. The adversary halts if there is no suich

With probability one, VEWcjient (Client, TSk, A) contains the outputes from Client.

LetA’ € FP and MEW(jient (Client, TSg, A) ~ VIEW(jient(Client, TSy, A’). Due to the
indistinguishability, with probabilityl — k~<(Y) the view VIEWjient (Client, TSy, A")

contains the outpuges from Client. From the description of Sy, it follows that with
probabilityl — k=) the adversarp’ (based on partial informatioiRep(L),Pub(L)))

is capable of findingLa such thatr; € La. Lemma 3 below shows that sué!i is
possible only if the bit-length ofRep(L), Pub(L)) is~ k - p(k).

Lemma3. Let X = (Xi,...,X,x) € {0,1}**P®) (wherep(k) = k°(M) and
& « {1,...,p(k)} be independent and uniformly distributed random variablex
f:{0, 1}Fxp) — L0 1}F) | A: {0,1}F) — {0, 1}>*m*E) m (k) = kO, and

6 =PrX —{0,1}F L—A(f(X)),S—{1,....p(k)}: XaeL] =1 — k=0 |
Thenl(k) = k- p(k) — O(log k).

Proof. A p(k)-tuple (z1,...,z,u)) is goodif z; € A(f(x1,...,7p1))) foralli €
{1,...,p(k)}. Othertuples arbad As for any bad tuplé¢z,, . .., z,,(;) the probability
of errorl — 6 > ﬁ # k=« the number of good tuples should pe— k=« ()) .
2kP(k) On the other hand, the number of good tuples cannot exzé&d. m (k)?*)
and henc@‘®) . m(k)P*) = (1 — k=« . 2k»(k) 'which gives (by taking logarithm
from both sidesy(k) = k - p(k) — O(log k). O

Corollary 2. In every UC secure time-stamping scheme with audit-supdqiblish-
ing ATS = (Pub, Stp, Ver, Rep, Aud), where the report and the publishing functions
have typesRep: {0, 1}**P(k) — {0, 1}7(®) andPub: {0, 1}**P(k) — [0, 1}4(k);

r(k) +d(k) = k- p(k) — O(logk)

i.e. the amount of data sent to the auditor is comparable édith of all time stamps.

Actually, the last corollary holds for a weaker securityiont—simulatability.

Definition 8 (Simulatability). TSy is simulatableif for everyClient, A € FP there is
A’ € FP, so thatVIEWjient (Client, TSg,A) &~ VIEW(jient (Client, TSy,A”).

Like the Universal Composability, also the Simulatabilityplies both the Consis-
tency (1) and the security against Random Back-Dating (Ehdtthe other way round.
So it is still possible that one can compress the publish&grimation and still have a
provably secure auditable time-stamping scheme in theeseind) and (2). One such
construction is presented in [9] but their security redutts very inefficient.

The Simulatability (and the Universal Composability) ciiwehs depend on the def-
initions of TS; and TSg. It is not completely excluded that these definitions can be
relaxed (in a reasonable way) so that the compression of ubésped information
becomes possible. However, we cannot even imagine howdhld be done.

7 Discussion on Practical Implementation

As in the schemes with audit, all time stamp requests ardgantStamper to Auditor
who then performs the same hash computations. Hence, & #vern stampers in the
scheme and each stamper perfogpntesh operations per round, then the auditor must
performm - p hash operations per round. Hence, the cost of the servicesises by a
constant factor, no matter how many users there are.

In the schemes described above, we have only one trédsteidor. As one of our
main goal was to develop measures against insider attadks,gasonable to assume
that also thé\uditor can be malicious. A natural approach would be to replacestetdu
Auditor with a list Auditory, . .., Auditor,, of auditors and use the secure multi-party
computation. A simplified approach would be th&tamper sends the digegtand the
reportr to all auditors in the list. The auditors check whetheti(r, d) = 1 and send,

d and the result (of the check) Repository who then decides by clear majority which
value to publish. This works if thRepository and”T+1 auditors are honest.

AcknowledgementsThe authors are grateful to Estonian Science Foundatiosufjor
porting the study.

References

1. Michael BackesCryptographically Sound Analysis of Security Protocd®D thesis, Uni-
versitat des Saarlandes, 2002.

2. Michael Backes and Birgit Pfitzmann. Symmetric Encrypiio a Simulatable Dolev-Yao
Style Cryptographic Library. 117th IEEE Computer Security Foundations Workshega-
cific Grove, CA, June 2004.

3. Michael Backes, Birgit Pfitzmann, and Michael Waidnerm@yetric authentication within
a simulatable cryptographic library. In Einar Snekkenes Rieter Gollmann, editors$Com-
puter Security - ESORICS 2003, 8th European Symposium @aiRbhin Computer Secu-
rity, volume 2808 of NCS pages 271-290, Gjavik, Norway, October 2003. Springelage

4. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Ailgrsally Composable Cryp-
tographic Library. InProceedings of the 10th ACM Conference on Computer and Cemmu
nications SecurityWashington, DC, October 2003. ACM Press.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
28.

. Dave Bayer, Stuart Haber, and W.-Scott Stornetta. Imipgathe efficiency and reliability of

digital time-stamping. Ir'Bequences II: Methods in Communication, Security, and Qtenp
Sciencepp.329-334, Springer-Verlag, New York 1993.

. Josh Benaloh and Michael de Mare. Efficient broadcastsitamping. Tech. report 1, Clark-

son Univ. Dep. of Mathematics and Computer Science, Aug2®t 1

. Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villem3one-Stamping with Binary

Linking Schemes. Iddvances in Cryptology — CRYPTO;28CS1462, pp. 486-501, 1998.

. Ahto Buldas, Peeter Laud, Mart Saarepera, and Jan WitamUniversally Composable

Time-Stamping Schemes with Audit. IACR ePrint Archive, 300

. Ahto Buldas and Mart Saarepera. On provably secure staeping schemes. Wdvances

in Cryptology — ASIACRYPT 2004NCS 3329pp.500-514, 2004.

Ran Canetti. A unified framework for analyzing securftpmmtocols.Electronic Colloquium
on Computational Complexity (ECCG3(16), 2001.

Ran Canetti. Security and composition of multi-partyptographic protocolsJournal of
Cryptology 13(1):143-202, 2000.

Ran Canetti. Universally Composable Security: A NewaBigim for Cryptographic Proto-
cols. In 42d FOCS pp. 136-145. 2001.

Ran Canetti and Marc Fischlin. Universally Composahden@itments. INCRYPTO'01
LNCS 2139, pp. 19-40. 2001.

D. Dolev and A. C. Yao. On the security of public key pratisclEEE Transactions on
Information Theory29(2):198-208, 1983.

Stuart Haber and W.-Scott Stornetta. How to time-stadigital documentJournal of Cryp-
tology, Vol. 3, No. 2, pp. 99-111 (1991).

Stuart Haber and W.-Scott Stornetta. Secure Names feé3tBngs. INACM Conference on
Computer and Communications Securjtp. 28—35, 1997.

Yehuda Lindell.Composition of Secure Multi-Party ProtocolA Comprehensive Study.
LNCS 2815. 2003.

Michael Luby.Pseudorandomness and cryptographic applicatioBenceton University
Press, 1996.

Ralph C. Merkle. Protocols for public-key cryptosyssefroceedings of the 1980 IEEE
Symposium on Security and Privagp.122-134, 1980.

Tal Moran, Ronen Shaltiel and Amnon Ta-Shma. Non-ictera timestamping in the
bounded storage model. Advances in Cryptology — CRYPTO 200MNCS3152, 2004.

Moni Naor and Moti Yung. Universal one-way hash funcsiamd their cryptographic appli-
cations. Proceedings of tAgventy First Annual ACM Symposium on Theory of Computing
May 15-17 1989: Seattle, ACM Press, pp. 33-43, 1989.

Birgit Pfitzmann, Matthias Schunter, and Michael Waid@eyptographic Security of Reac-
tive Systems. In Steve Schneider and Peter Ryan, editdmkshop on Secure Architectures
and Information Flow volume 32 ofElectronic Notes in Theoretical Computer Scignce
Royal Holloway, University of London, 2000. Elsevier Saen

Birgit Pfitzmann and Michael Waidner. Composition antgnity preservation of secure
reactive systems. I€CS 2000, Proceedings of the 7th ACM Conference on Computer a
Communications Securitpages 245-254, Athens, Greece, November 2000. ACM Press.
Birgit Pfitzmann and Michael Waidner. A Model for Asynchous Reactive Systems and
its Application to Secure Message Transmission2001 IEEE Symposium on Security and
Privacy, pages 184-200, Oakland, California, May 2001. IEEE CoemfBbciety Press.
Alexander Russell. Necessary and sufficient condifioneollision-free hashinglournal of
Cryptology(1995) 8: 87—99.

WWW. surety.com

www. aut hent i dat e. com

www. di gi st anp. com

