
Parallel Privacy-Preserving Shortest Paths by
Radius-Stepping

Mohammad Anagreh1,2, Eero Vainikko1, Peeter Laud2

1Institute of Computer Science, University of Tartu, Narva maantee 18, Tartu, Estonia
2Cybernetica, Mäealuse 2/1, Tallinn, Estonia

{mohammad.anagreh, eero.vainikko}@ut.ee, peeter.laud@cyber.ee

Abstract—The radius-stepping algorithm is an efficient, par-
allelizable algorithm for finding the shortest paths in graphs.
It solved the problem in ∆-Stepping algorithm, which has no
known theoretical bounds for general graphs. In this paper, we
describe a parallel privacy-preserving method for finding Single-
Source Shortest Paths (SSSP). Our optimized method is based
on the Radius-Stepping algorithm. The method is implemented
on top of the Secure Multiparty Computation (SMC) Sharemind
platform. We have re-shaped the radius-stepping algorithm to
work on vectors representing the graph in a SIMD manner,
in order to enable a fast execution using the secret-sharing
based SMC protocol set of Sharemind. The results of the
real implementation show an efficient method that reduced the
execution time hundreds of times in comparison with a standard
case of the privacy-preserving radius-stepping and ∆-Stepping
algorithms.

I. INTRODUCTION

Recently, the users of the navigation apps are concerned
about location privacy. As well as, the map providers give
the mapping information conservatively that might contain
sensitive information. This problem opens the door for many
researchers to start thinking about finding the shortest paths in
privacy-preserving computation considering the performance,
especially for using a big graph.

Secret-sharing based secure multiparty computation (SMC)
protocols often lead to the most efficient privacy-preserving
applications, at least when efficiency is measured in terms of
bandwidth. One of the most important challenges in sharing-
based protocols is the round complexity, and hence the effects
of network latency. The network latency in SMC protocol
is a challenge to many researchers for reducing the round
complexity of private computation in SMC platform [1], [2].
Many researchers have been solving this problem by parallel
computation [3], [4]. In this work, we are interested to perform
the privacy-preserving parallel computation for finding the
SSSP for a private graph.

The shortest paths problem is one of the most basic
problems in different applications using graph-shaped data;
the problem will be more complicated in privacy-preserving
manner. We have had a special interest in planar graphs, and
have been looking for existing SSSP algorithms for planar
graphs, of which there exist a few, to be adapted to privacy-
preserving computations. The linear-time algorithm for SSSP
in planar graphs with a non-negative edge is proposed by
Henzinger et al. [5] with time complexity O(n). Lipton at

al. [6], proposed an algorithm for finding the SSSP for a
planar graph with arbitrary real-valued edge weights, the time
complexity is O(n3/2). The shortest path algorithm for n-
vertex planar graph with real-valued weights [7] is proposed
with time complexity O(n log3 n). The ∆-stepping algorithm
[8] is a SSSP algorithm for arbitrary directed graphs with
non-negative edges in the sequential and parallel counterparts
with O(n log n + m) time complexity. The shortcoming in
the ∆-Stepping algorithm is, that the algorithm has no known
theoretical bounds on general graphs, bounds can increase
n-times in each iteration. The Radius-Stepping algorithm is
proposed in [9] to solve the bounds’ problem in ∆-Stepping
with O(m log n) time complexity. It has the best tradeoff
between work and depth bounds, by using a variable instead of
fixed-size increases of the radius, it has a proven bounds on
the number of steps. In this work, we adapted the Radius-
Stepping algorithm for privacy-preserving computations by
reducing the number of general iterations in the algorithm.
In our work, the main idea is to use vectors to store the edges
and vertices to perform the main operations of the Radius-
Stepping in SIMD. We use the Secure Multiparty Computation
platform Sharemind [10] which is based on secret sharing
over arbitrary rings, for our implementation of the Radius-
Stepping algorithm in both sequential and parallel fashion.
Parallel computation reduces the number of iterations, which
will reduce the latency among the three miners (i.e. computing
parties) in the Sharemind platform while they run Sharemind
protocols [11].

II. RELATED WORK

Recently, privacy-preserving solutions for various kinds of
particular computational problems have been proposed, such
as privacy-preserving minimum spanning tree [3], privacy-
preserving data mining [12], statistical analysis [13], [14].
Researchers have been conducting some research in privacy-
preserving shortest path to keep the computation secure.
Ramezanian et al. [15] proposed a privacy-preserving all-
pairs shortest path (APSP) algorithm. The proposed algorithm
is an extended version of the Floyd-Warshall algorithm and
it is used in a novel protocol they proposed, that enables
privacy-preserving path queries on directed graphs. The time
complexity in the extended version will increase with the
latency in the SMC platform. In [16], the authors proposed
a new algorithm for privacy-preserving APSP and another

algorithm for the SSSP. They also proposed two new algo-
rithms for the privacy-preserving set union. The algorithms are
used in the privacy-preserving shortest path in the semi-honest
module. The cryptographic version of privacy-preserving data
mining is closely related to the technique in this paper. In
general, the work is efficient, but the work is presented in the
sequential fashion that will increase the latency in privacy-
preserving computations. An efficient protocol for privacy-
preserving shortest paths computing for navigation is proposed
in [17]. The cryptographic protocol for navigation on city
streets that provides privacy for both the service provider’s
routing data and client’s location in the street.

In our work in this paper, we focus on optimizing the
single-source shortest path algorithm (Radius-Stepping algo-
rithm) and applying the same optimized algorithm in privacy-
preserving computations. Our protocols are compositional, i.e.
we expect that the components of the graph have already
been secret-shared between the computing parties of the SMC
protocol. The result is likewise delivered in secret-shared
manner, and can be used in subsequent steps of a larger
application.

III. PRELIMINARIES

A. Secure Multiparty Computation

The cryptographic techniques assure the security and the
integrity of the storage and the communication between the
participants, even while the adversary has taken over a fraction
of them. The general-purpose model for the analysis of cryp-
tographic protocols with strong security properties is called
the framework of universal composability [18].

The framework of universal composability considers a set
of interacting Turing machines running in parallel and sending
data among them, including the adversarial Turing machines.
The framework states when a set of Turing machines securely
implements another set — this happens when any behavior
observed by an environment machine while interacting with
the first set can be matched by the second set. The value of the
framework is in the composition theorem. A protocol Π may
securely implement an ideal functionality G in the F-hybrid
model. If Ξ is another protocol that securely implements the
functionality F , then the composition of Π and Ξ securely
implements G.

The Arithmetic Black Box (ABB) is an ideal functionality
FABB that performs calculations with private data. It allows
parties to store the private data handed over to it, performs
the operations based on users’ instructions, and sends certain
values back to users if a sufficient number of them request
it. Let us suppose, a party sends a command store(v) to
the ideal functionality to do some calculation, where v is
some value. The functionality FABB receives and stores the
value v, then assigns a fresh handle h to that value by storing
the pair (h, v). Finally, the ideal functionality sends h to all
parties. To perform the computations without revealing any
knowledge about the intermediate result, the ABB waits for
a command (perform, op, h1, . . . , hk) from all (or sufficiently
many) computing parties. It looks up the values v1, . . . , vk

stored with the handles h1, . . . , hk, applies the operation op
on them, obtaining a value v, stores it under a new handle h,
and returns h to all parties. To learn a value stored under the
handle h, all (or sufficiently many) parties send the command
(declassify, h) to the ABB, which then looks up the pair
(h, v) and responds with v [19]. The protocol sets that may
be used to securely implement an ABB may be based on
either threshold homomorphic encryption [20], garbled circuits
[21], or secret sharing [10]. These implementations can offer
protection against an honest-but-curious or malicious party. In
our algorithms built on top of an ABB, we use the notation
JvK to denote that v is a value that is stored inside the ABB,
and accessed only through a handle. Any operations performed
with such values will take place by having commands issued
to the ABB.

B. Radius-Stepping Algorithm

Our contribution in this paper is to optimize the Radius-
Stepping algorithm to run efficiently with reduced time com-
plexity. The algorithm finds the SSSP for the weighted
undirected graph G, where the graph is represented in the
adjacency matrix as input to the algorithm. The Radius-
Stepping algorithm and ∆-Stepping algorithms have the same
basic structure, both algorithms are a hybrid algorithm of
the Dijkstra and Bellman-Ford algorithms. The steps of the
Bellman-Ford algorithm are inner operations in the Dijkstra
algorithm. The Dijkstra part visits vertices in increasing dis-
tance from the source s and settling each vertex v ∈ V in
G. Instead of visiting one vertex v at a time, Radius-Stepping
visits the vertices in steps. The algorithm increases the radius
centered at vertex s from di−1 to di, and all vertices v ∈
|V | in the annulus di−1 < d(s, v) < di will be settled. The
Bellman-Ford parts (repeat to until) performs the settling of
the vertices in sub-steps. In ∆-Stepping algorithm, the radius
will be increased by a fixed amount in each step in the round
distance di = di−1 + ∆. This increase can require Θ(n) sub-
steps in the worst case. As well as, in some cases, it requires

Data: G = (V,E), vertex radii r(·), source vertex s
Result: The graph distance δ(·) from s
begin

δ(·)← +∞, δ(s)← 0
foreach v ∈ N(s) do
δ(v)← w(s, v), S0 ← {s}, i← 1

while |Si−1| < |V | do
di ← minv∈V \Si−1

{δ(v) + r(v)}
repeat

foreach u ∈ V \ Si−1 s.t δ(u) ≤ di do
foreach v ∈ N(u) \ Si−1 do

δ(v)← min{δ(v), δ(u) + w(u, v)}
end

end
until no δ(v) ≤ di was updated
Si = {v | δ(v) ≤ di}
i = i+ 1

end
return δ(·)

end
Algorithm 1: Radius-Stepping

O(mn) work because each sub-step will work on the same set
of vertices and their edges. In the Radius-Stepping algorithm,
this problem is solved efficiently, by proposing a new round
distance di in each round.

IV. PRIVACY-PRESERVING SHORTEST PATHS

In this section, we describe our algorithm for parallel
privacy-preserving SSSP, called SIMD-RADIUS-STEPPING,
and present its performance analysis. The SIMD-Radius-
Stepping algorithm is presented in Algorithm 2. In details,
the algorithm works as follows: The input to the algorithm
is a weighted, undirected graph G = (V,E) presented by an
adjacency matrix, source vertex s, and the value of the radius
for every vertex in the graph, given as a function r : V → R+.
In general, the algorithm has the same basic structure as the
Radius-Stepping algorithm, but we represent the algorithm
using vectors to let the algorithm perform the calculation in
SIMD and in privacy-preserving manner.

Data: Number of vertices and edges n,m
Data: Adjacency matrix JGK ∈ Zn×n

Data: Vertex radii J~rK ∈ Nn, source vertex s
Result: The distances J~δK from s
begin

J~SK = false // length of ~S is n

J~δK← JG[s, ?]K
JS[s]K← true, Jδ[s]K← 0, JDK← 0
repeat

J~δ′K← Bellman-Ford-Step(n, JGK, J~SK, J~δK, JDK)
JBK← (J~δ′K 6= J~δK) // a private Boolean

J~δK := J~δ′K
J~S′K← (J~δK ≤ D) :∈ kind(true, false)

JD′K←min(choose(J~SK, J ~∞K, J~δK + J~rK))
J~SK := choose(JBK, J~SK, J~S′K)
JDK := choose(JBK, JDK, JD′K)

until declassify(
∨
¬J~SK)

return δ(·)
end

Algorithm 2: SIMD-Radius-Stepping

We store the set S (Alg. 1) as a vector of private Booleans
J~SK, and the current mapping δ as a vector of private integers
J~δK. The algorithm starts by initializing the Boolean vector
J~SK with false-value, and the vector of graph distance J~δK
with weights of the source vector s with all vertices v ∈ V .
As well as, the first element in vector J~SK and J~δK is the
source vertex s by true-value and by 0-value, respectively.
The algorithm has one repeat-until loop, started by finding the
shortest path for one step by Alg. 3, until settling all vertices
with radius less than D. The Bellman-Ford-step algorithm
starts by reshaping the elements inside a vectors for J~δK and
J~SK into row and column vectors. Later, the algorithm updates
the J~δ′K by finding the minimum values of the J

−→
δBK which is

the shortest path for each vertex in the graph. The updating in
the vector J

−→
δBK is by either finding the minimum weights of

elements in the J
−−→
δRowK and the summation of the elements in

J
−→
δ ColK with edges’ weights of the graph J~GK, or by getting

the elements of the J
−−→
δRowK. The updating of the J

−→
δBK by the

elements of the vector J
−→
MK is based on satisfying the three

conditions of bounding the number of sub-steps as presented in
Alg. 3. The operations of the Bellman-Ford-Step algorithm is
organized to be performed by single-instruction-multiple-data,
using SIMD decreases the round complexity of performing
the Bellman-Ford sub-steps. To keep tracing over the whole
vertices in the graph is by applying the remain operations in
the algorithm.

The private Boolean B is to save the comparison result
between the vector J~δK and J~δ

′
K. The vector of visited set

J~S
′
K in Alg. 2 represents the condition in the repeat-until in

Alg.1. The vertices which are not visited yet will be stored
in the vector J~SK after finding the minimum of the J~δK + J~rK.
The last operations in the algorithm are updating the vector of
set J~SK and the value of D; the updating is based on the state
of the Boolean B.

Data: Number of vertices n
Data: Adjacency matrix JGK ∈ Zn×n

Data: Current values of J~SK, J~δK, JDK in Alg. 2
Result: The updated distance J~δ′K from s
begin

for every vertex u ∈ {0, 1, . . . , n− 1} do
for every vertex v ∈ {0, 1, . . . , n− 1} do

JSRow[u, v]K← JS[u]K
JSCol[u, v]K← JS[v]K
JδRow[u, v]K← Jδ[u]K
JδCol[u, v]K← Jδ[v]K

end
end
J−→conK← (¬JSRowK)&(¬JSColK)&(JδColK ≤ JDK)
JδBK← choose(J−→conK,min(JδRowK, JδColK + JGTK), JδRowK)
forall u ∈ {0, . . . , n− 1} do

Jδ′[u]K←min{JδB[u, ?]K}
end
return J~δ′K

end
Algorithm 3: Bellman-Ford-Step

Time Complexity is based on the radius r. The radius r
is used to determine the number of the steps and sub-steps in
the calculation. The number of the iterations is based on the
number of the visited vertices (∀S ∈ V). There are three cases
of the radii r. In the case that r(v) = 0, the time complexity
of the algorithm is 6 O(n + logm). If r(v) = ∞, the time
complexity is 6 O(log n). As well as, the time complexity is
6 O(log n+ logm) if the r(v) = δ.

Security and privacy of Alg. 2 follows from the discus-
sions in [19]. As long as the algorithms built on top of the ABB
do not declassify anything, the algorithm retains the security
and privacy properties of the underlying implementation of the
ABB, including its resistance against semi-honest or malicious
adversaries. Alg. 2 does contain declassification statements,
and their outcomes cannot be directly deduced from the public
parameters of the graph. We leak the number of iterations
made in Alg. 2, this number depends on a multitude of param-
eters, including the structure of the graph and the used radii.
It is probably possible to minimize this leakage, while still

TABLE I
RUNNING TIMES (IN SECONDS) OF PRIVACY-PRESERVING SIMD-RADIUS-STEPPING ALGORITHM FOR SPARSE, DENSE AND UNWEIGHTED GRAPHS

Weighted Graph (Sparse) Weighted Graph (Dense) Unweighted Graph
n m Serial Parallel Speed-up n m Serial Parallel Speed-up n m Serial Parallel Speed-up

500 6k 13062 203.9 64x 50 1225 74.6 0.6 124x 50 1225 71.8 0.2 359x
500 10k 35346 186.5 189x 75 2775 247.7 1.2 206x 100 2k 357 0.7 510x
900 20k 77580 825 94x 100 4950 593.9 1.5 395x 200 19.9k 4769 4.3 1109x
1k 40k – 920 – 300 44850 16059 19.4 827x 500 20k 26372 14.8 1781x
2k 40k – 10206 – 500 124.7k 74453 78.6 947x 1k 20k – 75.9 –
5k 5M – 14.2k – 1k 499.5k – 188.4 – 5k 12.4M – 2304 –
10k 15M – 91.3k – 10k 49.9M – 48.9k – 10k 49.9M – 9087 –

obtaining the benefits of iterating only as long as something is
changing, by experimentally determining a good upper bound
of the iterations, and always performing at least this number
of iterations in Alg. 2.

V. BENCHMARKING RESULTS

Recently, some, but not too many benchmarking results for
privacy-preserving shortest path algorithms have been re-
ported. The benchmarking of the SSSP algorithms, Dijkstra
and Bellman-Ford have been reported by Aly et al. [23].
For Dijkstra’s algorithm on 128 vertices (dense graph), they
reported a run time around an hour, while for Bellman-
Ford algorithm is around 8 hours on 64 vertices. As well
as, they reported 20 seconds for Dijkstra’s algorithm with a
64-vertex graph. The operations of oblivious RAM (ORAM)
on top of the SPDZ protocol set [24] are implemented by
Keller et al. [25], the protocol used to implement a privacy-
preserving Dijkstra’s algorithm. A sparse graph with 2000
vertices implemented, running time in a couple of minutes.
For a dense graph with 500 vertices, the running time is a
couple of hours. The garbled circuits are used to privately
evaluate Dijkstra’s algorithm [26]. They reported running
times of ca. 15 minutes for 100-vertex graphs (their parallel
implementation handles 32 circuits at the same time on a 32-
core server). As well as, garbled circuits are used to evaluate
Dijkstra’s algorithm on sparse graphs by Liu et al. [27], they
employed oblivious priority queues to increase efficiency. The
result in the implementation is estimated that together with
JustGarble [28], they used a graph with 1000-vertex and 3000-
edge, the execution time is around 20 minutes.
In this work, we have implemented the proposed algorithms on
Sharemind SMC platform for both versions of the algorithm,
sequential and SIMD. Sharemind benchmarks are run on a
cluster of three computers connected with each other with a
three-party protocol set secure against one passively corrupted
party; SecreC [22] high-level language is used to write the
codes of the implementations. The servers in the cluster have
a 12-core 3 GHz CPU with Hyper-Threading running Linux
and 48 GB of RAM, connected by an Ethernet local area
network with a link speed of 1 Gbps. The implementation
of Sharemind does not make use of multiple cores. Private
values are represented by additively sharing them among the
three servers over the ring Z232 .

We use different types of weighted undirected graphs in
our implementation, sparse and dense with varying sizes.

We also used unweighted graphs with different sizes in the
implementation. We report the running time (in seconds) of the
privacy-preserving SIMD-Radius-Stepping algorithm in the
Table I for several sparse, dense and unweighted graphs with
different sizes. The result shows that the speed-up is increased
by increasing the size of the input graph, the speed-up of the
SIMD-Radius-Stepping algorithm is scalable.

TABLE II
RUNNING TIMES OF SIMD-RADIUS-STEPPING FOR PLANAR-LIKE GRAPHS

Graph Vertex Edge DELTA-S STAND-RS SIMD-RS
20 40 2.28 1.62 0.24

|E| = 2|V | 40 80 6.84 8.4 0.54
80 160 89.2 54.6 4.6

120 240 254 170 13.4
20 50 5.28 1.74 0.24
40 100 20.7 9.42 0.84

|E| = 2.5|V | 80 200 113.7 56.7 5.6
120 300 296.1 178.5 9.48
20 80 10.1 2.28 0.24
40 160 30.96 10.7 0.9

|E| = 4|V | 80 320 109.2 66.8 3.78
120 480 360 192 9.5

One of the most impressive uses of our proposed al-
gorithm is finding the privacy-preserving shortest path for
dense graphs. The results show that the speed-up for parallel
implementation of the dense and unwighted graph may be
in hundreds of times. This is the motivation of our work,
that by using our SIMD-Radius-Stepping algorithm, we can
find the shortest path for a huge graphs in privacy-preserving
computation in less running time in comparison with the
running time of the serial version of the algorithm.
Another series of tests that we report in Table II considers
graphs whose number of edges (for the given number of
vertices) is similar to planar graphs. In this series, we imple-
mented three algorithms for privacy-preserving single-source
shortest path algorithms: the Radius-Stepping and ∆-Stepping
algorithms, and our SIMD-Radius-Stepping algorithm. There
are three groups of the graphs that have been benchmarked.
The groups are based on the ratio between the number of edges
and the number of vertices of the graph.

Algorithm 2 has a declassification statement in a location
that causes some details of the graph to be leaked through
the running time of the algorithm. The running time is char-
acterized by the time it takes to run a single iteration of that
algorithm (which only depends on the number of vertices and
edges of the graph), and the number of iterations the algorithm

does (which depends on the structure of the graph, as well as
on the radius r). In Table III, we report the average number
of iterations for random weighted graphs with given number
of vertices and edges, for three possible choices of the radii
— either infinite, or zero, or randomly generated. The average
execution time has been reported, too. We see that for these
choices, the first choice consistently beats the others.

TABLE III
RUNNING TIMES OF SIMD-RADIUS-STEPPING WITH RADII CASES

Graph Size r = ∞ r = 0 r = rnd
n m Iter Time Iter Time Iter Time

50 400 6 0.5 44 3.9 8 0.66
100 2k 5 1.3 41 9.8 9 2.1
200 2k 9 8.1 100 94.5 20 17.3

Sp
ar

se

500 20k 6 29.4 121 597.1 27 134.9
1k 200k 6 106.5 69 1266 19 451.1
50 1225 5 0.4 24 2.1 6 0.5

100 4950 5 1.1 25 6.1 8 1.9
200 19.9k 5 4.5 27 22.8 8 8.1

D
en

se

500 124.7k 5 23.6 31 153.4 10 49.1
1k 499.5k 5 87.8 38 690 15 256
50 150 8 0.7 70 6.2 10 0.8

100 200 9 2.3 165 40.1 23 5.8
100 300 9 2.1 155 38.9 21 5.0
200 400 13 11.1 380 276.6 40 43.6

Pl
an

ar
-l

ik
e

200 600 11 9.8 251 260.5 41 35.1
500 1500 13 63.5 691 3420 100 489.6

VI. CONCLUSION

We have presented the parallel technique of finding the
SSSP in the privacy-preserving computation using SIMD
as much as possible to reduce the round compliexity. The
running times show that the proposed method is faster than
Radius-Stepping, and ∆-Stepping algorithm. In particular, our
implementation of a parallel single-source shortest path is the
faster, compared to previous work. Future work is studying
different shortest path algorithms using SIMD.

ACKNOWLEDGEMENT

This work was supported by European Regional Develop-
ment fund through EXCITE-the Estonian Centre of Excellence
in ICT Research, and by ETAG through grant PRG920.

REFERENCES

[1] J. Katz, R. Ostrovsky, A. Smith. Round efficiency of multi-party computa-
tion with a dishonest majority. In International Conference on the Theory
and Applications of Cryptographic Techniques, (pp. 578-595). Springer,
Berlin, Heidelberg, 2003.

[2] J. Katz, C.Y. Koo. Round-efficient secure computation in point-to-point
networks. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques (pp. 311-328). Springer, Berlin,
Heidelberg, 2007.

[3] P. Laud, Parallel Oblivious Array Access for Security Multiparty Compu-
tation and Privacy Preserving Minimum Spanning Trees. Proc. on Privacy
Enhancing Technologies (2): pp.188-205, 2015.

[4] E. Boyle, K.M. Chung, and R. Pass. Large-scale secure computation:
Multi-party computation for (parallel) RAM programs. In Annual Cryp-
tology Conference (pp. 742-762). Springer, Berlin, Heidelberg, 2015.

[5] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster
shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3-
23, 1997.

[6] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
SIAM Journal on Numerical Analysis, 16: pp.346–358, 1979.

[7] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges,
shortest paths, and near linear time. J. Comput. Syst. Sci., 72(5):868-
889,2006.

[8] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1), pp.114-152, 2003.

[9] G. Blelloch, Y. Gu, Y. Sun and K. Tangwongsan. Parallel shortest paths
using radius stepping. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 443-454, 2016.

[10] D. Bogdanov, S. Laur, and J. Willemson. A framework for fast privacy-
preserving computations. In S. Jajodia and J. Lopez, editors, ESORICS,
volume 5283 of Lecture Notes in Computer Science, p. 192-206. Springer,
2008.

[11] D. Bogdanov, M. Niitsoo, T. Toft and J. Willemson, J. High-performance
secure multi-party computation for data mining applications. Interna-
tional Journal of Information Security, 11(6), pp.403-418, 2012.

[12] D. Bogdanov, R. Jagomägis and S. Laur. A universal toolkit for
cryptographically secure privacy-preserving data mining. In Pacific-
Asia Workshop on Intelligence and Security Informatics, pp. 112-126.
Springer, Berlin, Heidelberg, 2012.

[13] D. Bogdanov, L. Kamm, S. Laur, P. Pruulmann-Vengerfeldt, R. Talviste
and J. Willemson, Privacy-preserving statistical data analysis on feder-
ated databases. In Annual Privacy Forum (pp. 30-55). Springer, Cham,
2014.

[14] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk and R. Talviste.
Students and taxes: a privacy-preserving study using secure computation.
Proceedings on Privacy Enhancing Technologies, (3), pp.117-135, 2016.

[15] S. Ramezanian, T. Meskanen, and V. Niemi. Privacy Preserving Shortest
Path Queries on Directed Graph. In 2018 22nd Conference of Open
Innovations Association (FRUCT),IEEE, pp.217-223, 2018.

[16] J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in
the semi-honest model—. In International Conference on the Theory and
Application of Cryptology and Information Security, Springer, Berlin,
Heidelberg, pp.236-252, 2005.

[17] D.J. Wu, J. Zimmerman, J. Planul and J.C. Mitchell. Privacy-preserving
shortest path computation. arXiv preprint arXiv:1601.02281, 2016.

[18] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136- 145. IEEE Computer
Society, 2001.

[19] P. Laud. Stateful abstractions of secure multiparty computation. Peeter
Laud and Liina Kamm (eds.), Applications of Secure Multiparty Com-
putation. IOS Press, Cryptology and Information Security, 13, pp.26-42,
2015.

[20] I. Damgård and J. B. Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In D. Boneh,
editor,CRYPTO, volume2729 of Lecture Notes in Computer Science,
pp.247-264.Springer, 2003.

[21] D. Demmler, T. Schneider, and M. Zohner. ABY - A frame-work for
efficient mixed-protocol secure two-party computation. In 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California,USA, February 8-11, 2014. The Internet Society, 2015.

[22] D. Bogdanov, P. Laud and J. Randmets. Domain-polymorphic program-
ming of privacy-preserving applications. In Proceedings of the Ninth
Workshop on Programming Languages and Analysis for Security, pp.
53-65, 2014.

[23] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. Vyve. Securely Solving
Simple Combinatorial Graph Problems. In International Conference on
Financial Cryptography and Data Security, pp.239-257. Springer, Berlin,
Heidelberg, 2013.

[24] I, Damgård, V. Pastro, N. Smart and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Annual Cryptology
Conference, pp.643-662. Springer, Berlin, Heidelberg, 2012.

[25] M. Keller and P. Scholl. Efficient, oblivious data structures for MPC. In
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, pp.506-525, 2014.

[26] H. Carter, B.Mood, P. Traynor and K. Butler. Secure outsourced garbled
circuit evaluation for mobile devices. Journal of Computer Security, 24(2),
pp.137-180, 2016.

[27] C. Liu, X.S. Wang. K. Nayak. Y. Huang and E. Shi. Oblivm: A pro-
gramming framework for secure computation. In 2015 IEEE Symposium
on Security and Privacy, pp.359-376. IEEE, 2015.

[28] M. Bellare, V.T. Hoang, S. Keelveedhi and P. Rogaway. Efficient
garbling from a fixed-key block cipher. In 2013 IEEE Symposium on
Security and Privacy, pp.478-492. IEEE, 2013.

