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Abstract. In this paper, we report the results of the formal analysis
performed on the Estonian Mobile-ID protocol (deployed since 2008), al-
lowing citizens and permanent residents of Estonia to authenticate them-
selves and issue digital signatures with the help of a signature-capable
SIM-card inside their mobile phone. We analyze the resiliency of the
protocol to network attacks under various threat models (compromised
infrastructure, client application, etc., confusing user interface) and give
suggestions for improvement.

1 Introduction

Since 2002, Estonia has issued chipped ID cards to its citizens and permanent
residents. The card has been integrated into a national public-key infrastructure.
Upon the initialization of a new ID card for the user U , two RSA keypairs are
loaded into it. The card is capable of performing modular exponentiations with
the secret exponents of those keypairs. During initialization, certificates binding
the public keys to the user U are also issued and stored on the card (as well
as in a public database). The certificates are issued by a certification authority
(CA) in the list of state-recognized CAs. The intended uses for the secret keys
(as recorded in certificates) are identification (for the first keypair) and signing
(for the second keypair).

The identification functionality of the card can be used when accessing pub-
lic web-sites. When the user has directed his client application (usually a web
browser) to access a server over a secured connection, the two will perform a TLS
handshake [10] during which both the server and the client are authenticated.
During the protocol, the client has to sign a message, a hash of which is handed
over to the ID card in a smartcard reader connected to client’s computer. The
card will apply the RSA exponentiation to this hash, using the secret exponent in
the first RSA keypair. The result is handed back to the client application which
includes it in a protocol message. To activate the card’s signing functionality, a
PIN (consisting of four or more decimal digits) has to be given to it (different
PINs for different keypairs). The PIN is entered either from the computer key-
board or the PIN-pad integrated with the card reader. In the first case, the PIN
is handled by the client application and given to the card together with the hash
to be signed. The card locks up after a couple consequtive incorrect enterings of
the PIN.



Since 2007, Eesti Mobiiltelefon (the largest Estonian mobile operator) in
cooperation with Sertifitseerimiskeskus AS (the only state-recognized CA in Es-
tonia) have issued mobile SIM cards with the same functionality [15]. Later that
year, they were joined by the Lithuanian mobile operator Omnitel [20]. Similarly,
RSA keypairs are loaded into those cards and the public keys are issued certifi-
cates binding them with users. The SIM card can compute signatures on users’
behalf after being given a PIN which is entered from the keypad of the mobile
phone. The mobile ID thus reduces the threats related to handing over one’s PIN
to a possibly trojaned computer. Trojan horse attacks on mobile phones are as
of now only a negligible part of the malware market [13], although should their
number and impact increase, the conclusions made in this paper must be recon-
sidered. Another claimed advantage of mobile ID is convenience — no smartcard
reader is necessary [16].

At the same time, client authentication in the Mobile-ID protocol uses a
much more complex protocol than the TLS handshake, and involves many more
parties. This raises a number of interesting security questions. The goal of the
research reported in this paper was to formalize the Mobile-ID protocol in the
protocol checker ProVerif [7] and use it to explore what happens if various parts
of the system are acting differently than expected. We also have tested the im-
plementation of central parts of the protocol; this paper shows how to formally
model the possible weaknesses we found. After reporting the results of this ex-
ploration, we also suggest modifications for the protocol to make it more secure
under certain attacks.

A general security analysis of Mobile-ID has been performed previously [21].
This analysis was considerably broader in scope than the one reported in this
paper; it considered not just the network attacks, but also legal and human issues
and risks related to the failure of technical components. The conclusion of the
analysis was that generally, the risks associated with Mobile ID are the same
as the risks of using the ID card. There are some additional risks related to the
necessity to trust the extra infrastructure used in the Mobile ID protocols. No
formal analysis of the protocols was presented in [21].

In this paper we first describe the Mobile-ID authentication protocol and base
security assumptions (honesty of certain parties and security of certain channels)
for it. The base security assumptions describe the situation where only parties
that are normally considered to be dishonest can be dishonest. As next we de-
scribe how we have formalized the Mobile-ID protocol in ProVerif. In the next
section we describe the results of our analysis. We have analyzed the protocol un-
der base security assumptions, as well as several different, stronger assumptions
where we have allowed certain parties or connections to be under adversarial
control. We finish the paper with suggestions for improving the protocol, as well
as general conclusions.

2 The Mobile-ID Protocol

The Mobile-ID protocol [4] involves the following parties:
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– The user U that wants to access some service requiring authentication.
– The phone P of that user, as well as the SIM card inside it. Although tech-

nically two different units, we model them as a single one. The SIM card
knows the secret signing key skU , the corresponding public key pkU of which
is bound to the identity of U by the certificate certU .

– The client application C of that user, typically a computer running a web
browser. The client application is used to actually access the service.

– The server S that the user wants to connect to. It has a secret key skS which
public counterpart pkS is bound to the name S by the certificate certS . With
the help of skS , the server can participate in a TLS handshake as a server.

– The mobile operator O that has issued the SIM-card of the phone P .
– The DigiDocService D [4]. This is a central party of the protocol meditating

the authentication process and forwarding the messages to right parties.
The DigiDocService has a secret key skD allowing it to participate in a TLS
handshake as a server. The certificate certD binds the corresponding public
key pkD to the identity of D.

The parties above actively take part of a protocol session. Besides them, there is
also the certificate authority CA issuing the certificates. Also, there are means
(OCSP) to verify the status of a certificate [19].

The Mobile-ID protocol [4] is depicted in Fig. 1. A protocol session is ini-
tiated by the user U deciding to contact the server S and informing the client
application C about this choice. The client application locates the certificate
certS of the server and initiates a TLS handshake with it. During the hand-
shake, the server is authenticated to the client, but not vice versa. The resulting
TLS tunnel is used to communicate the rest of the messages between C and S.
To authenticate the user, C sends to S the name U (which also determines the
phone number P ). The server S then initiates a TLS handshake with D, again
resulting in the secure identification of D, but not S. Again, the TLS tunnel is
used to encapsulate the messages between S and D. The server S sends to D

the names U and P , identifying the user. Additionally, S generates a 10-byte
challenge r1 (part of the challenge signed with skU ) and sends it to D, too. Op-
tionally, r1 may be empty. Also, S sends to D something that identifies itself:
S̃ = (S, m) where m is an additional message that will be displayed to the user
on the screen of the mobile phone. Both S and D will then locate the certificate
certU of the user.

The DigiDocService will generate a random nonce r2. The phone of the user
is supposed to sign the concatenation of r1 and r2 with the key skU , where pkU is
included in certU . DigiDocService forwards both S̃ and r1‖r2 to the phone P via
the mobile operator O. The communication between D and O is protected by a
VPN solution. The communication between O and P is through SMS-s, and is
protected by encrypting the messages between O and P with the symmetric key
K̃P known only to themselves. DigiDocService also computes CC1 as the control

code of r1‖r2. The control code consists of four decimal digits. The control code
CC1 is forwarded to the client application C that displays it to the user U . The
phone P also computes the control code of r1‖r2 and displays it to the user,
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Fig. 1. Mobile-ID protocol

along with the name of the server S and the accompanying message m. The
user checks that the control codes displayed by the client application and the
phone are equal. The user also checks that the name of the server displayed by
the phone is equal to the server he wanted to access, and the message m makes
sense. If the checks succeed then the user instructs the phone that it is OK to
sign the challenge, and provides the PIN for identification. The phone, receiving
the PIN, signs the challenge r1‖r2 and forwards it to D via O. DigiDocService
D verifies that signature. If the signature verification is successful, and r1 is
not empty, then the signature is forwarded to S that also checks it, and upon
success deems U to be authenticated. If r1 is empty (i.e., S did not provide a
challenge) then D does not forward the successfully verified signature to S, but
only sends the confirmation that the verification succeeded. Again, S considers
U to be authenticated. The TLS tunnel between C and S is then used for the
regular communication.

2.1 Base security model

There are several entities, with several channels between them. Certain of those
may be controlled by the adversary. In our “base” model we make the following
assumptions about the security of various channels and entities:
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1. There are several users and servers, some of them may be under adversarial
control.

2. There is a single DigiDocService and mobile operator. They are honest. The
channel between them is secure. In reality, these parties are relatively large
organizations under significant public scrutiny. Still, we will relax this as-
sumption in certain models.

3. The phones and client applications are under the control of their respective
users.

4. The channel between a user and his client application is secure. So is the
channel between a user and his phone. This is a reasonable assumption (for
the base model, where we do not consider trojaned devices) as these channels
are realized by the keyboards and screens of computers and phones.

The basic security property that we are interested in is the secrecy of the TLS
keys agreed by honest clients and servers. We are also interested in correspon-
dence properties: if a server S thinks that it talks to a client controlled by the
user U using the key K and U is honest, then U must also think that it talks to
the server S in a session where his client application C is using the key K (in-

tegrity for servers). Similar property must hold if we swap the user and the server
(integrity for clients). Note that integrity for clients is derived directly from the
properties of TLS because the server is authenticated during TLS handshake.
TLS is a thoroughly researched protocol [12] and we know that it provides in-
tegrity for clients. Therefore we will subsequently only be concerned with the
integrity for servers.

3 Formalization in ProVerif

ProVerif [7] is a protocol analyzer in the formal (or: Dolev-Yao) model [11].
To apply it to a protocol, it has to be formalized in a language reminiscent
to the applied π-calculus [3]. In this calculus, messages are represented by for-

mal expressions made up of free names and expression constructors, the set of
constructors is fixed for a protocol. The process is expressed in a language con-
taining primitives for sending and receiving messages (the channel has to be
specified, too; it is a name), generating new names (modeling the generation
of new keys, nonces, etc.), constructing and deconstructing messages, branch-
ing, sequential and parallel composition, and replication. The input language of
ProVerif also contains means to specify the security properties (both secrecy and
correspondence properties, as well as various process equivalences that we are
not using here). ProVerif is a mature tool, having been used to check the security
of various key-exchange [7, 2], authentication [8], fair exchange [1], secure storage
[9], electronic voting [17, 5], etc. protocols. The tool is capable of modeling dif-
ferent cryptographic primitives, including Diffie-Hellman key exchange [2] and
non-interactive zero-knowledge [6].

Our model of the Mobile-ID protocol, following the base security model con-
sists of the following parts.
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TLS handshake We follow the modeling by Tankink and Vullers [22]. They
have verified that the TLS handshake provides integrity for clients. The TLS
handshake is used as a subprotocol in two different places of the Mobile-ID
protocol. We use the trick described by Haack [14] to include TLS handshake as
a subprotocol, without duplicating its code.

Certification Instead of including a full-fledged CA process in our model, giving
signatures to certificate requests, we have included a private expression construc-
tor cert, such that cert(X, pkX) represents that pkX is the public key of X . The
privacy of the constructor means that the adversary cannot use it to construct
new expressions. On the other hand, we have included destructors that the ad-
versary can use and read both components of a cert-message. The honest users,
servers and DigiDocService generate their keys and publish the corresponding
certificates at the beginning of their processes. To give certificates to dishonest
users and servers, we add a (replicated) process that takes a public key pk as
an input, generates a new name n and outputs cert(n, pk ) on a public channel.
It is important that the name is newly generated, otherwise the adversary could
issue new certificates to honest parties.

Phone registration The binding of the key K̃P to the phone P is handled sim-
ilarly — there is a private binary constructor phonereg representing the binding
of a key to a user’s phone. There are also destructors to read both components
of a phonereg-message, but only the one giving the name of the user is public
(i.e., can be invoked by the adversary). Binding a key to the phone of a dishonest
user is handled similarly to certification. Actually, the process described in the
previous paragraph is extended to also output a phonereg-message.

User, client application and phone We model these parties as a single pro-
cess (with several replicated subprocesses). The process first generates a new
name and keys for signing and mobile communication and publishes the cer-
tificates for them. The process will then split into several parallel subprocesses,
each of them replicated. These subprocesses are described below.

One of the subprocesses models the client application in one protocol session.
It receives the name of the server to connect to (from the user subprocess), runs
the TLS handshake with the server, verifying server’s identity in that process,
receives the control code from the server through the established TLS-tunnel and
sends it to the user subprocess. The channel between the user and client sub-
processes is a secure one; its name is generated before the parallel subprocesses
start.

Another subprocess models both the user and the phone during one protocol
session. It tells the client application to start connecting to a server (the name of
the server is received from the adversary), gets back the control code from it, and
also gets the challenge to be signed and information identifying the server from
the network, encrypted with the key for mobile communication. The process
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verifies whether the control code from the client application matches the control
code of the challenge (also checks the identity of the server). If the check succeeds,
it signs the challenge and sends it back, encrypted.

Third subprocess is used to indicate that this user is honest. It sends the
name of the user on a private channel (a free name that the adversary does not
have access to).

Other parties The processes modeling a server, the DigiDocService, and the
mobile operator are straightforward. The server process first generates the name
and the key of the server, publishes the certificate certS and then runs an un-
bounded number of processes implementing the server part of the Mobile-ID
protocol. The name of the DigiDocService is globally known, hence the DigiDoc-
Service process starts by generating only the key and publishing the certificate
for it. We use a private channel (a free name that the adversary cannot use) to
model the VPN used for communication between the DigiDocService and mobile
operator.

The whole system The analyzed process consists of the parallel composition
of the client process (replicated), server process (replicated), DigiDocService
process, mobile operator process, processes for TLS handshake (replicated) and
the process for issuing certificates for dishonest clients and servers.

Checking the control code The control code consists of four decimal digits,
hence collisions are easy to construct. It would be wrong to model the control
code just by a message constructor with no additional equations as that would
hide the very real possibility of control code collisions. In our model, we still
introduce the constructor cc, such that cc(r) is the control code corresponding
to r, but instead of using equality of terms to check the control code in the user
process, we have introduced a binary predicate TestCCEq (ProVerif supports
such introduction of predicates). The invocation of TestCCEq(r, c) is supposed
to return true if c is the control code corresponding to r (recall that the user
process receives the control code from the client process and the challenge from
the mobile operator). Our model contains the clause TestCCEq(x, cc(x)). Ad-
ditionally, it contains the clauses for modeling that given c, the adversary can
construct messages of certain shapes whose control code is c. The shapes of these
clauses depend on the attacks that the adversary may want to perform. In the
weakest case (the adversary can find preimages of a given control code, but can-
not control the shape of the preimage) the clause is TestCCEq(invcc(x), x), where
invcc is a new message constructor. We consider stronger cases when we study
different security models. Our model does not consider the possibility that two
control codes might be equal by chance. An honest DigiDocService can easily
ensure that challenges with equal control codes are not awaiting signatures of
the same user at the same time.
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Security properties We are interested in two security properties — the se-
crecy of the keys of the TLS-tunnel between honest clients and servers, and the
authentication of users to servers. Our model in ProVerif contains queries for
verifying these two properties. For verifying the secrecy of keys, we have intro-
duced a private free name M. The server process encrypts M with the keys of
the TLS tunnel at the end of each protocol round (at the bottom of Fig. 1) and
makes the resulting ciphertext public. The query asks ProVerif whether M is still
secret.

For the correspondence properties we use the events. An event E is a program
statement that is semantically equivalent to a no-operation, but records that the
program point containing event E has been passed (E has happened). ProVerif
can answer queries of the form “if event E2 has happened, then must the event
E1 also have happened?” In our model, we add an event ServerEnd(U, S, k),
where k is the key for the TLS-tunnel between S and C, to the end of the server
process, after it has accepted that user U has been authenticated. We also add
an event UserEnd(U, S, k) at the point where the user has completed all of his
steps to be accepted by the server — at the point where the user must enter his
PIN to the phone. The user process does not normally have the key k. Therefore
the client process will send k to the user process, too. The query asks whether
the event ServerEnd(U, S, k) implies UserEnd(U, S, k).

Both properties are easily invalidated if the user is dishonest. Hence the server
performs the actions for both properties (publishing the encryption of M , and
performing the event ServerEnd) only if the user is honest. The user is honest if
the server can receive his name over the private channel for honest user names
(see the description of user, client application and phone processes above).

4 Verification results

The Mobile-ID protocol, as we have modeled it in Sec. 3, following the security
model of Sec. 2.1 is deemed secure by ProVerif — the correspondence property
holds and the message M cannot be found by the attacker. Still, this only reflects
an in some sense “ideal” situation. Let us now consider the protocol where certain
things go wrong with respect to the base security model.

4.1 Attacker controls DigiDocService

DigiDocService is a mediator of messages, helping the protocol to proceed. It
would be unnatural if the security of the protocol depended on its actions. It is
straightforward to model DigiDocService being under adversarial control — we
make public its secret key skD, as well as the channel between it and the mobile
operator.

Being under adversarial control, the DigiDocService is expected to look for
collisions in control codes for challenges. As it can fix the second half of the
challenge, we expect that DigiDocService desires to solve the problems of the
following form: given c and r1, find r2 so that cc(r1‖r2) = c. This is a reasonably
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solvable problem, and we add a clause to the definition of TestCCEq stating its
solvability. Namely, we introduce a binary message constructor postc and state
that TestCCEq((r1‖postc(c, r1)), c) holds.

ProVerif finds an attack violating both security properties. This attack should
not even be so surprising, because the construction of the signature sigskU

(r1‖r2)
violates certain prudency criteria for the construction of cryptographic protocols
[18, Ch. 11]. If the adversary wants to masquerade as U to a server S then it
waits until U wants to contact some server S′, and proceeds as follows:

– A contacts S and performs the TLS handshake with it. At the same time,
U is performing the TLS handshake with S′.

– A identifies itself to S as U . S contacts DigiDocService D (under control of
A), performs the TLS handshake with it and forwards it the name U (and
P ) together with its own name S̃ (including the additional message m) and
its half of the challenge r1. At the same time, U identifies itself to S′, which
also performs the TLS handshake with D and forwards to it the names U

and P , its own name S̃′ and the half of the challenge r′1.
– The adversary (as D) constructs r2 and r′

2
so, that cc(r1‖r2) = cc(r′

1
‖r′

2
).

Let c be this control code. The adversary (as D) sends c back to S and S′.
It also sends S̃′, P , and r1‖r2 to the mobile operator, which forwards them
to P .

– The server S′ sends c back to U . The phone P shows S̃′ to the user U . The
user agrees that it intended to contact S′. The phone also shows the control
code of r1‖r2 to the user. This happens to equal c.

– The user enters his PIN to the phone and the phone signs r1‖r2. This signa-
ture is forwarded to S (via the mobile operator and the adversary posing as
DigiDocService), and S accepts the connection with A as coming from U .

Note that here the adversary only controls D, and not any other parties. There-
fore this is a very powerful attack.

The attack succeeds even if the collisions for control codes were impossible
to construct. Impossibility of collisions means that the control codes must be
so much longer (at least 40-50 decimal places) that it would seriously degrade
the usability of the system. In this case, the attack is possible if S′ is under
adversarial control. Compared to the described attack, we now just take r′1 = r1

and r′
2

= r2, and we do not have to look for collisions.

A prudent protocol design guideline says that when constructing a signature,
let the name of the intended verifier be a part of the signed message. This
guideline has not been followed in the design of the Mobile-ID protocol. We
could modify the protocol by letting P include the name S under the signature
it generates, and subsequently verifying that a correct name has been included.

This change still does not fix the protocol, but now the original attack suc-
ceeds only if S = S′. In other words, the user U initiates one session with the
server S and the attacker initiates a different session at the same time. The ad-
versary (in the role of D) again finds r2 and r′2 so that there is a collision in the
control codes. The modified protocol might be secure if a server does not allow
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the same alleged user to run two sessions in parallel. Unfortunately, we do not
know of a simple means to model such restriction in ProVerif.

ProVerif deems the protocol secure if both modifications (no control code col-
lisions and server name under signature) are made. To ensure that adversarially
controlled DigiDocService does not generate control code collisions, the server
itself should generate the whole challenge. In terms of Fig. 1, r2 should be the
empty string and r1 should be long enough to be unpredictable. The server must
also make sure to not issue challenges with the same control code for parallel
sessions of allegedly the same user. It goes without saying that the control code
CC1 sent to the user via his client application must be computed by the server,
not the DigiDocService.

4.2 Attacker partially controls the client

One of the goals of the Mobile-ID protocol was to reduce the effect that a com-
promised client machine might have on the security of authentication. Clearly,
if the adversary has completely taken over the client computer, then it knows
the keys for the TLS-tunnel between the client and the server and can listen
and speak on behalf of the user. Still, even in this case the adversary cannot
contact a server S on behalf of a user U while the user U remains completely
passive: ProVerif claims that even in this case the event ServerEnd(U, S) implies
the event UserEnd(U, S) (note that we do not include the key for the TLS-tunnel
in the arguments of these events) and moreover, the correspondence is injective:
for each action of the user (instructing the phone to sign a challenge), the ad-
versary can start at most one session with the server. To model in ProVerif that
the adversary controls the client machine, we make public the secret that this
process uses: the channel between the client application and the user.

A keylogger does not have to take over the whole machine in order to cause
harm (record the PIN of the ID card). A similarly interesting case for the Mobile-
ID protocol is, when the malware has not taken over the whole machine, but can
influence how the control code is shown to the user. This case models malware
that can redraw the screen. This change is simple to model — in Fig. 1, the
value CC1 is received by the user U not from C, but from public network.

ProVerif finds, that if the adversary controls the value of CC1 as presented
to U , then the protocol is insecure. If the adversary A wants to masquerade as
the user U to a server S, then it proceeds as follows.

– Wait until U himself contacts S. As we explained in the first paragraph, it
is impossible to initiate a session (as U) with S, unless U himself also wants
to contact S.

– Start a session with S, claiming to be U . Let both sessions proceed to the
point where DigiDocService has constructed control codes c (for U) and c′

(for A) and sent them to S and to P .
– The adversary makes sure that the challenge with the control code c′ reaches

P first. This can be achieved with right timing. The adversary also makes
sure that the second control code is not shown to the user before it has
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accepted c′. By our experimentations with DigiDocService3, this condition
trivially holds — a mobile phone does not hint of the existence of a second
incoming control code before the user has taken action on the first one.

– The adversary receives c′, the client application receives c. The dishonest
client application now contacts the adversary, learns c′, and shows it to the
user instead of c. The user confirms that the client application and the phone
show the same control code c′ and instructs the phone to sign the challenge.
This challenge corresponds to the session between A and S.

The attack should be avoidable if the server does not start several sessions with
the same user in parallel. Indeed, if a session has ended and the user has gen-
erated the event UserEnd(U, S) then the server has also generated the event
ServerEnd(U, S) and because of injective correspondence, this event UserEnd(U, S)
cannot be used to match a different ServerEnd(U, S) taking place later (presum-
ably because of adversarial activity).

4.3 User confused regarding the server names

An important class of attacks are semantic attacks where the adversary tries to
convince the user that a wrong statement holds. One example of such attacks
are the phishing web-sites masquerading as legitimate ones. They typically have
names similar to the one they are trying to masquerade. Authentication using an
ID card is relatively immune to such attacks — while an attacker can obviously
make the user connect to a fake server (if the user does not notice its fakeness),
this cannot be used to masquerade the user to a legitimate server.

We studied how well the Mobile-ID protocol fared against such attacks. We
assumed that there is an adversarially controlled server S′ that is hard to distin-
guish from a legitimate server S. It turned out, that a classical man-in-the-middle
attack is possible, allowing the adversary to masquerade as U to S. In this at-
tack, U connects to S′ thinking it is S, while the adversary (masquerading as
U) connects to S. The server S contacts D and the phone of the user receives
the challenge and the information S̃ identifying the server. The control code is
also sent from D back to S, which forwards it to A, which forwards it to U as
S′. The phone shows S as the name of the server, the user is connected to S′,
but we assume that he does not notice the difference. The control codes shown
by the phone and the client application are the same. The user hence tells the
phone to sign the challenge and S will accept A as U . The attack works even if
the name of the server is included in the signed message.

4.4 Server chooses the control code

When server S contacts the DigiDocService D, it sends it not only the name S,
but also the up to 40 characters long message m; both S and m will be shown to
the user on his phone. A typical picture of the phone screen is shown in Fig. 2a.

3 http://www.sk.ee/DigiDocService/DigiDocService 2 3.wsdl
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Here S equals “TheBank” and m equals “Enter?”. The next lines have been
produced by software running inside the phone (actually, inside the SIM-card).
They inform the user that the control code of the challenge is 1234.

Ok Cancel

Control code:

2345

Enter?

Testing

(a) (b) (c)

TheBank

Control code:

1234

Ok Cancel

TheBank

Enter?

Control code:

2345

Ok Cancel

TheBank

Enter?

Fig. 2. Typical screen for comparing the control code

The possible values for S have been enumerated by the DigiDocService D and
D also weakly authenticates S by its IP-address. The server named “Testing”
may connect from any IP-address. We have experimented with DigiDocService
and various values of m, using this server identity. We have discovered that if m

contains embedded newlines, then these are shown as line breaks on the phone
screen. E.g., if m equals “TheBank\nEnter?\n\nControl code:\n2345\n” then
the phone screen (for certain models) will look as shown in Fig. 2b. Here the
entire message shown by the phone has not fit on the screen and a scroll bar
has appeared on the right-hand side. If we scroll down, we see the control code
that has been computed by the phone itself and may be different from 2345.
Depending on the model of the phone, this scroll bar may be rather hard to
notice.

We believe that with IP-spoofing, we can cause the picture in Fig. 2c to
appear on the phone screen. Also, if the adversary controls either TheBank or
the DigiDocService (as we have argued before, this case has to be analyzed, too)
then it is straightforward to make this picture appear, as the DigiDocService
can control which S and m are sent to the phone. Hence we conclude that a
malicious server or DigiDocService can (under certain circumstances) control
which four-digit number is shown to the user as the control code.

We have modeled this scenario with ProVerif. The necessary modifications
involve several parts of the model, as the fake control code is inserted at the
server, and then travels to DigiDocService, mobile operator, phone, and the
user. At the same time, the changes are rather straightforward.

We have considered the case where the DigiDocService is honest, but a ma-
licious server is capable of entering a fake control code, eventually shown to the
user by the phone. Somewhat surprisingly, the protocol is still deemed secure.
One may conjecture that the user might not need to perform the equality check
of control codes at all. Of course, this is not so; there exists a straightforward
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parallel attack: both U and A connect to S, both claim to be U , the challenge
for A’s session is the first to arrive at U ’s phone, U does not check the equality
of control codes and causes this challenge to be signed. Note that U still checks
that the phone shows the name of the server S (the opposite is considered in
Sec. 4.3). The reason why there is no attack if a malicious server can pick a fake
control code, is that to use this capability, the attacker has to set up a malicious
server S′ whose name will be shown to and rejected by the user.

In Sec. 4.1 we gave some suggestions to handle a dishonest DigiDocService.
We have checked the security of our modifications (server name under signature,
challenge generated entirely by the server, no control code collisions) if a server
or the DigiDocService can also choose the control code that the phone shows.
ProVerif gives us an attack. The attack is similar to the attack presented in
Sec. 4.2. The only difference is that now the attacker changes the control code
shown by the phone, not the control code shown by the client application. Again,
the attack should not work if the server does not start several sessions with the
same user in parallel.

5 Proposed improvements

We suggest the following modifications to the Mobile-ID protocol to increase its
security:

– When the phone signs the challenge r1‖r2 for the server S, the signed message
should not be sigskU

(r1‖r2), but sigskU
(r1‖r2, S). The presence of S under the

signature must be checked by parties receiving that signature.
– r2 should be a constant, most naturally the empty string. The control code

CC1 should be computed by S, not D. The server S should generate the
challenges r1 in such a way that the sessions of the same alleged user U have
challenges with different control codes.

We also suggest that the user interface of the phone should be modified in a
way that the control code is always in the same place at the phone screen, and
always visible when the message is first shown to the user. This can be achieved
by showing the control code before the message m, or by appropriately filtering
m. Users should also be educated to look for the control code in a certain place.

6 Summary

Above, we have considered attackers of various strength. They all had the ability
to initate protocol sessions; they controlled certain users and servers and had
no access to the phones of the users. Their strength varied along the following
dimensions:

– d1 — control over the DigiDocService or mobile operator (possible values: 0
— no control, 1 — full control);
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– d2 — control over the client application (0 — no control, 1 — can change
displayed CC, 2 — full control);

– d3 — ability to confuse the user about server names (0 — no, 1 — yes);
– d4 — ability for a compromised server to pick the control code shown on

phone screen (0 — no, 1 — yes).

We see that the abilities of attackers may include the corruption of any party in
Fig. 1, except the phone P , taking the advantage of the user interface issues in
both C and P , and phishing attacks. We have not considered the attacker gaining
significant control over the phone. Indeed, any reasonable attack model would
allow the adversary to learn the PIN entered from the keypad of the phone; the
knowledge of the PIN gives the adversary full capabilities of masquerading as
the user U . We have also not considered the user’s failure to compare the control
codes shown by the client application and the phone, but this is subsumed by
the dimension d2. To summarize, we believe that we have not left any significant
attack vectors without consideration.

We have proposed two mutually independent protocol modifications. These
propositions introduce dimensions on whether they have been taken into account.

– d5 — is the name of the server included under the signature of the challenge?
(0 — yes, 1 — no)

– d6 — is the half r2 of the challenge empty? (0 — yes, 1 — no)

Another dimension is introduced by an honest server’s behaviour when allegedly
the same user attempts to authenticate himself several times in parallel:

– d7 — does S allow parallel sessions with the same U? (0 — no, 1 — yes,
but picks challenges with different control codes, 2 — yes) Note that d7 = 0
means that the server lets a session with a user U to time out before agreeing
to participate in a different session with U . This may make denial-of-service
attacks too simple.

Let Li
j denote the predicate dj ≤ i. Our analysis shows that the security prop-

erties described in the end of Sec. 3 hold if

(L0

1
∨ (L0

5
∧ L0

6
∧ L1

7
)) ∧ L1

2
∧ (L0

2
∨ L0

7
) ∧ L0

3
∧ (L0

4
∨ L0

1
∨ (L0

5
∧ L0

6
∧ L0

7
)) .

Indeed, the justification for each of the conjuncts is the following:

– We showed in Sec. 4.1 that an adversarially controlled DigiDocService is
capable of breaking the protocol unless the modifications stated in Sec. 5
were introduced.

– If the adversary has full control over the client application, then it can take
over the connection between C and S.

– In Sec. 4.2 we showed that if the adversary can change the control code
shown to the user by the client application, then there exist an attack that
requires parallel sessions with the same server.

– In Sec. 4.3 we argued that the mobile-ID protocol does not protect against
phishing attacks, even if we implement the modifications in Sec. 5.
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– In Sec. 4.4 we showed that the capability for a malicious server to choose the
control code displayed by the phone is not enough for breaking the security
properties, but if the DigiDocService is also under adversarial control then
the modifications of Sec. 5 no longer suffice to preserve the security, but
parallel sessions between the same alleged user and server must be ruled
out. Hence we suggested in Sec. 5 to make sure that L0

4
holds.

7 Conclusions

We have analyzed the security of the Mobile-ID protocol introduced by an Es-
tonian CA and Estonian and Lithuanian mobile operators. We have discovered
some weaknesses in the protocol which manifest under strong adversarial models.
Despite these weaknesses, we believe that the usage of the protocol can continue
in the immediate future. Indeed, we believe that the attack vectors included in
those adversarial models either will not materialize in the immediate future, or
their materialization would allow attacks of similar success against other au-
thentication methods, sometimes including ID card based methods. Still, the
weaknesses should nevertheless be fixed with high priority.

Our analysis also shows that compared to other methods of authentication
(passwords, one-time passwords, PIN-calculators), Mobile-ID does not offer sig-
nificant protection against user errors or weaknesses of the client application. We
conclude that it is too premature to state that modulo negligible risks, Mobile-ID
is at least as secure as authentication with ID card [21].
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