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Abstract We show how a type system for secure information flow for a
π-calculus with higher-order λ-abstractions can be extended with dynam-
ics without weakening the non-interference guarantees. The type system
for the π-calculus ensures that the traffic on high channels does not in-
fluence the traffic on low channels. λ-abstractions make it possible to
send processes over channels. Dynamics make it possible to send pro-
cesses and other data of different types over the same channel, making
communication between processes easier. If dynamics are used, the types
of some expressions or channels may depend on type variables that are
instantiated at run time. To make it still possible to statically check se-
cure information flow, we ensure that instantiating a type variable in an
expression also instantiates it in the type of the expression.

1 Introduction

The question of information security arises when the inputs and outputs of a
program are partitioned into different security classes. In this case we want the
high-security inputs not inappropriately influence the low-security outputs and
other behaviour observable at low clearance. The strongest such property is non-
interference [10] stating that there is no influence at all; or that variations in
the high-security inputs do not change the observations at the low level.

Over the years, static analyses, typically type systems for verifying secure
information flow have been proposed for programs written in many kinds of
programming languages and paradigms — imperative or functional, sequential
or parallel, etc. Each new construct in the language can have a profound effect
on the information flows the programs may have. For a language to be usable
in practice, it usually needs to have many different constructs, which makes
information flow analysis much more complicated than in simple languages. In
spite of this, there exist some practical languages with information flow type
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systems, such as Jif, which is based on JFlow [13]. Thus typing is a practical
way of checking secure information flow.

In strongly typed functional programming languages, static typing is widely
used to guarantee type safety. In some cases, however, type information only
becomes available at run time. For example, data may be obtained from the
network or from user input. In the case of mobile code, which is becoming ubiq-
uitous, also code is obtained from the network. In these cases, the values (data
or code) may be wrapped in black boxes called dynamics or dynamic values [2]
that in addition to a value also contain the type of this value. The types in these
black boxes can be compared at run time with each other or with statically
known types. If several types are allowed then run-time branching on the types
can be used to exhibit different behavior for different types. In each branch,
enough type information is known statically, so static typing can again be used
to type check the individual branches.

In this paper, we will see that dynamics can be used not only in an ordinary
type system but also in a type system for secure information flow. Here the types
wrapped in dynamics can contain security levels.

Dynamics can be useful in distributed systems where processes send mes-
sages of different types to each other. If messages are wrapped in dynamics by
the sender then a single channel can be used for communication between two
processes, instead of a separate channel for each possible message type. The re-
ceiver of a message can check that the type wrapped in the dynamic is one of the
types that it expects and can act according to the type. To model such commu-
nication, we use the π-calculus as the base of our language (a good introduction
to the π-calculus can be found in [14]). To be able to also send code between
processes, not only names, we include in the language λ-expressions that can
also return a process. This makes the π-calculus higher-order. Finally, we can
add dynamics to the language.

Let us consider an example. Suppose we have a server that contains some
public and some secret data. The server accepts queries that may need to use the
public or secret data but that may also write data to public or secret channels.
We want to ensure that if a query accesses a public channel then it cannot
use the secret data, which might be leaked to the public channel. Here is the
pseudocode:

– server:
• variables pubdata, secdata
• listen to channel serv and for each message query that is received:

∗ if query contains a procedure that uses public channels then execute
query with pubdata as an argument

∗ if query contains a procedure that does not use public channels then
execute query with pubdata and secdata as arguments

– client1:
• send to serv a query that writes pubdata to a global public channel

– client2:
• send to serv a query that writes secdata to a global secret channel



In Sec. 2.2, we will implement this example in our language. Our type system
will guarantee that no information about secdata is leaked to a public channel.

Our goal was to have non-interference for our language. To make it easier to
achieve this, we take as a base [15], which has the necessary framework needed
to prove non-interference for the π-calculus. The advantage of the framework is
the use of ⟨π⟩-calculus, which allows the bisimulation relation needed for non-
interference to be derived naturally, instead of having to define it ad hoc. We
adapt the definitions, lemmas, and theorems to our language and extend the
proofs with cases corresponding to the added constructs in our language.

We will begin in Sec. 2 by introducing the syntax and run-time semantics
of our language and continue by discussing an example. We will then see how a
(weak) bisimulation relation arises naturally from a certain projection function.
This is asserted by the lemmas that we will prove. In Sec. 3, we will introduce our
type system for secure information flow and prove that the type of an expression
is retained during reduction. In Sec. 4, we will state the non-interference results.
The proofs for our language are essentially the same as for the language in [15]
and we will not repeat them. In Sec. 5, we will see more examples. We will review
the related work in Sec. 6 and discuss our results in Sec. 7.

2 Syntax and Operational Semantics

2.1 Description

Our language is based on the ⟨π⟩-calculus, which is defined in [15], augmented
with (recursive) λ-expressions (with a built-in fixpoint operator as in [16]). We
have added dynamics to the language, which allow introducing run-time type
variables using pattern matching. We also allow sending arbitrary values along
channels, not only channel names.

The ⟨π⟩-calculus adds to the π-calculus a bracket construct ⟨e⟩i (where i ∈
{1, 2}) that allows packing two high-security expressions into one to facilitate
reasoning about bisimilar expressions. This construct is not meant to be used in
actual programs written in the language. In the following, we use boldface meta-
variables (e.g. e or N) to denote expressions that do not contain this construct.
Such expressions are called standard expressions.

The syntax of our language is given in Fig. 1 and the operational semantics
in Fig. 2. We have the following three definitions (from [15]):

Definition 1. Let {i,j} = {1,2}. The ith projection function, written πi, satis-
fies the laws πi(⟨e⟩i) = e and πi(⟨e⟩j) = 0 and is a homomorphism on standard
expression forms.

Definition 2. Structural congruence ≡ is the smallest reflexive, compatible re-
lation over expressions which satisfies the following laws:

1. N+0 ≡ N , N ≡ N+0, N1+N2 ≡ N2+N1, (N1+N2)+N3 ≡ N1+(N2+N3);
2. N | 0 ≡ N , N ≡ N | 0, N1 |N2 ≡ N2 |N1, (N1 |N2) |N3 ≡ N1 | (N2 |N3);
3. νx1 : t1. νx2 : t2. e ≡ νx2 : t2. νx1 : t1. e.



Definition 3. The raw one-step reduction relation −→ is given by Fig. 2. We
write N1#N2 (read: N1 and N2 may communicate) for ∃e.(N1 |N2 −→ e ∨N2 |
N1 −→ e). Weak reduction, written =⇒, is defined as (≡ ∪ −→)∗.

We identify expressions up to α-conversion, to facilitate variable substitu-
tions. In the following, we use an overline to denote a list of something, e.g.

t ::=
⟨
t̃
⟩p
l
| Dynamic | t → τ | γ

τ ::= t | Procpc
p ::= − |+ | ± | β

l, pc ::= L |H | α
v ::= x | wrap v : t | fix f.λx : t. e

e ::= v | P | v v | bind x = e in e | v unwrap x :< t ≻ e else e |
| v unwrap x : t ≻ e else e

N ::= x(ỹ). e | x̄ ⟨ṽ⟩ . e | 0 |N +N

P ::= N | (e | e) | !e | νx : t. e | ⟨e⟩i

Figure 1. Syntax and types

αj ⇐ ℓj is a list that contains the substitution αj ⇐ ℓj for each j in some set
of indices. For a single variable without an index, we use a tilde instead of an
overline to avoid confusion with sending on a channel, e.g. ỹ is a list of variables.

An expression (denoted by e) can reduce either to a value (denoted by v)
without making any side effects, or to a procedure (denoted by P ), whose further
reduction may cause side effects but cannot return a value.

Value-level variables are denoted by x (sometimes also y) or f . We use f for
variables that are used for recursive function calls (e.g. in fix f.λx : t. f x the
subexpression f x is a recursive call with the argument x) but such variables are
not syntactically distinguished from ordinary variables. Function applications
are handled by the rule (app). To allow recursion, the rule replaces the variable
f by a copy of the function. This recursion may be non-terminating.

A similar construct, called replication, is available only for procedures, not
arbitrary expressions. The procedure !P allows creating an arbitrary number of
threads (rule (repl)), each executing P .

We distinguish value types (which we call just types and denote by t) and
procedure types (denoted by Procpc). Extended types (denoted by τ) can be
either types or procedure types.

The form of function types t → τ shows that functions can return both
values and procedures but can receive as an argument only values. If we want to
give a procedure P as an argument to a function then we can use the function
fix f.λx : Dynamic. P (with a dummy argument x; the variable f is also not
used) instead.



E[e] ::= bind x = e in e′ | (e | e′) | (e′ | e) | νx : t. e | ⟨e⟩i
(fix f.λx : t. e) v −→ e[f ⇐ (fix f.λx : t. e), x ⇐ v] (app)

bind x = v in e −→ e[x ⇐ v] (bind)

t1 ≤ t2
(wrap v : t1) unwrap x :< t2 ≻ e1 else e2 −→ e1[x ⇐ v]

(unwrap-subt)

¬(t1 ≤ t2)

(wrap v : t1) unwrap x :< t2 ≻ e1 else e2 −→ e2
(unwrap-subt-else)

t1 = t2[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ]

(wrap v : t1) unwrap x : t2 ≻ e1 else e2 −→
−→ e1[x ⇐ v, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ]

(unwrap-pat)

¬∃(αj , βj , γj). t1 = t2[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ]

(wrap v : t1) unwrap x : t2 ≻ e1 else e2 −→ e2
(unwrap-pat-else)

e −→ e′

E[e] −→ E[e′]
(context)

x ̸∈ fn(e2)

(νx : t. e1) | e2 −→ νx : t. (e1 | e2)
(extr)

(N1 + x(ỹ). e1) | (N2 + x̄ ⟨ṽ⟩ . e2) −→ e1[ỹ ⇐ ṽ] | e2 (comm)

0 −→ νx : t. 0 (new) !e −→ e | !e (repl)

πiN0#N1 {i, j} = {1, 2}
N0 | ⟨N1⟩i −→ ⟨πiN0 |N1⟩i | ⟨πjN0⟩j

(split)
N1#N2

⟨N1⟩i | ⟨N2⟩i −→ ⟨N1 |N2⟩i
(glue)

⟨e1 | e2⟩i −→ ⟨e1⟩i | ⟨e2⟩i (break) ⟨νx : t. e⟩i −→ νx : t. ⟨e⟩i (push)

Figure 2. Operational semantics

The channel type
⟨
t̃
⟩p
l
shows that a channel can be used to transmit a list

of values (with types given by the list t̃). The channel can be used only in the
context with level l. We have two security levels: low (public) and high (secret),
denoted by L and H, respectively. The polarity p can be − (the channel can be
read), + (it can be written to), or ± (it can be both read and written to).

We also have the type Dynamic, whose values can be constructed with the
construct wrap v : t, which wrap the value v and its type t in a single run-time
value (called a dynamic). The type t can be inferred automatically during type
checking, so the programmer may actually write just wrap v.

The values of type Dynamic can be analyzed using the unwrap constructs,
which allow branching according to the type contained in the dynamic. The first
variant of unwrap (with x :< t) chooses the first branch (rule (unwrap-subt)) if
and only if the type in the dynamic is a subtype of t (i.e. x can be given the
type t), and the second branch (rule (unwrap-subt-else)) otherwise. The second
variant (with x : t) uses t as a type pattern that can contain variables. The
first branch is chosen (rule (unwrap-pat)) if and only if the type in the dynamic
matches the pattern, and the type variables are replaced (at run time) with
concrete types (or parts of types) in this case. If the pattern match fails, the
second branch (rule (unwrap-pat-else)) is chosen.



We introduce three kinds of type pattern variables: α denotes variables that
correspond to a security level (denoted by l or pc), β denotes variables corre-
sponding to a polarity (denoted by p), and γ denotes variables corresponding to
a (value) type.

We also have a construct bind x = e1 in e2 that fixes the order of evaluation
of e1 and e2: first, e1 is evaluated (using the rule (context)), then its value can
be used to replace the variable x in e2 (rule (bind)). This ensures a call-by-value
semantics.

We also have the standard π-calculus constructs of sending (x̄ ⟨ṽ⟩ . e) and
receiving (x(ỹ). e) values over channel x (rule (comm)), null process (0), sum
of processes (N + N), parallel composition (e | e), and creating (νx : t. e) a
new channel of type t (rule (extr)). The rules (new), (split), (glue), (break),
and (push) are used only for the ⟨π⟩-calculus expressions with brackets, and are
similar to those in [15]. Some forms of processes (called normal processes) are
denoted by N instead of P to facilitate the definition of operational semantics.

2.2 Example from the Introduction

We will now see how to implement the example from the introduction in our
language. The code is given in Fig. 3. There we first create a global public
channel, a global secret channel, and another global public channel that will be
listened by the server. Then we create three threads—the server and the two
clients.

The server contains some public and secret data (SomePublicV alue and
SomeSecretV alue, which should be expressions of type Dynamic), which are
written to channels (because we do not have mutable variables). The server lis-
tens to the channel serv (using replication, so that it can handle more than
one query), and when it receives a query (which is contained in a Dynamic), it
branches accrording to the type of the query. If the query contains a high pro-
cedure expecting two arguments then it executes the procedure with the public
and secret data as the arguments. If it contains a low procedure expecting one
argument then it executes the procedure with the public data as the argument.

The first client creates a query that writes the public data in the server to a
global public channel. The second client creates a query that writes the secret
data in the server to a global secret channel. Both clients wrap their queries into
a dynamic and send them to the channel serv.

The server gives the secret data to a secret procedure and the public data
to a public procedure as channel names, not as actual values. This allows the
procedures in the query to also change the data in the server, not only read
it, although the current example does not use this possibility. The public data
is given to a secret procedure as an ordinary value because a secret procedure
must not affect public data. To use the value in a channel, it is first read from
the channel and then immediately written back to it so that it can be read
again later. The write is done in a separate thread, so that the synchronous
write would not block the current thread. To change the value in the channel, a
different value would be written back instead of the one that was just read.



νpubchan : ⟨Dynamic⟩±L . νsecchan : ⟨Dynamic⟩±H . νserv : ⟨Dynamic⟩±L .

((

νpubdata : ⟨Dynamic⟩±L . νsecdata : ⟨Dynamic⟩±H . (

pubdata ⟨SomePublicV alue⟩ . 0 |

secdata ⟨SomeSecretV alue⟩ . 0 |
!serv(query).

query unwrap q : (Dynamic → ⟨Dynamic⟩±H → ProcH) ≻

pubdata(pubd). (pubdata ⟨pubd⟩ . 0 | q pubd secdata)

else query unwrap q : (⟨Dynamic⟩±L → ProcL) ≻ q pubdata

else 0)

) | (

bind queryL = fix f.λpub : ⟨Dynamic⟩±L .

pub(pubd). (pub ⟨pubd⟩ . 0 | pubchan ⟨pubd⟩ . 0) in

serv
⟨
wrap queryL : ⟨Dynamic⟩±L → ProcL

⟩
. 0

) | (

bind queryH = fix f.λpubd : Dynamic. fix f.λsec : ⟨Dynamic⟩±H .

sec(secd). (sec ⟨secd⟩ . 0 | secchan ⟨secd⟩ . 0) in

serv
⟨
wrap queryH : Dynamic → ⟨Dynamic⟩±H → ProcH

⟩
. 0))

Figure 3. The example from the introduction in our language

2.3 Lemmas

We will now see how an expression containing brackets is related to the two
standard expressions that are packed into it. We first have an auxiliary lemma.

Lemma 1. Let i ∈ {1, 2}. Then (πie)[ỹ ⇐ πiṽ] = πi(e[ỹ ⇐ ṽ]) and (πie)[ỹ ⇐
πiṽ, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] = πi(e[ỹ ⇐ ṽ, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ]).

Proof. πie has the same structure has e, except some subexpressions may have
been replaced by 0. In e[ỹ ⇐ ṽ, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ], substitutions have
been made in all subexpressions. If we apply πi then the substitutions are still
visible in those subexpressions that were not replaced by 0 and πi is also applied
to those subexpressions that were introduced by the substitution (i.e. ṽ, which
changes to πiṽ; the type-level expressions ℓj , pj , tj are not affected by πi). Thus,
we get (πie)[ỹ ⇐ πiṽ, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ]. ⊓⊔

Now we can prove two lemmas that together show that e and πie (considered
modulo addition and removal of null processes) are weakly bisimilar.

Lemma 2. Let i ∈ {1, 2}. If e −→ e′ then πie =⇒ πie
′.



Proof. By induction on the derivation of e −→ e′. The cases corresponding to π-
calculus-related constructs ((comm), (extr), (new), (repl), (split), (glue), (break),
and (push)) are handled similarly to the proof of the corresponding lemma in
[15].

Case (app). πi is a homomorphism on all expression forms involved. The
result follows by (app) and Lemma 1.

Case (bind). πi is a homomorphism on all expression forms involved. (πie)[x ⇐
πiv] is πi(e[x ⇐ v]) by Lemma 1. The result follows by (bind).

Case (unwrap-subt). πi is a homomorphism on all expression forms involved.
(πie1)[x ⇐ πiv] is πi(e1[x ⇐ v]) by Lemma 1. The result follows by (unwrap-
subt) (the premise t1 ≤ t2 remains unchanged because types cannot contain
brackets).

Case (unwrap-subt-else). πi is a homomorphism on all expression forms in-
volved.

Case (unwrap-pat). πi is a homomorphism on all expression forms involved.
(πie1)[x ⇐ πiv, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] is πi(e1[x ⇐ v, αj ⇐ ℓj , βj ⇐ pj ,
γj ⇐ tj ]) by Lemma 1. The result follows by (unwrap-pat) (the premise remains
unchanged because types, polarities, and levels cannot contain brackets).

Case (unwrap-pat-else). πi is a homomorphism on all expression forms in-
volved.

Case (context). The subcases E = bind x = [] in e2, E = ([] | e2), E = (e2 | []),
and E = νx : t. [] can be handled by using the induction hypothesis, applying
(context), and using the fact that πi is a homomorphism on all expression forms
involved. Let us now consider the subcase E = ⟨[]⟩j . Then e and e′ are of the form
⟨e1⟩j and ⟨e2⟩j , respectively, and e1 −→ e2 holds. If i ̸= j then πie = πie

′ = 0
and the result is immediate. If i = j then πie = e1 and πie

′ = e2, so πie reduces
to πie

′ as desired. ⊓⊔

Definition 4. Let ≤0 be the smallest reflexive, compatible relation over expres-
sions which satisfies the law e ≤0 e | 0.

Lemma 3. Let i ∈ {1, 2}. If e −→ e′ and e = πie then there exists some
expression e′ such that e =⇒ e′ and e′ ≤0 πie

′.

Proof. By induction on the derivation of e −→ e′. The cases (comm), (extr),
(repl), and (new) are handled similarly to the proof of the corresponding lemma
in [15].

Before the following cases, we now consider the case where e = ⟨e⟩i. As
⟨e⟩i −→ ⟨e′⟩i by (context), and e′ = πi ⟨e′⟩i, we can take e′ = ⟨e′⟩i. Thus, in
the following, we can assume that e ̸= ⟨e⟩i.

Case (context). Subcases E = [] | e0 and E = νx : t. [] are handled similarly
to the proof of the corresponding lemma in [15]. Now we consider the remaining
subcase E = (bind x = [] in e0). Here e = (bind x = e1 in e0) and e′ = (bind x =
e′1 in e0). The premise of e −→ e′ gives e1 −→ e′1. Then e is either ⟨e⟩i or
bind x = e1 in e0, where e1 = πie1 and e0 = πie0. The first case we already
handled. In the second case, the induction hypothesis gives e1 =⇒ e′1 for some e′1
such that e′1 ≤0 πie

′
1. Then, by (context), bind x = e1 in e0 =⇒ bind x = e′1 in e0



holds, and e′ = E[e′1] ≤0 E[πie
′
1] = πi(bind x = e′1 in e0). Thus we can take

e′ = bind x = e′1 in e0.
Cases (app), (bind), (unwrap-subt), (unwrap-subt-else), (unwrap-pat),

(unwrap-pat-else). Because e ̸= ⟨e⟩i, the expression e can only contain brackets
in its proper subexpressions (e.g. v, e1, and e2 for the (unwrap-subt) rule). Thus
we can write e as ê[ek], where ek are the proper subexpressions occurring in e,
e.g. e = ê[v, e1, e2] for the (unwrap-subt) rule. Then e = ê[πiek] because πi is
a homomorphism on ê. We can also write e′ as ê′[πiek]. Because the reduction
ê[πiek] −→ ê′[πiek] holds and its premises and restrictions on the subexpressions
(e.g. that the expression v must be a value) are invariant under projection (and
inverse of projection), we can replace the subexpressions πiek by ek to get a
derivation of the reduction ê[ek] −→ ê′[ek]. Take e′ = ê′[ek]. Then e −→ e′ and
πie

′ = πi(ê
′[ek]) = ê′[πiek] = e′ because πi is a homomorphism on ê′ (here we

use Lemma 1 if necessary). ⊓⊔

3 Type System

The type system of the language is given in Figures 4 and 5. The types of
channels and the corresponding subtyping rules are from [15]. As security levels
we have only L and H, not an arbitrary lattice.

There are two forms of typing judgements. Both depend on the environment
Γ , which consists of a list of typings of (value-level) variables and a list of
type-level variables. The judgement form Γ ⊢(pc) N is used for some constructs
related to communication. It asserts that the process N has the security level
pc. Most judgements use the form Γ ⊢ e : τ , which asserts that e can be given
the extended type τ . The two forms are related by the rule (P-NORMAL). The
meta-expression tyvars(t) used in the rules denotes the set of type variables (of
all three kinds) occurring in the type t.

We give types not only to expressions reducing to values but also to (expres-
sions reducing to) procedures. This is different from [15] because we also need to
be able to return procedures from functions. Procedures have an extended type
of the form Procpc. This means that the procedure has the security level pc. If a
procedure reads or writes to a channel then the security levels of the procedure
and the channel must be equal. The rule (E-SUB) allows a procedure of type
ProcL (a low process) to have a subprocedure of type ProcH (a high process) but
not vice versa. Thus if a low process uses a high channel then the continuation
(that follows the use of the channel) has type ProcH . If it also needs to continue
running in low context then the rule (P-PAR) allows it to fork into two low
processes, one of which changes into high context before using the channel.

The type rules (E-VAR), (E-LAM), (E-APP), (E-BIND), and (E-SUB) are
standard. The rules (N-SEND), (N-RECV), (N-NULL), (N-SUM), (P-NORMAL),
(P-PAR), (P-REPL), (P-NEW), and (P-BRACKET) are similar to those in [15],
except that we allow send arbitrary values (ṽ) in (N-SEND), we have an explicit
type annotation in (P-NEW), we have only one possible non-low security level
in (P-BRACKET), and we rely on a separate rule (E-VAR) for typing variables.



l ≤ l L ≤ H p ≤ p ± ≤ + ± ≤ −

t ≤ t
t2 ≤ t1 τ1 ≤ τ2
t1 → τ1 ≤ t2 → τ2

∀i. ti ≤ t′i
t̃i ≤ t̃′i

pc2 ≤ pc1
Procpc1 ≤ Procpc2

p1 ≤ p2 (p2 ≤ − ⇒ t̃ ≤ t̃′) (p2 ≤ + ⇒ t̃′ ≤ t̃)⟨
t̃
⟩p1
l

≤
⟨
t̃′
⟩p2
l

Figure 4. Subtyping rules

Γ (x) = t

Γ ⊢ x : t
(E-VAR)

Γ ⊢ v1 : t1 → τ2 Γ ⊢ v2 : t1
Γ ⊢ v1 v2 : τ2

(E-APP)

tyvars(t1) ⊆ Γ Γ ; f : t1 → τ2;x : t1 ⊢ e : τ2
Γ ⊢ (fix f.λx : t1. e) : t1 → τ2

(E-LAM)

Γ ⊢ e1 : t1 Γ ;x : t1 ⊢ e2 : τ2
Γ ⊢ (bind x = e1 in e2) : τ2

(E-BIND)
Γ ⊢ v : t tyvars(t) ⊆ Γ

Γ ⊢ (wrap v : t) : Dynamic
(E-WRAP)

Γ ⊢ v : Dynamic Γ ;x : t ⊢ e1 : τ ′

Γ ⊢ e2 : τ ′ tyvars(t) ⊆ Γ

Γ ⊢ (v unwrap x :< t ≻ e1 else e2) : τ ′ (E-UNWRAP-SUBT)

Γ ⊢ v : Dynamic Γ ;x : t; tyvars(t) ⊢ e1 : τ ′ Γ ⊢ e2 : τ ′

Γ ⊢ (v unwrap x : t ≻ e1 else e2) : τ ′ (E-UNWRAP-PAT)

Γ ⊢ e : τ τ ≤ τ ′

Γ ⊢ e : τ ′ (E-SUB)
Γ ⊢ e : Procpc
Γ ⊢ !e : Procpc

(P-REPL)

Γ ⊢ x :
⟨
t̃
⟩+
pc

Γ ⊢ ṽ : t̃ Γ ⊢ e : Procpc

Γ ⊢(pc) x̄ ⟨ṽ⟩ . e (N-SEND)

Γ ⊢ x :
⟨
t̃
⟩−
pc

Γ ; ỹ : t̃ ⊢ e : Procpc

Γ ⊢(pc) x(ỹ). e
(N-RECV)

Γ ⊢(pc) 0
(N-NULL)

Γ ⊢(pc) M Γ ⊢(pc) N

Γ ⊢(pc) M +N
(N-SUM)

Γ ⊢(pc) N

Γ ⊢ N : Procpc
(P-NORMAL)

Γ ⊢ e1 : Procpc Γ ⊢ e2 : Procpc
Γ ⊢ (e1 | e2) : Procpc

(P-PAR)

tyvars(t) ⊆ Γ Γ ;x : t ⊢ e : Procpc t =
⟨
t̃
⟩p
l

Γ ⊢ (νx : t. e) : Procpc
(P-NEW)

Γ ⊢ e : ProcH
Γ ⊢ ⟨e⟩i : ProcH

(P-BRACKET)

Figure 5. The type system

We have tyvars(t) ⊆ Γ as a premise of some rules to ensure that only those type
variables that are in scope are used.

The rule (E-WRAP) ensures that the value and the type wrapped in a dy-
namic correspond to each other. We also have two rules for the unwrap expres-
sions. The rule (E-UNWRAP-SUBT) handles the variant that uses subtyping



to compare the dynamic and the static type. Here we require all type variables
occurring in t to be in scope, because here we cannot bind new variables. The
rule (E-UNWRAP-PAT) handles the variant that uses pattern matching. Here
we add the variables tyvars(t) occurring in the pattern t to the scope. Currently,
the rule considers all type variables in t to be new variables bound by the pat-
tern even if there already was a variable with the same in the context. It would
also be possible to allow some variables in the pattern to refer to the variables
already in the scope if we syntactically distinguish these variables from pattern
variables.

The two unwrap constructs cannot be united into one that allows both pat-
tern matching and subtyping to be used. Let us consider the type (Dynamic →
ProcL) → ProcH and the pattern (Dynamic → Proca) → Proca. Then (Dynamic →
ProcL) → ProcH ≤ (Dynamic → Proca) → Proca holds for both a = L and
a = H. Thus a is not uniquely defined and there is no reason to prefer ei-
ther a = L or a = H because in both cases the inequality is strict (unlike for
Dynamic → ProcH ≤ Dynamic → Proca, where also both a = L and a = H fit
the inequality, but here we can choose a = H because equality holds only in that
case).

We will now prove some lemmas related to the type system. First, a lemma
that allows substituting a variable with a value of the same type.

Lemma 4. Γ ; y : t1 ⊢ e : τ and Γ ⊢ v : t1 imply Γ ⊢ e[y ⇐ v] : τ .

Proof. Take the derivation tree of Γ ; y : t1 ⊢ e : t and replace y with v. This
replacement can invalidate only (E-VAR) nodes (used to derive Γ ⊢ y : t1). Now
we have to derive Γ ⊢ v : t1 instead. Thus we replace these (E-VAR) nodes with
the derivation tree of Γ ⊢ v : t1 which we have. Then we get a derivation tree of
Γ ⊢ e[y ⇐ v] : τ . ⊓⊔

Next, we prove a similar lemma that allows substituting type variables in an
expression with type-level entities (types, polarities, and security levels) of the
same kind if we make the same substitution in the type of the expression.

Lemma 5. If none of the variables αj , βj , γj occur in Γ or τ then
Γ ; y : t1;αj , βj , γj ⊢ e : τ implies
Γ ; y : t1[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] ⊢ e[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] : τ .

Proof. Apply the substitution [αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] to the derivation tree
of Γ ; y : t1;αj , βj , γj ⊢ e : τ . The substitution does not change Γ (used in (E-
VAR)). Also, the ordering of types (used in (E-SUB)) is not changed by the
substitution. The statement tyvars(t) ⊆ Γ (in (E-WRAP), (E-LAM), and (E-
UNWRAP-SUBT)) is also not invalidated by the substitution. Elsewhere in the
type rules, types or extended types that are denoted by a letter (e.g. t1 or τ ′)
and do not contain other such types, are used in a parametrically polymorphic
way, thus the rules are not invalidated by the substitution. As a result of the
substitution, after dropping the no longer used variables αj , βj , γj from the con-
text, we then get the derivation tree of Γ ; y : t1[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] ⊢
e[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] : τ . ⊓⊔



The following lemma allows substituting both value-level and type-level vari-
ables.

Lemma 6. If none of the variables αj , βj , γj occur in Γ or τ then
Γ ; y : t1;αj , βj , γj ⊢ e : τ and Γ ⊢ v : t1[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] imply
Γ ⊢ e[x ⇐ v, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] : τ .

Proof. Combine Lemmas 4 and 5. ⊓⊔

Now we can prove Subject Reduction, which is the main lemma needed for
non-interference. It shows that the security type of an expression does not change
during reduction. Thus, if we have two bisimilar expressions of equal extended
types, they will continue to have equal extended types when we simulate the
reduction steps of one of the expressions in the other.

Lemma 7 (Subject Reduction). If e −→ e′ then Γ ⊢ e : τ implies Γ ⊢ e′ : τ .

Proof. By induction on the derivation of e −→ e′. We can assume that (E-SUB)
is never used immediately above another (E-SUB) because two or more successive
instances of (E-SUB) can always be replaced by one. We can also assume that
(E-SUB) is not the bottommost rule in the derivation tree of e −→ e′.

Case (bind). Γ ⊢ (bind x = v in e2) : τ . The bottommost rule must be (E-
BIND), whose premises give Γ ⊢ v : t1 and Γ ;x : t1 ⊢ e2 : τ . Lemma 4 now gives
Γ ⊢ e2[x ⇐ v] : τ .

Case (app). Γ ⊢ (fix f.λx : t1. e2) v : τ . By (E-APP), Γ ⊢ (fix f.λx :
t1. e2) : t1 → τ . By (E-SUB) and (E-LAM), Γ ; f : t1 → τ2;x : t1 ⊢ e2 : τ2 and
Γ ⊢ v : t1, where τ2 ≤ τ . Lemma 4 and (E-SUB) now give Γ ⊢ e2[f ⇐ (fix f.λx :
t1. e2), x ⇐ v] : τ .

Case (unwrap-subt). Γ ⊢ ((wrap v : t1) unwrap x :< t2 ≻ e1 else e2) : τ .
By (E-UNWRAP-SUBT) and (E-WRAP) (we can assume that (E-SUB) is not
used below (E-WRAP) because Dynamic is not a supertype of anything but
itself), Γ ⊢ v : t1. (E-SUB) and the premise of (unwrap-subt) give Γ ⊢ v : t2.
Combining this with another premise of (E-UNWRAP-SUBT) and Lemma 4,
gives Γ ⊢ e1[x ⇐ v] : τ .

Case (unwrap-pat). Γ ⊢ ((wrap v : t1) unwrap x : t2 ≻ e1 else e2) : τ . By (E-
UNWRAP-PAT), (E-SUB), and (E-WRAP), Γ ⊢ v : t1 and Γ ;x : t2; tyvars(t2) ⊢
e1 : τ . The premise of (unwrap-pat) gives Γ ⊢ v : t2[αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ].
Lemma 6 (we can use alpha-conversion, if necessary, to achieve that the variables
tyvars(t2) do not occur in Γ or τ , as required by the lemma) now gives Γ ⊢
e1[x ⇐ v, αj ⇐ ℓj , βj ⇐ pj , γj ⇐ tj ] : τ .

Cases (unwrap-subt-else) and (unwrap-pat-else). Immediate (an expression
reduces to a subexpression of the same type).

Case (context). Γ ⊢ E[e1] : τ . The premise of (context) and the induction
hypothesis give e1 −→ e′1, where Γ ′ ⊢ e1 : τ1, Γ

′ ⊢ e′1 : τ1, and e′ = E[e′1]. For
(E-BIND), (P-PAR), and (P-BRACKET), Γ ′ = Γ . For (P-NEW), Γ ′ = Γ ;x : t,
where E = νx : t. []. In each case we can replace e1 with e′1 (and the premise



Γ ′ ⊢ e1 : τ1 with Γ ′ ⊢ e′1 : τ1) in the derivation tree of Γ ⊢ E[e1] : τ to get
Γ ⊢ E[e′1] : τ .

Cases (comm), (extr), (new), (repl), (split), (glue), (break), and (push) are
handled similarly to the proof of the corresponding lemma in [15]. ⊓⊔

4 Non-Interference

The non-interference results for our language are similar to those in [15] and we
omit the proofs here. The proofs use Lemmas 2, 3, and 7, which were proved
for our language in the earlier sections. The necessary definitions are almost the
same as in [15]:

Definition 5. Let α,β,. . . range over names and co-names (x,x̄,. . . ). If α is x
or x̄ then |α| is x. The predicate e ↓α (read: the expression e is observable at α)
is defined as follows:

(N + x(ỹ). e) ↓x (N + x̄ ⟨ỹ⟩ . e) ↓x̄
e ↓α E does not bind |α|

E[e] ↓α

The evaluation context here is

E ::= ([] | e′) | (e′ | []) | νx : t. [] | ⟨[]⟩i

i.e. it does not include bind expressions.
e ⇓α stands for (∃e′. e =⇒ e′ ↓α).

Definition 6. Let B be an arbitrary set of names. A binary relation R over
processes is a weak B-simulation if and only if

– e1 R e2 ∧ e1 =⇒ e′1 implies ∃e′2. e2 =⇒ e′2 ∧ e′1 R e′2 and
– |α| ∈ B, e1 R e2, and e1 ⇓α imply e2 ⇓α.

R is a weak B-bisimulation if and only if R and R−1 are weak B-simulations.

Definition 7. Given a type environment Γ , low(Γ ) denotes the largest set B ⊆
N (N is the set of all names) such that x ∈ B and Γ (x) =

⟨
t̃
⟩p
l
imply l = L.

Lemma 8. Let e1 RΓ e2 hold if and only if, for some process e and some
extended type τ , both Γ ⊢ e : τ and e1 ≤∗

0 · π−1
1 e π2 · ≥∗

0 e2 hold. Then, RΓ is
a weak low(Γ )-bisimulation.

Theorem 1. Assume that Γ0 ⊢ ei : ProcH holds for i ∈ {1, 2}. Then, for
any context C and for any environment Γ such that Γ ⊢ C[] holds under the
assumption Γ0 ⊢ [] : ProcH , C[e1] and C[e2] are weakly low(Γ )-bisimilar.

Thus, replacing one high subprocedure (subexpression of type ProcH) with an-
other in an expression changes neither the set of low channels that it can read
nor the set of low channels that it can write to.



5 More Examples

Our language does not support global definitions, but in the following, we allow
them as syntactic sugar. Thus, if we have global definitions x1 = e1, . . . , xn = en
and a main expression e then we assume the full program to be

bind x1 = e1 in . . . bind xn = en in e

Here is some other syntactic sugar that can be used by the programmer:

λx. e ≡ fix f.λx. e where f is not free in e

Because our language does not have a unit type, we define a dummy value of
type Dynamic:

dummyDyn = wrap (λx : Dynamic. x) : Dynamic → Dynamic

Our language allows using dynamics with pattern matching, similarly to the
dynamics in Clean [19]. For example, we can define a function for dynamic
function applicaton. For ordinary functions this is easy but we can also define
such a function for functions that return procedures. Procedures cannot directly
return a value but we can simulate this by using a channel where the procedure
will write its result. We can create a fresh channel for each procedure call, so
that it would not interfere with other channels. This is done in

dynAppProc =

λdynF : Dynamic. λdynCX : Dynamic. λcont : Dynamic → ProcL.

dynF unwrap f : γ1 → ⟨γ2⟩+α → Procα ≻
dynCX unwrap cX :< ⟨γ1⟩±α ≻ νcRes : ⟨γ2⟩±α .

(cont (wrap cRes : ⟨γ2⟩±α ) | cX(x). (cX ⟨x⟩ . 0 | f x cRes))

else dummyDyn

else dummyDyn

The channel where the result will appear is given to the continuation cont be-
cause nothing can be returned from a procedure to the original caller. The con-
tinuation gets the channel immediately, not after f terminates. The value will
appear on the channel later. This allows the continuation to run in low context.

The channel cRes can be used (only in high context, if α = H) to wait for
f to return a value and to read the value, thus cRes is essentially a future [7].
But cRes can be given as an argument to another high procedure (let it be g).
Then g can start running only after a value has arrived at cRes but the future of
g is still returned immediately, even before the value has arrived at cRes. This
allows to sequence high procedures while remaining in low context. This is done
here:

dynAppProc (wrap f) arg (λcRes : Dynamic.

dynAppProc (wrap g) cRes (λfutG : Dynamic. clow ⟨futG⟩ . 0))



(here f and g are functions of type Dynamic → ⟨Dynamic⟩+H → ProcH and clow

is a channel of type ⟨Dynamic⟩±L ; we omit the annotations in wrap construct, as
they can be inferred by the type checker). The value futG can appear at clow
before f and g have terminated.

Only when waiting for the termination of or reading the result of a high
procedure is desired, is it necessary to switch into high context.

clow(futG).

futG unwrap chigh : ⟨Dynamic⟩±H ≻ chigh(resG). handle resG else 0

Here handle resG must have type ProcH and it cannot be executed before f
and g have terminated and g has returned the result resG.

This is why we do not distinguish high and low values (of types like DynamicH
and DynamicL) in our language but only high and low channels. The level of a
value that is not on a channel is the level of the context where it is handled. If
we need to use a high value in a low context, we can create a high channel and
use it as a future of the high value. This was done with cRes and futG above.

6 Related Work

Program analyses for secure information flow were first considered by Den-
ning [9], the type systems stem from the work of Volpano et al. [20]. The non-
interference property was first proposed in its modern form by Goguen and
Meseguer [10], while the testing equivalence that we use to express it stems
from [8,6].

A general type discipline for information flow security in π-calculus was pro-
posed by Honda et al. [12]. Our work, however, mostly follows Pottier [15] and
adopts the ⟨π⟩-calculus presented there for arguing about two processes simulta-
neously. Similar compositions and argument systems have also been considered
for secure information flow in imperative and object-oriented languages [5,18].

Our work also extends the existing type-based information flow analyses for
higher-order languages. The SLam calculus [11], DCC [1] and FlowCaml [16] are
some existing higher-order calculi allowing reasoning about information flow.

Recently, there has been interest in dynamic enforcement of information flow
policies [4,17]. These mechanisms can handle more lax control structures of pro-
grams, similarly to the dynamic types in this paper. Our enforcement mechanism
is fully static but it would be interesting to compare it to dynamic mechanisms.

7 Conclusions

We have presented a type system for information flow analysis for a π-calculus
extended with recursive λ-abstractions and dynamics. Such a language can be
used to model distributed systems where procedure code of different security
levels can be sent over channels and some of the channels must ensure secrecy.
We saw that the added constructs in our language do not weaken the non-
interference guarantees compared to the ordinary π-calculus.
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