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Abstract—This paper addresses the problem of computing the
intersection of regular languages in a privacy-preserving fashion.
Private set intersection has been addressed earlier in the litera-
ture, but for finite sets only. We discuss the various possibilities
for solving the problem efficiently, and argue for an approach
based on minimal deterministic finite automata (DFA) as a suit-
able, non-leaking representation of regular language intersection.
We propose two different algorithms for DFA minimization in
a secure multiparty computation setting, illustrating different
aspects of programming based on universal composability and the
constraints this sets on existing algorithms. The implementation of
our algorithms is based on the programming language SECREC,
executing on the SHAREMIND platform for secure multiparty
computation. As one application domain we consider fusion of
virtual enterprise business processes.

I. INTRODUCTION

Formal languages and the related notion of automata have a
wide range of applications, including the analysis of structured
text, circuit design, pattern matching, analysis of concurrent
systems, compression, and DNA computing. While the theories
of automata and formal languages are well established, there
are few results that take into account privacy constraints.

In this work we consider two mutually distrustful parties,
each knowing a formal language, wishing to obtain their
“combined” language. The two parties are reluctant to reveal
any information about their own languages that is not strictly
deducible from this combined result. Moreover, we assume
that there is no trusted third party. The combined language
we consider here is the intersection of the two languages.
Intersection of formal languages is a primitive used for a
wide range of applications. Use cases include: (i) enterprises
that are building a cooperation and want to establish the
cross-organizational business process, (ii) competitive service
providers that collaborate to detect intrusions, and (iii) agencies
that intersect their compressed databases.

In some restricted cases, private language intersection can
be achieved using existing protocols to compute private set
intersection (see e.g. [1]). However, this requires the input
languages to respect two constraints: the words of the two
languages have to be subsets of a given domain of finite
size, and the languages themselves must be finite. In this
paper we go beyond finite sets and propose a technique
for privacy preserving intersection of regular languages. Our
approach is based on: (i) representing the input languages
as finite automata, (ii) a well-known result that for every
regular language there is a unique (up to isomorphism) DFA
accepting it, and (iii) designing privacy preserving versions of
some classic algorithms on automata: product, trimming and
minimization.

The secure domain in which we implement our solution is
the domain of secure multiparty computation (SMC). Frame-
works for universal composition of privacy preserving proto-
cols are restrictive as to the set of primitive datatypes and op-
erations they offer. This in turn restricts the algorithms that can
be coded efficiently in the framework. The problem here is not
to develop a new algorithm for regular language intersection,
but instead decompose the problem without compromising
the participants’ privacy and identify the algorithms that best
fit the domain of secure multiparty computation. There are
several well-known algorithms for DFA minimization. It turns
out that efficient algorithms based on partition refinement like
Hopcroft’s cannot be readily encoded in standard SMC frame-
works. Instead, we had to implement a more abstract version
of the protocol, namely Moore’s algorithm, which has a worse
polynomial asymptotic complexity. As a second minimization
algorithm we implemented Brzozowski’s algorithm. It has a
worst-case exponential complexity, but in many cases behaves
better than Moore’s algorithm, and is directly encodable using
generic constructions for SMC. We use the algorithm also to
illustrate how algebraic properties of regular languages can be
utilized to reduce the computations that need to be performed
in the computationally more expensive secure domain.

To demonstrate the feasibility of private language intersec-
tion we implement our proposals in the programming language
SECREC executing on the SHAREMIND platform for secure
multiparty computation. Finally, we demonstrate how private
regular language intersection can be used as a main building
block to address a more complex application scenario: the
fusion of business processes of virtual enterprises.

The paper is organized as follows. In Section II we
recall some well-known notions and results from automata
theory. In the next section we develop privacy preserving
versions of Moore’s and Brzozowski’s algorithms, taking into
account the restrictions imposed by universal composability,
while the following Section IV presents their implementations
in SECREC. Section V describes the application of private
regular language intersection to the privacy preserving fusion
of business processes of virtual enterprises. In the last two
sections we describe related work, draw conclusions, and
provide directions for future research.

II. AUTOMATA, LANGUAGES AND MINIMIZATION

A. Automata and Languages

We recall several standard notions from the theory of
automata and formal languages. For a deeper introduction we
refer the reader to standard textbooks such as Kozen [2].
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A deterministic finite automaton (DFA) is a quintuple A =
(Q,Σ, δ, q0, F ), where:

(i) Q is a finite set of states;

(ii) Σ is a finite set of symbols called input alphabet;

(iii) δ : Q× Σ→ Q is a transition function;

(iv) q0 ∈ Q is the initial state;

(v) F ⊆ Q is a set of final (or accepting) states.

The transition function is lifted to strings σ ∈ Σ∗ in the
natural fashion; the lifted version is denoted by δ̂. A string σ
is accepted by the automaton A if δ̂(q0, σ) ∈ F . The set of
strings that A accepts is called the language of (or recognized
by) A, and is denoted by L(A). The class of languages
recognized by DFA is the class of regular languages.

Equivalently, regular languages can be represented by non-
deterministic finite automata (NFA), which only differ from
DFA by having a set of start states (rather than exactly one),
and having as a co-domain of the transition function the set 2Q

(rather than Q), thus specifying a set of possible transitions
from a given state on a given input symbol. Thus, every DFA
can also be seen as an NFA. Conversely, every NFA A can
be converted to an equivalent DFA (i.e., accepting the same
language) by means of the standard subset construction; we
denote the resulting automaton by SC (A). In general, NFA
can be exponentially more succinct in representing regular
languages than DFA.

Regular languages are closed under reverse and inter-
section, among other operations; the standard operations of
reverse and product on finite automata have this effect on their
languages. We denote by A−1 the reverse automaton of A
(obtained simply by reversing the transitions and by swapping
initial with final states), and by A1 × A2 the product of A1

and A2.

B. DFA Minimization

For every regular language there is a unique (up to iso-
morphism) minimal DFA accepting it (that is, automaton with
a minimum number of states). However, there is no canonical
minimal NFA for a given regular language. In this subsection
we present the two most well-known approaches to DFA
minimization. By abuse of notation, we shall use min(L) and
min(A) to denote the minimal DFA that recognize L and L(A),
respectively.

1) Partition Refinement: The standard algorithms for DFA
minimization, as e.g. those by Moore [3], Hopcroft [4] and
Watson [5], are based on partitioning the states of the DFA
into equivalence classes that are not distinguishable by any
string, and then constructing a quotient automaton w.r.t. the
equivalence. Notice that the uniqueness result assumes that
the automaton has no unreachable states.

The equivalence ≈ is computed iteratively, approximating
it with a sequence of equivalences capturing indistinguishabil-
ity of strings up to a given length. Below we give an account
of partition refinement that is suitable for our implementation.

Let A = (Q,Σ, δ, q0, F ) be a DFA. Consider the family of
relations ≈n⊆ Q×Q defined as follows:

≈0 = F 2 ∪ (Q\F )2

≈i+1 = ≈i ∩
⋂
a∈Σ δ

−1(≈i, a)

where the inverse of δ is lifted over pairs of states. The family
defines a sequence of equivalences, or partition refinements,
that in no more than |Q | steps stabilizes in ≈.

One standard representation of partitions is as the kernel
relation of a mapping. Recall that any mapping f : A → B
induces an equivalence relation κf on A, called the kernel
of f and defined as (a1, a2) ∈ κf whenever f(a1) = f(a2).
Applying this representation to partition refinement of the set
of states Q of a given DFA, we define the family of index sets:

I0 = {0, 1}
Ii+1 = Ii × [Σ→ Ii]

to be used as co-domains, where [A → B] denotes the space
of (total) mappings from A to B. Next, we define the family
of mappings ρn : Q→ In as follows:

ρ0(q) =

{
0 if q ∈ F
1 if q ∈ Q\F

ρi+1(q) = (ρi(q), λa ∈ Σ. ρi(δ(q, a)))

It is easy to show by mathematical induction on n that
κρn = ≈n under the standard notions of equality on pairs
and mappings, i.e. that ρn represents the n-th approximant in
the above partition refinement sequence.

Notice that for representing a partition on Q a codomain of
the same cardinality as Q suffices. Therefore one can, at every
stage of an actual computation of the approximation sequence,
“normalize” the codomain to the set Q itself. For example,
let χρn : rng(ρn) → Q be a family of injective mappings
from the ranges (i.e. active codomains) of ρn into Q. We then
obtain a family of mappings πn : Q → Q defined by πn =
χρn ◦ρn, which induce the same kernel, i.e. κπn = κρn . Now,
since ρn = χ−1

ρn ◦ πn, one can re-express the above partition
refinement sequence via the latter mappings as follows:

π0(q) = χρ0(ρ0(q))
πi+1(q) = χρi+1

(χ−1
ρi (πi(q)), λa ∈ Σ. χ−1

ρi (πi(δ(q, a))))

So, for an actual implementation it only remains to define the
injections χρn in a suitable fashion. The approach we adopt in
our algorithm (see Section III) is to assume an ordering on the
two elements of I0 and on the symbols of the input alphabet Σ.
These orderings induce a (lexicographical) ordering on In for
all n > 0. Now, assuming also an ordering on the states Q, we
define χρn as the least order-preserving injection of rng(ρn)
into Q, i.e. the injection that maps the least element of rng(ρn)
to the least element of Q, etc.

2) Brzozowski’s algorithm: This algorithm takes a different
approach to minimization [6]. Even though its worst-case be-
havior is exponential, it is conceptually simple and is efficient
in many practical cases [7]. Moreover, it does not require the
input automaton to be deterministic.

In the following, we shall use R(A) to represent the au-
tomaton obtained by trimming A, that is, by removing all states
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from which no terminating state is reachable. Brzozowski’s
algorithm is based on the following property.

Proposition 1 ([6], [7]): Let A be a DFA. Then
SC (R(A−1)) is a minimal DFA for the language (L(A))−1.

These propositions lead to an intuitive minimization algo-
rithm, which executes determinization and trimming twice:

min(A) = SC (R((SC (R(A−1)))−1))

III. PRIVATE REGULAR LANGUAGE INTERSECTION

Let two parties P1 and P2 hold their respective regular
languages L1 and L2, both defined over a common and public
alphabet Σ. Private regular language intersection allows the
two parties to compute the regular language L = L1 ∩ L2 in
a privacy-preserving manner, that is, without leaking elements
of L1 \ L or L2 \ L.

Here we assume a “semi-honest” adversary model, where
every involved agent correctly follows the protocol, but might
also record intermediate messages to infer additional informa-
tion. We use a simplified version of the standard definition of
security:

Definition 1 (Privacy w.r.t. semi-honest adversary [8]):
A protocol π securely computes the deterministic function f
in the presence of semi-honest adversaries if for each party
i ∈ {1 . . . n} there exists a polynomial-time simulator Si such
that:

{Si(xi, f(x1 . . . xn))}x1...xn =c {viewπi (x1 . . . xn)}x1...xn

where =c denotes computationally indistinguishability, xi is
the input of the party i, and viewπi is the party’s “view” of the
protocol, consisting of its inputs, its internal coin tosses, and
the ordered sequence of the messages it received.

Regular languages can be infinite; we thus need to choose
a finite representation. Here we use finite automata; another
obvious choice would have been regular expressions. The two
involved parties thus represent their languages L1 and L2 by
means of two (deterministic or non-deterministic) automata
A1 and A2 recognizing these; formally, L(A1) = L1 and
L(A2) = L2. Definition 1 requires the function f to be
deterministic; thus it must yield a canonical representative
automaton recognizing the language L = L1 ∩ L2. As such
a representative we choose the unique (up to isomorphism)
minimal DFA A recognizing L (see subsection II-B). Finally,
in order to enable standard SMC constructions to operate on
DFA, we relax the privacy constraint by considering public an
upper limit on the number of states of the two input automata.
That is, it is publicly known that the languages L1 and L2 are
in the set of languages accepted by DFA that respect this limit
(see [9] for the analysis of the size of this set).

In this section we present two techniques for private regular
language intersection that utilize and adapt two principally
different algorithms for DFA minimization in a manner that can
be implemented in SHAREMIND. We use the second algorithm
to also illustrate how certain algebraic properties of regular lan-
guages can be exploited to reduce the computations that need
to be performed in the computationally more expensive secure
domain. In the last subsection we briefly explain why some
common strategies for speeding up private computations are

not applicable as alternative solutions to the problem addressed
here, thus justifying our approach based on minimal DFA.

A. Moore’s algorithm

As shown in Section II-B1, automaton min(L1 ∩ L2)
can be obtained by using four composable sub-protocols to:
(i) compute the product of the DFA A1 and A2, (ii) trim the
non-reachable states from the resulting automata, (iii) refine
the partitions, and (iv) compute the quotient automaton. Here,
the most costly step is partition refinement, which requires
|A1| · |A2| iterations of a sub-protocol that, starting from a
partition πi and the transition function δ = δ(A1) × δ(A2),
yields the new partition πi+1.

Since we are not interested in the identity of the states
of the involved automata, let us assume that the automata
states Q are represented through the natural numbers of the
interval [1 . . . |Q|]. Each partition πi, as well as the transition
function associated to a symbol (i.e. δa(q) = δ(q, a)), can be
represented as mappings of type Q→Q. Thus, each partition
refinement step can be implemented as follows:

1) for each state q ∈ Q and symbol a ∈ Σ, compute the
mapping composition xa(q) = πi(δa(q));

2) generate πi+1 so that πi+1(q) = πi+1(q′) whenever
(πi(q), λa.xa(q)) = (πi(q

′), λa.xa(q′)).

1) Composition of mappings: The mappings representing
the symbol transition functions can be represented as graphs,
or matrices of size |Q|×|Q| with entries in {0, 1}. The current
partition can be represented as a vector of length |Q|. Hence,
the mappings xa can be computed as products of a matrix with
a vector, utilizing a protocol for this operation.

Alternatively, certain protocol sets for secure multiparty
computation allow the symbol transition functions δa to be
represented in a manner that preserves their privacy, and allow
efficient protocols to compute δa ◦π from a mapping π, where
both π and δa ◦ π are represented as vectors of length |Q|.
This is the case for e.g. the additive three-party protocol set
used by SHAREMIND [10], [11]. If δa is a permutation of Q,
then one can use the protocols described in [12]. If δa is
not a permutation, then it can be represented as σa ◦ g|Q| ◦
τa ◦ ι|Q|, where ιn is the identity mapping from {1, . . . , n}
to {1, . . . , `n}, gn is a fixed mapping from {1, . . . , `n} to
{1, . . . , n}, and σa, τa are permutations depending on δa.
Moreover, `n =

∑n
k=1bn/kc = (1 + o(1))n lnn. Hence δa

can be encoded through the encodings of σa and τa.

2) Generation of the new partition IDs: The second step
of the partition refinement can be achieved by employing any
composable protocol that implements the following straight-
forward algorithm:

1) initialize the new mapping as the identity mapping:
∀q.πi+1(q) = q;

2) for each state q, update the mapping of every other
state q′ as: πi+1(q′) = πi+1(q) whenever πi(q′) =
πi(q) and

∧
a xa(q′) = xa(q).

The representation of Q through natural numbers proposed
above provides us with a natural lexicographical ordering on
(πi(q), λa.xa(q)). This allows the second step of the partition
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refinement to be achieved by composing the following sub-
steps:

1) generate a matrix M of |Q|×(|Σ|+3) elements, such
that M [q, 0] = 0, M [q, 1] = q, M [q, 2] = πi(q) and
M [q, 3 + a] = xa(q);

2) sort the matrix lexicographically on the last |Σ| + 1
columns;

3) iterate the matrix and update the 0-th column with a
counter; the counter is increased if at least one of the
last |Σ|+ 1 columns of the current row differs from
the corresponding value of the previous row;

4) “invert” the sort, i.e. sort again the matrix on the
1-st column; alternatively, the additive three-party
protocol set used by SHAREMIND allows the sort-
ing permutation to be remembered in a privacy-
preserving manner and its inverse to be efficiently
applied to the rows of the matrix;

5) set πi+1(q) = M [q, 0].

B. Brzozowski’s algorithm

Proposition 1 and the corresponding minimization algo-
rithm provide a naı̈ve strategy to privately intersect regular
languages. The strategy requires three main building blocks:
(i) a composable algorithm to compute the product of two
DFA, (ii) a composable algorithm to trim an NFA, and (iii) a
composable algorithm to determinize an NFA. Brzozowski’s
algorithm involves an intermediate step that deals with a
deterministic automaton (not necessarily minimal) recognizing
the inverse of the language L1 ∩ L2. In the worst case, the
number of states of this automaton is 2|A1|·|A2|, thus the
algorithm is not practical in settings where only an upper
limit on the number of states of the two input automata is
public. However, in many cases (see e.g. [7]) this exponential
behavior does not occur. In these cases, the adoption of the
algorithm is possible if the two participants agree to disclose
an upper limit on the number of states of the minimal automata
recognizing their reversed languages (i.e. min((L1)−1) and
min((L2)−1)).

The naı̈ve strategy requires the execution of two trims and
two determinizations using SMC constructions. We propose
two refinements that reduce the number of operations per-
formed privately.

1) Local computation of the reverse languages: Since the
reverse operation on finite automata reverses the languages
they accept, Proposition 1 guarantees that the minimal automa-
ton min(L1 ∩ L2) can be computed as SC (R(A−1)), where
A is any DFA whose language is the inverse of L1 ∩ L2,
that is L(A) = (L1 ∩ L2)−1. Such an automaton can be
built as A = SC (A−1

1 ) × SC (A−1
2 ). Furthermore, on DFA,

reversal distributes over product. These results combine to the
following equality:

min(L1 ∩ L2) = SC (R(A′1 ×A′2))

where A′i = (SC (A−1
i ))−1, allowing for a more efficient

algorithm to privately compute language intersection. In fact,
each DFA (SC (A−1

i ))−1 only depends on the input of the
corresponding participant, and is thus computable locally.
The new algorithm requires only one application of automata
product, trim and subset construction to be implemented using
standard SMC constructions.

2) Disclosing the reverse language intersection: The com-
putation can be made even more efficient, observing that
knowing L1 ∩ L2 is equivalent to knowing (L1 ∩ L2)−1. In
fact, Proposition 1 guarantees that the corresponding minimal
automata can be computed from each other:

• min(L1 ∩ L2) = SC (R(min((L1 ∩ L2)−1))−1)

• min((L1 ∩ L2)−1) = SC (R(min(L1 ∩ L2))−1)

Moreover, the automaton min((L1∩L2)−1) can be computed
from the reversed input automata using one application of
product, trim and subset construction only:

min((L1 ∩ L2)−1) = SC (R((A1 ×A2)−1))
= SC (R(A−1

1 ×A
−1
2 ))

The resulting automaton can be safely disclosed, allowing the
two participants to locally reverse the language.

C. Discussion: Alternative approaches

To justify further our approach based on minimal DFA,
we discuss below briefly why some common strategies for
speeding up the private computation of a function f are not
applicable as alternative solutions to the problem addressed
here (i.e., f yielding the intersection of two regular languages).

a) Randomization of the result: If f = g◦f ′, a common
approach is to first privately compute f ′, and then privately and
randomly construct a public result that is g−equivalent to the
output of f ′ so that the distribution of the result is uniform.
Any automaton A recognizing the intersection language L
is equivalent to the automaton A1 × A2. This observation
leads to a straightforward strategy for private regular lan-
guage intersection: (i) use a composable protocol to compute
f ′ = A1 × A2, and then (ii) build an “efficient” composable
protocol that randomly constructs an equivalent automaton (to
A1 × A2). However, there is no efficient way to generate a
uniform distribution over all automata equivalent to a given
one. Instead, what essentially is achieved here, we construct
an equivalent automaton with a degenerate distribution, namely
the minimal deterministic one.

b) Problem transformation: Another common approach
is to generate a new “random” problem f ′ by transforming f
in a way that (i) there is no relation between the random
distribution of f ′ and the original problem, and (ii) it is
possible to compute the solution of f knowing the solution
of f ′ and the applied transformation. This allows (i) to generate
and apply the “random” transformation in a privacy preserving
way, (ii) to offload the computation of f ′ to a non-trusted
third party, and (iii) to compute the expected output from
the solution of f ′ and the generated transformation in a
privacy preserving way. This approach has been successfully
applied to scientific computations (see e.g. [13]), where the
inputs are represented as matrices and the transformation can
be easily generated as random invertible matrices. Again,
however, there is no mechanism to generate a “random and
invertible” transformation such that, starting from an arbitrary
input automaton, the distribution of the resulting transformed
automaton is uniform.
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c) Generation of a combinatorial problem: This ap-
proach has been successfully used for scientific computations
(see e.g. [14]). The idea is as follows: (a) one of the two
parties decomposes the problem in a set of n sub-tasks,
such that knowing the solution of each sub task allows the
party to discover only the intended private output, (b) the
same party generates m − 1 other (random) problems and
the corresponding n sub-tasks, (c) the other party locally
solves m ∗n sub-tasks, and finally, (d) the two parties execute
an n-out-of-n ∗ m oblivious transfer, allowing the first party
to compute the intended private output. The security of the
approach depends on the fact that if the m ∗ n sub-tasks
are “indistinguishable”, then the attacker needs to solve a

combinatorial problem
(

m ∗ n
n

)
to discover the original

inputs. In the context of private language intersection this
would amount to performing the following steps: (i) the first
party generates A1,1

1 . . . A1,n
1 such that L1 = ∪iL(A1,i

1 ),
(ii) the first party generates L2

1 . . .Lm1 and the automata Ak,n1

so that ∀k.Lk1 = ∪iL(Ak,i1 ), (iii) the second party solves the
problems Lk,i = L(Ak,i1 ) ∩ L2, (iv) the two parties use an
OT-transfer to allow the first party to obtain the solutions
L1,1 . . .L1,n, and finally, (v) the first party computes the final
result L = ∪iL1,i.

Again, the main obstacle to applying this approach here
is that there is no mechanism to obtain a uniform distribution
of random regular languages (or automata having an arbitrary
number of states). The existing random generators [15] that
pick one automaton from the set of automata having up to
a fixed number of states cannot be used here. In fact, this
prevents to generate m ∗ n indistinguishable sub-tasks (since
the constrains (i) and (ii) must be satisfied), thus allowing the
attacker to avoid to solve the combinatorial problem.

d) Incremental construction: Yet another common ap-
proach is to compute the result of a function f by com-
posing simpler functionalities that incrementally approximate
the result, so that each intermediate result is “part” of the
final output. For example, starting from an initial empty
approximation A0 = ∅, the union of two finite sets P1 and P2

can be incrementally built by iterating a protocol that yields
the minimum of two elements: Ai = Ai−1 ∪min(min(P1 \
Ai),min(P2 \ Ai)). Such an approach has been used to
privately compute all pair shortest distances [16] and minimum
spanning trees. However, we did not find in the literature
such a construction to compute the minimal automaton A
starting from A1 and A2 (with the exception of the dynamic
minimization algorithms that can be used only if one of the
two input automata recognizes a finite language).

IV. IMPLEMENTATION

We have implemented privacy-preserving language inter-
section for both approaches presented in Section III.

A. Moore’s algorithm

The implementation of Moore’s algorithm (see Sec-
tion III-A) consists of the following three steps: (i) a product
construction, (ii) determining the reachable states, and (iii) de-
termining the equivalent states. The steps (ii) and (iii) are
independent of each other, as we do not want to leak the size of

the automaton resulting from one of these steps. We have used
the SHAREMIND platform and its three-party additively secret
shared protection domain for secure multiparty computations,
offering efficient vectorized arithmetic operations, as well as
array permutations and rearrangements. In this set-up, there are
three computing nodes, into which the i-th client party holding
Ai = (Qi,Σ, δi, q0i, Fi) uploads its automaton in shared
form [17]. The computing nodes find a shared representation of
the minimization of A = A1 ×A2 and reveal it to the clients.
The platform is secure against a semi-honest adversary that
can adaptively corrupt one of the computing nodes.

In our implementation, the size of the task — the values
|Q1|, |Q2| and |Σ| — is public. Also, q01 and q02 are public,
this is w.l.o.g., as each party can permute its Qi. The set Fi
is represented as a bit-vector χi of length |Qi|; this vector
is uploaded to computing nodes in the shared form JχiK =
(JχiK1, JχiK2, JχiK3) with JχiK1 ⊕ JχiK2 ⊕ JχiK3 = χi. The
symbol transition functions δi,a = δi(·, a) : Qi → Qi are rep-
resented as discussed in Sec. III-A1: shared mappings Jδi,aK,
allowing rearr(Jδi,aK, J~xK) = (Jxδi,a(1)K, . . . , Jxδi,a(|Qi|)K) to
be computed efficiently from J~xK = (Jx1K, . . . , Jx|Qi|K).

Step (i) of our intersection algorithm is essentially a no-op,
as computing F = F1 × F2 is trivial and there is no efficient
way to compute the products δa = δ1,a × δ2,a. Instead, to
compute rearr(JδaK, J~xK) in steps (ii) and (iii) for ~x indexed
with elements of Q = Q1 × Q2, we organize J~xK as an
array with |Q1| rows and |Q2| columns. We will then apply
rearr(Jδ1,aK, ·) to the rows of ~x, and rearr(Jδ2,aK, ·) to the
columns of the result.

The implementation of Moore’s algorithm in step (iii) of
our intersection algorithm is iterative, following Sec. III-A2.
One iteration, constructing the shared partition Jπi+1K from
JπiK is given in Algorithm 1. Here J~ιK is a vector of length |Q|,
with ιi = i. All vectors are considered to be column vectors.
All foreach-loops are parallelized.

Algorithm 1: One iteration of Moore’s algorithm
foreach a ∈ Σ do Jπi,aK := rearr(JδaK, JπiK)
JΠ̂iK := (JπK|Jπi,a1

K| · · · |Jπi,a|Σ|K|J~ιK)
(JΠiK, JσK) := sort rows(JΠ̂iK)
Jc1K := 1
foreach j ∈ {2, . . . , |Q|} do

foreach a ∈ Σ do
Jcj,aK := (JΠi[j, a]K 6= JΠi[j − 1, a]K)

JcjK := (JΠi[j, 0]K 6= JΠi[j − 1, 0]K) ∨
∨
a∈ΣJcj,aK

foreach j ∈ |Q| do Jπ̂i+1[j]K :=
∑j
k=1JckK

Jπi+1K := unshuffle(JσK, Jπ̂i+1K)

This algorithm uses the following functionality from the
SHAREMIND platform. The function sort rows returns both
its arguments (rows sorted lexicographically), and a shared
permutation JσK that brought the rows of the original matrix
to the sorted order. The function is not completely privacy-
preserving — it leaks, which rows were equal to which other
ones. To prevent this leakage, we have used the extra column ι.
Boolean values {true, false} are identified with integers {1, 0}.
The large fan-in disjunction is implemented by first adding up
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the inputs and then comparing the result to 0 [12]. The function
unshuffle applies the inverse of σ to the vector π̂i+1, thereby
undoing the permutation from sorting.

The iterations have to be run until the number of parts in π
remains the same. Making the results of sameness checks pub-
lic leaks the number of iterations. This number can be derived
from the minimized automaton, hence the leak is acceptable, if
the final automaton is public. Otherwise an application-specific
bound should be provided by the parties holding A1, A2, as
the worst-case bound is almost |Q| = |Q1| · |Q2|.

In step (ii), reachable states can be computed in various
ways. One can find the reflexive-transitive closure of the
adjacency matrix M of A. This requires logD multiplications
of matrices of size |Q|×|Q|, where D ≤ |Q| is an upper bound
on the distance of the states of A1×A2 from the starting state.
Using SHAREMIND, one multiplication of n× n matrices re-
quires O(n3) local work, but only O(n2) communication. Still,
for larger values of n, this is too much. Instead, we find the
reachable states iteratively: let R0 = {q0} and Ri+1 = Ri∪R′i,
where R′i = {q ∈ Q | ∃q′ ∈ Ri, a ∈ Σ : δ(q′, a) = q}
(represented as 0/1-vectors ~ri). If the diameter of A is small,
and we have a good (application-specific) upper bound D′ for
it, then this approach may require much less computational
effort.

The vector ~r′i can be found from ~ri by multiplying it
with the the matrix M . Using SHAREMIND, this requires
O(n2) communication and O(n2D′) local computation due
to the size of M for the computation of ~rD′ from ~r0. With
rearrangements, we can bring both costs down to O(nD′).

When computing ~r′i from ~ri, we have to apply JδaK to ~ri
“in the opposite direction”, compared to step (iii): r′ij = 1 iff
rik = 1 and δ(qk, a) = qj for some k and a. SHAREMIND
provides the function J~yK = rearr−1(JfK, J~xK), satisfying yi =∑
j∈f−1(i) xj . This function, with performance equal to rearr,

suffices for finding reachable states; Algorithm 2 gives the
computation of J~ri+1K from J~riK.

Algorithm 2: One iteration in finding reachable states

foreach a ∈ Σ do J~saK := rearr−1(JδaK, J~riK)
foreach j ∈ {1, . . . , |Q|} do

Js[j]K :=
∑
a∈ΣJsa[j]K

Jri+1[j]K := (Js[j]K 6= 0) ∨ Jri[j]K

Our SHAREMIND cluster consists of three computers with
48 GB of RAM and a 12-core 3 GHz CPU with Hyper
Threading running Linux (kernel v.3.2.0-3-amd64), connected
by an Ethernet local area network with link speed of 1 Gbps.
On this cluster, we have benchmarked the execution time
of Alg. 1 and 2. If |Σ| = 10, |Q1| = |Q2| = 100, then
one iteration in determining reachable states (Alg. 2) requires
ca. 0.9 s, while one iteration in Moore’s algorithm (Alg. 1)
requires ca. 4.5 s. For |Σ| = 10, |Q1| = |Q2| = 300, these
times are 6.2 s and 40 s, respectively. In the worst case,
algorithms to converge in |Q1| · |Q2| iterations. While these
are the execution times of single iterations, our experiments
show that privacy-preserving minimization of DFA is feasible
even for automata with 100,000 states, if the application

producing these automata allows us to give reasonable bounds
on the number of iterations necessary for these algorithms to
converge.

B. Brzozowski’s algorithm

The implementation of Brzozowski’s algorithm (see Sec-
tion III-B) consists of the following three steps: (i) a product
construction, (ii) determining the reachable states (as above),
and (iii) determinization via the subset construction. As usual,
there are three computing nodes that find a shared representa-
tion of the minimization of A1×A2 (having |Q| = |Q1| · |Q2|
states) and reveal it to the clients.

The main part of the implementation of the subset construc-
tion in step (iii) is iterative. Given an NFA (Q,Σ, δ, Q0, F ),
where each δa is represented as a |Q| × |Q| boolean matrix
satisfying δa[i, j] ⇔ qj ∈ δ(qi, a), one iteration of our
algorithm constructs the set δ′a(q′i) for a ∈ Σ and the state
q′i ∈ Q′ of the output DFA (Q′,Σ, δ′, q′0, F

′).

Internally, Algorithm 3 uses a boolean matrix ss of size
max × |Q|, where max is an application-dependent upper
bound on the size of Q′ that tracks the correspondence between
the elements of Q′ and the subsets of Q (i.e. q′j ∈ Q′

corresponds to Q̄ ⊆ Q if ∀k.ss[j, k] = (qk ∈ Q̄)). Also,
the boolean vector σ (of size max ) is used to record which
elements of Q′ are already “active”. Initially, ss and σ equal
false at all positions. Let b? b1 : b2 denote (b∧ b1)∨ (¬b∧ b2).

Algorithm 3: The subset construction
Jss[1]K := JQ0K; Jσ[1]K := true
for i := 1 to max do

foreach a ∈ Σ do // sequentially
foreach j ∈ {1, . . . , |Q|} do

Js′[j]K :=
∨
k∈1...|Q|(Jss[i, k]K ∧ Jδa[k, j]K)

JfK := false
for j = 1 to max do

Jss[j]K := JfK ∨ Jσ[j]K ? Jss[j]K : Js′K
JcK := ¬JfK ∧ (Jss[j]K = Js′K)
Jδ′a[i, j]K := JcK
JfK := JfK ∨ JcK
Jσ[j]K := Jσ[j]K ∨ JcK

In one iteration (given by fixed i and a), Algorithm 3
performs two steps. In the first loop it computes the set s′
(represented as a boolean vector) of states of the NFA that
can be reached by consuming the symbol a from all states
corresponding to the i-th state of the DFA. In the second loop
it searches for a row of ss that equals s′. In case there is no
such row, it is added to ss. During the execution of the second
loop, the variable f indicates whether such row has already
been found (or added). The variable c shows whether this row
is found in the current iteration of the second loop. Assuming
that the number of states in the DFA will not supercede max ,
there is exactly one iteration where c will be true.

Using SHAREMIND, the first step of one iteration of
Algorithm 3 requires O(|Q|3) local work and O(|Q|2) com-
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munications. The second step requires O(max ·|Q|) local work
and communications.

The algorithm and its data structures depend on the con-
stant max , which limits the number of states of the resulting
DFA and bounds the number of required iterations of the subset
construction. Even if in the worst case max = 2|Q|, in many
cases (see e.g. [7]) this exponential behavior does not occur
and the two participants can agree to disclose this upper limit.

V. EXAMPLE APPLICATION: FUSION OF VIRTUAL
ENTERPRISE BUSINESS PROCESSES

A virtual enterprise (VE) is a temporary alliance of busi-
nesses whose cooperation is supported by computer networks.
VEs can be part of long-term strategic alliances or short-
term collaborations built to catch business opportunities. To
effectively manage the VE it is necessary to support the
establishment of the cross-organizational business process, that
is to capture the possible executions of the involved parties that
are compliant with the business processes of VE constituents.
We refer to this problem as VE process fusion. Observe that the
problem here is not so much the one of computing a global
representation of the overall business process, but rather the
one of computing local views of the fusion. In other words,
the problem is, for each partner, to compute what can or is
to be performed locally, i.e., the contributing subset of the
existing local business process.

One of the main barriers to VE process fusion is the
participants’ autonomy. In particular, the participants can be
reluctant to expose their internal processes, since this knowl-
edge can be analyzed to reveal sensitive information such as
efficiency secrets, or weaknesses in responding to a market
demand. In this section we demonstrate how private regular
language intersection can be applied to support private VE
process fusion.

A. Formalization of VE Process Fusion

Two widely adopted industry standards to specify enter-
prise business processes are BPMN [18] and EPC [19]. There
is a general agreement (see [20]) that well-formed business
processes correspond to sound Workflow Nets (a subclass of
Petri Nets), and several tools have been developed to translate
diagrams (either BPMN or EPC) to the corresponding formal
Workflow Nets (e.g. [21]), thus enabling formal analysis tech-
niques. Since the class of languages of Workflow Nets is a
subset of the class of regular languages [22], we can assume
for the purposes of the present study that business processes
of the enterprises can be expressed as regular languages.

Assume two enterprises, with their own business processes,
that cooperate to build a VE. For each of the two enterprises
we are given a local alphabet, Σ1 respectively Σ2. The letters
of an alphabet can represent various types of actions or events:
(i) an internal task of the enterprise (e.g. packaging of goods),
(ii) an interaction between the two enterprises (e.g. exchange
of electronic documents), (iii) an event observed by one of
the enterprises only (e.g. the receipt of a payment), or (iv)
an event observed by both enterprises (e.g. that a carrier has
left the harbor). Each enterprise also owns a local business
process, representing all licit possible executions, that is given

as a regular language, L1 ⊆ Σ∗1 respectively L2 ⊆ Σ∗2, by
means of a suitable finite representation.

Our formalization is based on the notions of language
projection and product. Let L be a language over alphabet Σ.
Then projΣ′(L) for Σ′ ⊆ Σ denotes the projection of L onto
the alphabet Σ′, defined as expected through deleting letters
not in Σ′, and proj−1

Σ′′(L) for Σ ⊆ Σ′′ denotes the inverse
projection of L onto the alphabet Σ′′, defined as the greatest
language on Σ′ such that its projection onto Σ is L.

The product of two languages L1 and L2 over alphabets Σ1

and Σ2, denoted L1 ×L L2, is the largest language L over
Σ1 ∪ Σ2 such that projΣ1

(L) = L1 and projΣ2
(L) = L2:

L1 ×L L2 = proj−1
Σ1∪Σ2

(L1) ∩ proj−1
Σ1∪Σ2

(L2)

In terms of finite automata, this corresponds to a weakly
synchronous product. In our setting, the global VE business
process is represented by the language product: it yields all
global processes that are consistent with the participants’
constraints.

The problem of VE process fusion can thus be defined as
computing the mapping:

Li 7→ projΣi
(L1 ×L L2) (i ∈ {1, 2})

that is, each participant computing, from its local business
process Li, the subset of local processes that are consistent
with the global VE business process.

Privacy preservation in this context means the two partic-
ipants to obtain projΣ1

(L1 ×L L2) and projΣ2
(L1 ×L L2),

respectively, without being able to learn about the other
enterprise’s language more than what can be deduced from the
own language (i.e., the private input) and the obtained result
(i.e., the private output). Apart from the languages, we also
consider private the alphabet differences, that is, we consider
public just the common alphabet Σ1 ∩ Σ2 (i.e. the events of
type ii and iv).

B. A Protocol for Private VE Process Fusion

As usual, we first present an ideal protocol for private VE
process fusion, and then present a real protocol, the privacy of
which is shown relative to the ideal one. The ideal protocol
for private VE process fusion obtains the private inputs of the
enterprises (through perfect channels), computes the private
outputs, and sends the latter to the enterprises (again via perfect
channels).

To obtain a real protocol for the task, consider the language:

L = projΣ1∩Σ2
(L1) ∩ projΣ1∩Σ2

(L2)

The two public outputs can be computed locally by the
respective participant from this language and the respective
private input, as the following result shows.

Proposition 2: Let L1 and L2 be two languages over
alphabets Σ1 and Σ2, respectively, and let L be as defined
above. Then the following holds:

projΣi
(L1 ×L L2) = Li ∩ proj−1

Σi
(L) (i ∈ {1, 2})

Using as a building block on of the protocols for private
regular language intersection presented in Section III, we
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propose the following real protocol, in which every participant
i ∈ {1, 2} performs the following steps:

1) Compute locally, from the private input Li, the lan-
guage projΣ1∩Σ2

(Li).
2) Send this language to the protocol for private lan-

guage intersection.
3) Receive from the protocol the language L defined

above.
4) Compute Li∩proj−1

Li
(L), which by Proposition 2 is

equal to the private output.

Privacy is established relative to the ideal protocol, by
exhibiting a simulator that computes the received messages
of every participant from their private inputs and outputs. We
accomplish this by proving that the language L can be deduced
by each participant locally from the respective private input
and private output.

Proposition 3: Let L1 and L2 be two languages over
alphabets Σ1 and Σ2, respectively, and let L be as defined
above. Then the following holds:

L = projΣ1∩Σ2
(projΣi

(L1 ×L L2)) (i ∈ {1, 2})

VI. RELATED WORK

The theories of finite automata and regular languages are
well established. In particular, regular language intersection
(i.e. fully synchronous composition) has been used to model
the behavior of concurrent agents, validate circuit designs,
intersect regular expressions and intersect compressed repre-
sentations of large databases of strings.

In the literature, few results take into account privacy
constraints. For regular languages that are finite and whose
words are selected from a finite domain, protocols to compute
private set intersection (see e.g. [1]) can be adopted to solve
private language intersection. However, practical application
of these techniques requires that the word domain is not only
finite, but also reasonably small. Clearly, these constraints
cannot be satisfied if the input languages represent business
processes, since presence of loops directly induces the word
domain to be infinite.

If at least one of the two input languages is finite, then
privacy preserving pattern matching (i.e. oblivious DFA exe-
cution, see e.g. [23], [24], [25]) can be used to intersect the
languages. In this scenario, the party owning the infinite (or
large) language encodes its input as a DFA. Then, assuming
as public an upper limit on the size of the finite language,
the two parties iteratively repeat the privacy preserving pattern
matching, allowing the second party to discover the subset of
its own language that matches the language intersection.

The usefulness of automatic systems to support virtual
enterprises and dynamic B2B has been widely recognized.
Several works investigate algorithms that can automate process
integration in the context of Web Services. For example, in [26]
the authors use a non-emptiness test on the intersection of DFA
as the main machinery to allow an enterprise to dynamically
search partners that match the required business process. These
results assume that the participants agree to publish their own
business process in a publicly accessible directory.

Our formalization of the VE process fusion problem fol-
lows the approach described in [27] for modular distributed
monitoring using formal languages. The main difference be-
tween the two applications is that VE process fusion requires
to compute what “will” be allowed, while monitoring requires
to identify what “happened”. For this reason the data structures
that support the abstract formalization differ: for process fusion
we use DFA, while for monitoring the authors exploit trellis.

VII. CONCLUSION

In this paper we presented an approach to private inter-
section of regular languages. Since such languages can be
infinite, the present work goes beyond the existing techniques
for private set intersection, which can only handle finite sets.
And as we argue here, none of the existing general techniques
for computing privately a function is readily applicable to the
present task.

Our approach uses finite representations of regular lan-
guages as DFA, and is based on computing, in a secure domain,
the product automaton of the two input automata, and then
its minimized form. Since minimal DFA are unique (up to
isomorphism) for a given regular language, the result of the
computation can be revealed to the parties without leaking any
additional information than the intersection language itself.
The same approach can be used for any binary operation
on regular languages that has its counterpart in the class
of finite automata: one needs merely to replace the product
construction with the corresponding one, and then proceed
with minimization as above.

The main application of private regular language intersec-
tion we discuss here is taken from the domain of privacy
preserving fusion of virtual enterprise business processes.
While other application areas are easy to identify, the presented
one is particularly meaningful because it is less sensitive to
time efficiency than application areas such as private modular
distributed monitoring.

In future work we will investigate the incremental construc-
tion of the intersection language suggested in Section III-C,
other application domains, as well as wider language classes
such as the context-free languages. We also plan to integrate
our prototype with tools for business process analysis [21].
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APPENDIX

A. Proofs of Proposition 2 and Proposition 3

In order to prove the correctness of the protocol for private
VE process fusion, we need several properties of language
projection and product.

Definition 2 (Generalized projection π): Let Σ1 be an al-
phabet and L1 be a language over that alphabet. Projection is
generalized to an arbitrary alphabet Σ2 as follows:

πΣ2(L1) = proj−1
Σ2

(projΣ1∩Σ2
(L1))

Notice that if Σ′ ⊆ Σ then πΣ′(L) = projΣ′(L). Further,
we have the following properties of projection and reverse
projection.

Proposition 4: Let L1 and L2 be two languages over
alphabets Σ1 and Σ2, respectively, and let Σ1 ⊆ Σ2. Then:

projΣ1
(proj−1

Σ2
(L1)) = L1

In special cases, projection distributes over language inter-
section.

Proposition 5: Let L1 and L2 be two languages over
alphabets Σ1 and Σ2, respectively, and let Σ1 ⊆ Σ2. Then:

projΣ1
(proj−1

Σ2
(L1) ∩ L2) = L1 ∩ projΣ1

(L2)

On the other hand, reverse projection does distribute over
language intersection.

Proposition 6: Let Σ′ ⊆ Σ, and L1,L2 be two languages
over Σ′. We have:

proj−1
Σ (L1 ∩ L2) = proj−1

Σ (L1) ∩ proj−1
Σ (L2)

Proposition 7: Let L1 and L2 two languages over alpha-
bets Σ1 and Σ2, respectively. We have:

projΣ1
(L1 ×L L2) = L1 ∩ πΣ1(L2)

We are now ready to prove the two propositions from the
previous subsection.

Proof of Proposition 2. We have:

projΣ1
(L1 ×L L2)

= L1 ∩ πΣ1(L2) {Prop. 7}
= L1 ∩ proj−1

Σ1
(projΣ1∩Σ2

(L2)) {Def. 2}
= L1 ∩ proj−1

Σ1
(projΣ1∩Σ2

(L1)) ∩
proj−1

Σ1
(projΣ1∩Σ2

(L2)) {Prop. 4, Set theory}
= L1 ∩ proj−1

Σ1
(L) {Prop. 6, Def. L}

This concludes the proof. �

Proof of Proposition 3. We have:

L
= projΣ1∩Σ2

(L1) ∩ projΣ1∩Σ2
(L2) {Def. L}

= projΣ1∩Σ2
(L1 ∩ proj−1

Σ1
(projΣ1∩Σ2

(L2))) {Prop. 5}
= projΣ1∩Σ2

(L1 ∩ πΣ1(L2)) {Def. 2}
= projΣ1∩Σ2

(projΣ1
(L1 ×L L2)) {Prop. 7}

This concludes the proof. �
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