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Abstract. We present an information-flow type system for a distributed
object-oriented language with active objects, asynchronous method calls
and futures. The variables of the program are classified as high and low.
We allow while cycles with high guards to be used but only if they are
not followed (directly or through synchronization) by an assignment to
a low variable. To ensure the security of synchronization, we use a high
and a low lock for each concurrent object group (cog). In some cases,
we must allow a high lock held by one task to be overtaken by another,
if the former is about to make a low side effect but the latter cannot
make any low side effects. This is necessary to prevent synchronization
depending on high variables from influencing the order of low side effects
in different cogs. We prove a non-interference result for our type system.

1 Introduction

The question of information security arises when the inputs and outputs of a
program are partitioned into different security classes. In this case we want the
high-security inputs not inappropriately influence the low-security outputs and
other behaviour observable at low clearance. The strongest such property is non-
interference [9] stating that there is no influence at all; or that variations in the
high-security inputs do not change the observations at the low level.

Over the years, static analyses, typically type systems for verifying secure
information flow have been proposed for programs written in many kinds of
programming languages and paradigms — imperative or functional, sequential
or parallel, etc. Each new construct in the language can have a profound effect
on the information flows the programs may have. With the spread of distributed
computing and multi-core processors, concurrent object-oriented programming
is gaining mindshare. The languages supporting this paradigm emphasize the
greater independence of objects and various methods of communication between
the objects and the concurrently running tasks. The effect these constructs have

? The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 231620, from Estonian Science Foundation through grants no. 7543 and 8124,
and from the European Regional Development Fund through the Estonian Center
of Excellence in Computer Science, EXCS.



on the information flow has not yet been thoroughly investigated. On the one
hand, the communication primitives are prone to introducing information leaks.
On the other hand, the explicit independence of objects and their groups can
provide clear evidence that certain flows are missing.

In this paper, we investigate a particular concurrent object-oriented lan-
guage, related to Creol [12] and JCoBoxes [21]. The language, its syntax and
semantics is almost the same as the concurrent OO sublanguage of the core
Abstract Behavioural Specification Language (ABS) [10] and shall henceforth be
named as this. At the core of this language lies the notion of a concurrent object
group (cog). Different cogs run concurrently and independently of each other and
communicate only via asynchronous method calls. When placing such a call, a
future [8] (a placeholder for the eventually available return value) is immediately
returned. A future admits certain operations for checking the presence of and
reading the return value. Inside a cog, there may also be several running tasks
sharing some common state (the fields of the object). In contrast, these tasks
are scheduled cooperatively, such that there is always just a single active task
per cog.

In this paper we propose a type system for checking the non-interference
in programs written in ABS. For eliminating certain information flows, and for
simplifying the checks we will fix or adjust certain details of the language in a
manner that can be seen as non-essential for its purposes (specifying concurrent
systems). Compared to [10], our language has a more fine-grained system of
locks for controlling which task is currently running inside a cog. We have also
restricted the scheduler for non-preemptive tasks, such that information flow
properties are easier to enforce. The specification of scheduling decisions is made
harder by the necessity to not introduce deadlocks into the program that were
not there before. On the other hand, different cogs are running in a truly parallel
fashion, scheduled nondeterministically.

We will introduce the syntax and semantics of ABS in Sec. 2. While describ-
ing the syntax, we will already introduce security types and annotations that
form the basis for defining non-interference. In Sec. 3 we introduce our type sys-
tem for secure information flow, and state the properties satisfied by well-typed
programs. We review the related work in Sec. 4 and discuss our results in Sec. 5.

2 The Programming Language

2.1 Syntax

Our programming language is a simplified version of ABS. Its (abstract) syntax
is given in Fig. 1. The notation X denotes a sequence of X-s. Several constructs
in the syntax are annotated by security levels. These do not have to be provided
by the programmer, as they can be inferred automatically during type checking.

Let us explain the language constructs related to distributed execution.
ep!m(ep) denotes the asynchronous call of the method m. The call immediately
returns a future. The get-construct is used to read the value of that future, if it



x | n | o | b | f local variable | task | object | cog | field name

Pr ::= Cl B program

Cl ::= class C{T f M} class definition

M ::= (m : (l, T )
l[,i]→ Cmdl(T ))(x) B method definition

B ::= {T x s;x} method body

v ::= x | this | this.f variable

i ::= . . . | −1 | 0 | 1 | . . . integer

e ::= ep | es expression

ep ::= v | null | i | ep = ep pure expression

es ::= ep!lm(ep) | ep.getl | new C | new cog C expression with side effects

s ::= v := e | e | skip | suspendl | awaitl g statement

| if (ep) s else s | whilel (ep) s | s; s
g ::= v? guard

l ::= L |H security level

` ::= l | i security level or integer

T ::= Intl | Cl | Fut`l (T ) | Guard`l security type

Fig. 1. Syntax

is available. If not, then get blocks. The suspend-statement suspends the current
thread, it is used for non-preemptive scheduling inside a cog. The statement
await g suspends until the guard g = v? becomes true, which happens when the
future v obtains a value.

2.2 Operational Semantics

We first define run-time configurations. The program at run time is a set of cogs
(concurrent object groups), each of which contains a set of objects. Each object
is related to zero or more tasks. The run-time configurations are as follows:

P ::= b[n1, n2] | o[b, C, σ] | n 〈b, o, σ, s〉 | P ‖ P

Each cog is represented by its identifier b and the state of its locks. Each cog
has two locks—the low lock, which is owned by task n1 (or is free if n1 = ⊥),
and the high lock, which is owned by task n2 (or is free if n2 = ⊥).

Each object is represented by its identifier o, its cog b, its class C, and its
state σ (the values of its fields). Each task is represented by its identifier n, its
cog b, its object o, the statement s that is yet to be executed in this task, and
its state σ (the values of its local variables).

The run-time syntax will have some additional constructs:

ep ::= . . . | n | o s ::= . . . | grabl | releasel a ::= null | i | n | o



Thus task and object identifiers can be used (these result from evaluating other
expressions) and we will use a to denote fully reduced expressions (i.e. constants):
Also separate statements are introduced for grabbing and releasing locks (used
for executing suspend and when starting and terminating tasks).

The initial configuration for the program Cl {T x s;x0} will be

b0[n0, n0] ‖ n0 〈b0, null, σ, s; releaseL;x0〉

i.e. an initial cog b0 will be created for the task n0 executing the main method.
This task will have both locks initially and the statement releaseL is added to
release the locks before the task terminates. This task is the only task that is not
tied to an object (all tasks created later will be tied to some object). The variable
x0 (which must have type IntL) will contain the return value of the program.
Input can be given to the program through the initial values of the variables in
σ. These variables must be declared in the body of the main method.

Now we can give the reduction rules (including the necessary reduction con-
texts) in Fig. 2. Again, some explanations are in order. The commands grab and
release manipulate the locks of a cog. Suspending a task is equivalent to releasing
a lock and then trying to grab it again. A method body that starts with a grab
is currently suspended. It is possible to perform either a low or a high suspend.
When a task has performed a high suspend, then only other high-suspended
tasks can continue.

An asynchronous call (acall) creates a new task in the cog containing the
receiver of the call. The new task is initially suspended. The name of the new
task is used as the future.

A while-loop suspends after each iteration. Hence an infinite loop cannot stop
the computation in the entire cog and cause information flows through non-
termination in such manner. The semantics of the await-command is straight-
forward, except for the rule (await3). It is used to avoid certain deadlocks. See
Sec. 3.1 for the definition of low and high-low tasks and further discussion. Basi-
cally, rule (await3) allows the task n′ to preemptively start running (and suspend
the task n1) if its final value is being waited for. In such manner, the possible
non-termination of task n1 cannot affect the termination behaviour of n (the
high-low task n′ always terminates).

3 Type System for Non-Interference

3.1 Types

The types in the type system are the following:

T ::= Intl | Cl | Fut`l (T ) | Guard`l | Exp
l(T ) | Cmdl | Cmdl(T ) | (l, T )

l[,i]→ Cmdl(T )

Thus we can have integers, objects of class C, futures, guards, possibly non-
terminating expressions, commands, commands (method bodies) returning a
value, and methods. Here the subscript represents the security level of the value.



R1[e] ::= x := e | this.f := e

R2[e] ::= R1[e]|if (e) s1 else s2|R1[e.getl]|R1[e!lm(e′)]|R1[e′!lm(e1 e e2)]|R2[e = e′]|R2[e′ = e]

n′ fresh body(m) = s(x̄);x′ stask = grabl; s[ā/x̄]; releasel;x
′

o′[b′, C, σ′] ‖ n 〈b, o, σ,R1[o′!lm(ā)]; s〉 o′[b′, C, σ′] ‖ n 〈b, o, σ,R1[n′]; s〉 ‖ n′ 〈b′, o′, σinit, stask〉
(acall)

o′ fresh

n 〈b, o, σ,R1[new C]; s〉 n 〈b, o, σ,R1[o′]; s〉 ‖ o′[b, C, σinit]
(new)

b′ fresh o′ fresh

n 〈b, o, σ,R1[new cog C]; s〉 n 〈b, o, σ,R1[o′]; s〉 ‖ b′[⊥,⊥] ‖ o′[b′, C, σinit]
(newcog)

n 〈b, o, σ′, R1[n′.getl]; s〉 ‖ n′ 〈b′, o′, σ, x〉 n 〈b, o, σ′, R1[σ(x)]; s〉 ‖ n′ 〈b′, o′, σ, x〉 (get1)

n 〈b, o, σ′, R1[n′.getl]; s〉 ‖ n′ 〈b′, o′, σ, s′;x〉 n 〈b, o, σ′, awaitl(n′?);R1[n′.getl]; s〉 ‖ n′ 〈b′, o′, σ, s′;x〉
(get2)

n 〈b, o, σ,R2[x]; s〉 n 〈b, o, σ,R2[σ(x)]; s〉 (var)

o[b, C, σ] ‖ n 〈b, o, σ′, R2[this.f ]; s〉 o[b, C, σ] ‖ n 〈b, o, σ′, R2[σ(f)]; s〉 (field)

n 〈b, o, σ, a; s〉 n 〈b, o, σ, s〉 (dummyexpr)

n 〈b, o, σ, x := a; s〉 n 〈b, o, σ[x 7→ a], s〉 (assignvar)

o[b, C, σ] ‖ n 〈b, o, σ′, this.f := a; s〉 o[b, C, σ[f 7→ a]] ‖ n 〈b, o, σ′, s〉 (assignfield)

n 〈b, o, σ, skip; s〉 n 〈b, o, σ, s〉 (skip)

n 〈b, o, σ, suspendl; s〉 n 〈b, o, σ, releasel; grabl; s〉
(suspend)

b[⊥,⊥] ‖ n 〈b, o, σ, grabL; s〉 b[n, n] ‖ n 〈b, o, σ, s〉 (grabL)

b[n′,⊥] ‖ n 〈b, o, σ, grabH ; s〉 b[n′, n] ‖ n 〈b, o, σ, s〉 (grabH)

b[n, n] ‖ n 〈b, o, σ, releaseL; s〉 b[⊥,⊥] ‖ n 〈b, o, σ, s〉 (releaseL)

b[n′, n] ‖ n 〈b, o, σ, releaseH ; s〉 b[n′,⊥] ‖ n 〈b, o, σ, s〉 (releaseH)

i 6= 0

n 〈b, o, σ, if (i) s1 else s2; s〉 n 〈b, o, σ, s1; s〉 (if+)

n 〈b, o, σ, if (0) s1 else s2; s〉 n 〈b, o, σ, s2; s〉 (if−)

n 〈b, o, σ,whilel (e) s1; s2〉 n 〈b, o, σ, if (e) (s1; suspendl; whilel (e) s1) else skip; s2〉
(while)

n 〈b, o, σ′, awaitl(n′?); s〉 ‖ n′ 〈b′, o′, σ, x〉 n 〈b, o, σ′, s〉 ‖ n′ 〈b′, o′, σ, x〉 (await1)

n 〈b, o, σ′, awaitl(n
′?); s〉 ‖ n′ 〈b′, o′, σ, s′;x〉 

 n 〈b, o, σ′, suspendl; awaitl(n′?); s〉 ‖ n′ 〈b′, o′, σ, s′;x〉

(await2)

the next step of s1 is low and the task n′ is high-low

n 〈b, o, σ′, awaitH(n′?); s〉 ‖ n′ 〈b′, o′, σ, grabH ; s′;x〉 ‖ n1 〈b′, o1, σ1, s1〉 ‖ b′[n1, n1] 
 n 〈b, o, σ′, suspendH ; awaitH(n′?); s〉 ‖ n′ 〈b′, o′, σ, s′;x〉 ‖ n1 〈b′, o1, σ1, grabH ; s1〉 ‖ b′[n1, n′]

(await3)

Fig. 2. Reduction rules



For integers and objects, this corresponds to the upper bound on the security
levels of the inputs that may have affected this value. For futures and guards,
this is the upper bound on the (control flow) information that may affect which
task this future is referring to. The security level on top of the arrow of the
method type corresponds to the minimum level of side effects this method is
allowed to perform. If this is high, then the side effects of this method do not
affect the low part of the computation. The level l0 in the method type denotes
the security level of the receiver of the method call (i.e., this-argument). The
superscripts on the types are the upper bound on information that may affect
whether this future, guard, expression, or command eventually returns a value
or terminates. If this information is high, then the effects of any computation
that follows are high, too.

We also define the security level corresponding to those security types that
can be types of variables:

level(Cl) = l level(Intl) = l level(Fut`
′

l (T )) = l level(Guard`
′

l ) = l

Thus level(T ) is the maximum context level where assignments to variables of
type T are allowed.

The typing rules are given in Figures 3 and 4. The general shape of the

l ≤ l L ≤ H l2 ≤ l1 `3 ≤ `4
Guard`3l1 ≤ Guard`4l2

l2 ≤ l1 `3 ≤ `4 T5 ≤ T6

Fut`3l1 (T5) ≤ Fut`4l2 (T6)

GuardiH ≤ GuardLH
l1 ≤ l2

Cl1 ≤ Cl2
l1 ≤ l2

Intl1 ≤ Intl2

γ, l ` e : T

γ, l ` e : ExpL(T )

γ, l ` e : T1 T1 ≤ T2

γ, l ` e : T2

γ, l ` s : Cmdl1 l1 ≤ l2
γ, l ` s : Cmdl2

γ, l1 ` s : Cmdl l1 ≥ l2
γ, l2 ` s : Cmdl

Fig. 3. Subtyping rules

typing rules is γ, l ` X : T , where γ is the typing context giving the types of local
variables, fields, and methods, l is the current security context upper bounding
the information that may have affected whether the execution reaches the current
program point, X is a typable quantity and T is its type. For typing methods,
there is no security context. Considering the meaning of sub- and superscripts
in the types, the rules in Figures 3 and 4 should be rather straightforward. A
program Pr is well typed if ` Pr : ok is derivable.

We also allow an integer i to be added to the security level of the context.
This is used to guarantee termination for methods (corresponding to high-low
tasks in Def. 2) where the security level of the context is higher than the security
level of termination and thus while cycles are forbidden. Cycles could still occur
through cycles in the await graph and to disallow this, each of these methods has
a positive integer i > 0 and can only await after a task with a smaller integer.
This makes the await graph of high-low tasks acyclic. To achieve this, we have



(∀i) Cli = class Ci{Ti1 fi1 . . . Tiri firi Mi1 . . .Miki} (∀i, j) Mij = (mij : T ′ij)(xij) Bij

γ = {Ci.fij 7→ Tij | 1 ≤ i ≤ n, 1 ≤ j ≤ ri} ∪ {Ci.mij 7→ T ′ij | 1 ≤ i ≤ n, 1 ≤ j ≤ ki}
(∀i, j) γ `Mij : T ′ij B = {T x s} γ, x : T ,L ` s : CmdL(IntL)

` Cl1 . . . Cln B : ok
(Prog)

γ, x : T , this : Cl0 , l ` s : Cmdl1(T ′) l = l1

γ ` (m : (l0, T )
l→ Cmdl1(T ′))(x) {T x s} : (l0, T )

l→ Cmdl1(T ′)
(Method1)

γ, x : T , this : Cl0 , l, i ` s : Cmdl1(T ′) l > l1 i > 0

γ ` (m : (l0, T )
l,i→ Cmdl1(T ′))(x) {T x s} : (l0, T )

l,i→ Cmdl1(T ′)
(Method2)

γ(x) = T

γ, l ` x : T
(Var)

γ(C.f) ≤ T T ∈ {C′l , Intl,Fut`1l (T ′)} γ, l2 ` this : Cl
γ, l2 ` this.f : T

(Field)

γ, l ` null : CL
(Null)

γ, l ` i : IntL
(Int)

γ, l ` e : Cl0 γ, l ` e : T γ(C.m) = l0, T
l→ Cmdl1(T2) l0 ≥ l T ≥ l l1 = l

γ, l ` e!lm(e) : Futl1l (l ∨ l1 ∨ T2)
(ACall1)

γ, l ` e : Cl0 γ, l ` e : T γ(C.m) = l0, T
l,i→ Cmdl1(T2) l0 ≥ l T ≥ l l1 < l

γ, l ` e!lm(e) : Futil(l ∨ l1 ∨ T2)
(ACall2)

γ, l ` e : Futl1l (T )

γ, l ` e.getl : Expl1(T )
(Get1)

γ, l, i ` e : Futi1l (T ) i1 < i

γ, l, i ` e.getl : ExpL(T )
(Get2)

γ, L ` new C : CL
(New)

γ, L ` new cog C : CL
(NewCog)

γ, l ` e : Expl2(T )

γ, l ` e : Cmdl2
(DummyExpr)

γ, l ` skip : CmdL
(Skip)

γ(x) = T level(T ) = l γ, l ` e : Expl2(T )

γ, l ` x := e : Cmdl2
(AssignVar)

γ(C.f) = T level(T ) = l γ, l ` e : Expl2(T ) γ, l ` this : Cl

γ, l ` this.f := e : Cmdl2
(AssignField)

γ, l ` e : Guardl1l
γ, l ` awaitl(e) : Cmdl1

(Await1)
γ, l, i ` e : Guardi1l i1 < i

γ, l, i ` awaitl(e) : CmdL
(Await2)

γ, l ` grabl : CmdL
(Grab)

γ, l ` releasel : CmdL
(Release)

γ, l ` suspendl : CmdL
(Suspend)

γ, l ` e : Intl γ, l ` s1 : Cmdl1 γ, l ` s2 : Cmdl1

γ, l ` if (e) s1 else s2 : Cmdl1
(If)

γ, l ` e : Intl γ, l ` s : Cmdl

γ, l ` whilel (e) s : Cmdl
(While)

γ, l ` s1 : Cmdl1 γ, l ∨ l1 ` s2 : Cmdl2

γ, l ` s1; s2 : Cmdl1∨l2
(Seq1)

γ, l ` s1 : Cmdl1 γ, l ∨ l1 ` s2 : Cmdl2(T )

γ, l ` s1; s2 : Cmdl1∨l2(T )
(Seq2)

γ, l ` x : T level(T ) = l

γ, l ` x : CmdL(T )
(ReturnVar)

γ, l′ ` e : Futl1l (T )

γ, l′ ` e? : Guardl1l
(Guard)

Fig. 4. Type rules



some typing rules of the form γ, l, i ` X : T . The integer i can also be assimilated
with γ. For example, a rule

γ, l, i ` s1 : Cmdl1 γ, l ∨ l1, i ` s2 : Cmdl2

γ, l, i ` s1; s2 : Cmdl1∨l2

is considered a special case of the rule (Seq1) and thus is not given separately.
The integer i is also used (instead of L) in the superscript of the futures and
guards of high-low tasks.

By the next definition, we can now distinguish high and low reduction steps,
depending on whether the reduced statement is typable in high context or not.

Definition 1. Let the statement s have the form s1; s2 where s1 is not a sequen-
tial composition (because of associativity of the sequential composition operator,
a statement always has either this form or the form x (a single variable, which
cannot be further reduced)). We call the next reduction step of s a high step if
γ,H ` s1 : Cmd l and a low step otherwise.

The next definition allows to also distinguish high and low tasks. The previous
and the next definition are used in the (await3) rule in Fig. 2.

Definition 2. We call a task n 〈b, o, σ, s;x〉 a high task if γ,H ` s : Cmd l and a
low task otherwise. The high tasks are further distinguished: if γ,H ` s : CmdL

then it is a high-low task and otherwise it is a high-high task.

A high task can only make high steps, but a low task can make both high and low
steps. A high-high task can contain only high cycles (cycles with a high guard)
because low cycles are not allowed in high context. A high-low task cannot
contain any cycles (because at most low guards are allowed but high context
requires at least high guards). We have the following lemma.

Lemma 1. A low task cannot contain high while cycles. A high-low task cannot
contain any while cycles.

The restriction on the use of high while cycles is modeled after the restriction
in [22]. Thus no low steps can follow a high while cycle in the same task. This
restriction is checked in the rules (Seq1) and (Seq2). Because a low task must
eventually release both locks, which is a low step, a low task cannot contain high
while cycles at all. We extend the same restriction to await cycles. Thus a low
task cannot await after a task that is allowed to make high cycles.

In our language, the scheduler of a cog cannot switch to a different task
before the current task releases the high lock (or both locks). This can be done
explicitly using suspend, but it is also done implicitly after each iteration of a
while or await cycle. In contrast, in [22], by default the scheduler can switch tasks
at any time, this can be disallowed by wrapping a sequence of commands in a
protect construct. The protect construct is not allowed to contain cycles. This
restriction corresponds to our implicit suspend after each iteration of a cycle.

Because our language allows more than one cog, there can be several low
tasks running in parallel (at most one in each cog). This can create a situation



where a low task n1 in one cog (b1) is in high context and awaits for a high
task n2 in another cog (b2) but the high lock of cog b2 is held by a low task n3
in cog b2. Thus the task n1 cannot make the next low step before the task n2
terminates, which cannot happen before the task n3 releases the high lock but
n3 may make some low steps before it releases the lock. Thus it may depend on
the high variables in n1 whether low steps must be made in n3 before the next
low step in n1 or not. Thus the low steps in n3 are essentially in high context.
To prevent this indirect information flow, we allow the task n2 to overtake the
high lock from n3 in this situation. This means that n3 is not required to make
low steps before n1 does, no matter what the values of high variables in n1 are.
This is handled by the reduction rule (await3).

3.2 Non-interference

We first define the low-equivalence relation in Fig. 5. Here we assume (w.l.o.g.)
that all variables in the program have globally unique names. Thus we can use
a single type context γ instead of separate type contexts for each task.

γ, l ` s : CmdH

s ∼γ s
γ,H ` s : CmdH γ,H ` s′ : CmdH

s ∼γ s′

γ, l ` s : CmdH(T )

s ∼γ s
γ,H ` s : CmdH(T ) γ,H ` s′ : CmdH(T )

s ∼γ s′

γ,H ` s1 : CmdH s2 ∼γ s′2
s1; s2 ∼γ s′2

γ,H ` s1 : CmdH s2 ∼γ s′2
s2 ∼γ s1; s′2

s2 ∼γ s′2
s1; s2 ∼γ s1; s′2

σ ∼γ σ′ ≡ dom(σ) = dom(σ′) ∧ ∀v ∈ dom(σ). level(γ(v)) = L⇒ σ(v) = σ′(v)

b[n1, n2] ∼γ b[n1, n
′
2]

σ ∼γ σ′

o[b, C, σ] ∼γ o[b, C, σ′]
σ ∼γ σ′ s ∼γ s′

n 〈b, o, σ, s〉 ∼γ n 〈b, o, σ′, s′〉
P1 ∼γ P ′1 P2 ∼γ P ′2
P1 ‖ P2 ∼γ P ′1 ‖ P ′2

γ,H ` s : Cmdl1(T2) P ∼γ P ′

n 〈b, o, σ, s〉 ‖ P ∼γ P ′
γ,H ` s : Cmdl1(T2) P ∼γ P ′

P ∼γ n 〈b, o, σ, s〉 ‖ P ′

Fig. 5. The low-equivalence relation ∼γ

From the definition of ∼γ we see that any typable command is equivalent to
itself. Two commands are also equivalent if they both only have high side-effects.
Commands with only high side-effects are also equivalent to skip-s.

Two local states are equivalent if the values of variables with low types are
equal. Two objects are equivalent if the values of fields with low types are equal.
The notion of equivalence is then extended to program configurations. We can
now define the notion of non-interference we are considering. It is typical for the
non-deterministic treatment of information flows, dating back to [24].

Definition 3 (Non-interference). A program Cl {T x s;x0} is non-interferent
if for any three states σ0, σ•0 and σ1 satisfying σ0 ∼x:T σ1,



b0[n0, n0] ‖ n0 〈b0, null, σ0, s; releaseL;x0〉
∗
 n0 〈b0, null, σ•0 , x0〉 ‖ . . .

implies that there exists a state σ•1 with σ•1(x0) = σ•0(x0) and

b0[n0, n0] ‖ n0 〈b0, null, σ1, s; releaseL;x0〉
∗
 n0 〈b0, null, σ•1 , x0〉 ‖ . . . .

Now we can prove the lemmas and the theorem for non-interference, stating
that well-typed programs are non-interferent. Due to space constraints, we will
just state the theorems here, and refer to [15] for the proofs and the necessary
lemmas.

Theorem 1 (Subject reduction). If P1 and P2 are well typed under γ and
P1 ∼γ P2 then if P1  P ′1 then there exists P ′2 such that P2  ∗ P ′2 and P ′1 ∼γ P ′2.

Theorem 2 (Non-interference). If ` Pr : ok, where Pr = Cl {T x s;x0},
then Pr is non-interferent.

4 Related Work

The treatment of secure information flow in the language- and lattice-based
setting is considered to have been pioneered by Denning and Denning. The first
well-known type-based analysis for secure information flow in a simple imperative
language was proposed by Volpano et al. [25]. Later, their analysis has been
extended in many different directions, including treated language constructs,
and the versatility of the tools for defining information flow properties. Our
analysis, applied to a complex language, draws ideas from the developments in
many of those directions. Let us give an overview of those.

While at first, the definitions of secure information flow were given in terms
of distinguishable memories, bisimulation relations over program configurations
[13, 18] soon emerged as a convenient and composable way of defining informa-
tion flow properties. The use of weak bisimulations, allowing stuttering, appeared
in [23].

Object-oriented features, including fields and methods, were first treated
in the JFlow (Jif) compiler [14]. However, they did not provide formal non-
interference results. Such results for an OO-language were provided in [3]. In
that area, a lot of attention has also been devoted to the analysis of low-level
OO-languages, e.g. Java bytecode [4, 5].

Concurrent languages, with possible race conditions and synchronization
primitives, bring their own challenges. Secure information flow in a language
with the possibility to spawn new threads was first considered in [24]. Synchro-
nization primitives were considered in [19]. A bisimulation-based definition of
secure information flow was provided in [7]. In this area, most of the research
seems to have concentrated on languages with parallel threads operating on a
shared state. For the treatment of processes with private states, one may have



to refer to the work based on process calculi [2, 11, 6]. Another interesting area
is the building of distributed systems [26] satisfying certain information-flow
properties.

In the analysis of thread pools with shared state, the properties of schedulers
play a major role in the analysis of information flow properties. Their effect
was first considered in [20]. More recently, scheduler strategies for providing the
security of information flow have been considered [17, 16].

5 Conclusions

We have demonstrated a type-based information flow analysis for a rich modeling
language that has been designed to be applicable in designing large systems. As
such, the type-based technique is a suitable choice because of its efficiency in
checking large artefacts.

Our work demonstrates that the notion of futures, heavily employed by the
language, may cause some interesting information flows in the system. These
information flows are particularly apparent if the futures are considered as first-
class values. In particular, the synchronization points they create can interfere
with the scheduling decisions. Our work shows that the details of scheduling in
ABS may need some further design efforts.

Our analysis has been applied to a language employing many different fea-
tures. Our work has been valuable in pointing out how these features interact
with each other in terms of possible information flows. We believe that our work
will be helpful in making information flow type systems more widely used in the
design and programming phases of the software development process.
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