
Implementing Cryptographic Primitives in the
Symbolic Model?

Peeter Laud

Cybernetica AS and Tartu University
peeter@cyber.ee

Abstract. When discussing protocol properties in the symbolic (Dolev-
Yao; term-based) model of cryptography, the set of cryptographic primi-
tives is defined by the constructors of the term algebra and by the equa-
tional theory on top of it. The set of considered primitives is not easily
modifiable during the discussion. In particular, it is unclear what it means
to define a new primitive from the existing ones, or why a primitive in the
considered set may be unnecessary because it can be modeled using other
primitives. This is in stark contrast to the computational model of cryp-
tography where the constructions and relationships between primitives
are at the very foundation of the theory. In this paper, we explore how
a primitive may be constructed from other primitives in the symbolic
model, such that no protocol breaks if an atomic primitive is replaced by
the construction. As an example, we show the construction of (symbolic)
“randomized” symmetric encryption from (symbolic) one-way functions
and exclusive or.

1 Introduction

One of the main tasks of cryptographic research is the building of secure and
efficient protocols needed in various systems, and the construction of primitives
that these protocols need. In the computational model [12, 21] of cryptography,
where messages are modeled as bit-strings and the adversary as a probabilistic
polynomial-time adversary, these primitives are constructed from simpler primi-
tives, all the way down to certain base primitives (one-way functions or trapdoor
one-way functions). The security properties of constructed primitives are derived
from the properties of the base primitives. In the further development, only de-
rived properties are important, making the whole approach modular (in theory).

The research in the symbolic model of cryptography (also known as the
Dolev-Yao model, or perfect cryptography assumption) [10] has so far almost fully
concentrated on the construction and analysis of cryptographic protocols. The
messages are modeled as elements of some term algebra where the constructors
of that algebra are seen as abstractions of cryptographic algorithms. In these

? Supported by Estonian Science Foundation, grant #8124, by European Regional
Development Fund through the Estonian Center of Excellence in Computer Science,
EXCS, and by EU FP7-ICT Project HATS

treatments, the set of constructors has been fixed, causing the set of primitives
(in our treatment, a primitive is a set of cryptographic algorithms) also to be
fixed. There is no notion of implementing a primitive using some already existing
primitives. This can hinder the generalization of certain kinds of results. For
example, as stated, the impossibility result of [13] only applies to hash functions
and XOR operations.

Another obvious application of our result is the modularization of security
proofs of protocols in the symbolic model. While the symbolic model is generally
more amenable to automatic analysis, certain commonly-used operations (exclu-
sive or, and to lesser extent, Diffie-Hellman computation) are only handled with
difficulty. Certain other operations (addition and multiplication, equipped with
the theory for rings) are not handled at all. If these primitives are only used in a
certain manner (e.g. to define the session key) then the construction of messages
containing the uses of those primitives can be seen as a primitive itself, which
may have properties that are simpler to handle by the automatic analysis.

The main difficulty in defining that a primitive has been securely imple-
mented by a set of messages with variables is the difference in signatures. In
general, the implementation satisfies different (more) equalities than the primi-
tive. Hence the set of meaningful operations is richer and a simple observational
equivalence is not a useful definition of security. In this paper, we give a suitable
definition that in our opinion precisely captures the intuition of the equivalence
of processes using the primitive operation and the processes using the implemen-
tation. We propose a technique for proving the security of the implementation.
The technique does not require the prover to universally quantify over processes
and contexts, but just provide an observationally equivalent process to a specific,
the “most powerful” attacker against processes using the implementation of the
primitive. We apply the technique by providing a secure implementation for the
randomized symmetric encryption primitive in terms of one-way hash functions
and exclusive or, thereby generalizing our impossibility result [13].

The paper is structured as follows. Sec. 2 gives the necessary background on
process calculi, introducing the applied pi-calculus that we will be working with.
Sec. 3 provides the main definitions and proof techniques, while Sec. 4 applies
them to the randomized symmetric encryption primitive. Finally, Sec. 5 reviews
related work and Sec. 6 concludes.

2 Applied pi-calculus

Let us recall the syntax and semantics of the applied pi-calculus [2], in which
our results will be stated. We have a countable set Vars of variables, ranged
over by x, y, . . ., and a countable set Names of names, ranged over by m,n,
We let u, v, . . . range over both names and variables. Additionally, we have a set
Σ of function symbols, ranged over by f, g, . . ., each with a fixed arity. Func-
tion symbols abstract cryptographic and other operations used by protocols. In
the current paper, more often occurring function symbols besides tupling and
projections are the ternary randomized encryption Enc(R,K,X) and binary de-

cryption Dec(K,Y), as well as the unary one-way (or hash) function H(X) and
the binary XOR (written using infix notation) X ⊕ Y together with its nullary
neutral element 0. A term in signature Σ, ranged over by M,N, . . . is either a
name, a variable, or a function application f(M1, . . . ,Mk), where the arity of f
is k. Let TΣ(Vars ∪Names) denote all terms over the signature Σ, where the
atomic terms belong to the set Vars ∪Names.

An equational theory E is a set of pairs of terms in signature Σ. It defines a
relation =E on terms which is the smallest congruence containing E and is closed
under the substitution of terms for variables and bijective renaming of names
[20]. Equational theories capture the relationships between primitives defined in
Σ. The properties of tupling are captured by the equations πni ((x1, . . . , xn)) =E

xi for all i and n (we let πni denote the i-th projection from an n-tuple). Encryp-
tion and decryption are related by Dec(k,Enc(r, k, x)) =E x. The XOR-operation
has its own set of equations capturing commutativity (x⊕ y =E y⊕ x), associa-
tivity ((x⊕y)⊕z =E x⊕(y⊕z)), unit (x⊕0 =E x) and cancellation (x⊕x = 0).
No equations are necessary to capture the properties of H. If E is clear from the
context, we abbreviate M =E N as M = N .

Processes, ranged over by P,Q, . . ., extended processes, ranged over byA,B, . . .,

and their structural equivalence are defined in Fig. 1. We use −→x and
−→
M to de-

note a sequence of variables or terms. In the if-statement, the symbol = denotes
equality modulo the theory E, not syntactic equality. The extended process
{M/x} represents a process that has previously output M which is now available
to the environment through the handle x. Variable x is free in {M/x}. As indi-
cated by the structural equivalence, {M/x} can replace the variable x with M
in any process it comes to contact with under the scope of νx. Here A[x← M]
denotes the process A where all free occurrences of the variable x have been re-
placed with the term M , without capturing any free variables in M . If {M/x} is
outside the scope of νx then we say that the variable x is exported. The domain
of an extended process is the set of variables it exports. An extended process is
closed if it exports all its free variables. The internal reduction relation describes
a single step in the evolution of a process. As usual, we consider only well-sorted
processes: all variables and names have sorts and all operations (conditional
checking, communication, substitution) must obey them. In our sort system,
there is a sort Data; the inputs and output of any function symbol have this
sort. For any sequence of sorts T1, . . . , Tl there is also a sort C〈T1, . . . , Tl〉 for
channels communicating values of that sort. Let Proc(Σ) and Ctxt(Σ) denote
the sets of all extended processes and evaluation contexts with function symbols
from the set Σ. We refer to [2, 20] for details and justifications.

In this paper we want to state that two processes, where the second has
been obtained from the first by replacing in it certain term constructors with
their “implementations”, are somehow indistinguishable. Observational equiva-
lence, denoted ≈ is the standard notion capturing indistinguishability by all en-
vironments. For defining it, we denote with A ⇓ c the existence of an evaluation
context C not binding c, a term M and a process P , such that A→∗ C[c〈M〉.P].

P ::= 0 | P |Q | !P | νn.P | if M = N then P else Q | u(−→x).P | u〈
−→
M〉.P

A ::= P | A |B | νn.A | νx.A | {M/x} C ::= [] | A | C | C |A | νn.C | νx.C

A ≡ A | 0 A | (B | C) ≡ (A |B) | C A |B ≡ B |A !P ≡ P |!P
νn.0 ≡ 0 νuνv.A ≡ νvνu.A A | νu.B ≡ νu.(A |B) if u not free in A

νx.{M/x} ≡ 0 {M/x} |A ≡ {M/x} |A[x←M] {M/x} ≡ {N/x} if M =E N

c〈−→x 〉.P | c(−→x).Q→ P |Q if N = N then P else Q→ P

if M = N then P else Q→ Q for ground terms M and N , where M 6=E N

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

A→ B
C[A]→ C[B]

Fig. 1. Applied pi calculus processes and extended processes, evaluation contexts,
structural equivalence ≡, and internal reduction → [20]

Definition 1. The observational equivalence is the largest symmetric relation
R over closed extended processes with the same domain such that A R B implies
(a) if A ⇓ c for some c, then B ⇓ c; (b) if A→∗ A′, then B →∗ B′ and A′ R B′

for some B′; (c) C[A] R C[B] for all closing evaluation contexts C. [20]

3 Secure Implementation of Primitives

We start by defining the notions of cryptographic primitive and implementing a
cryptographic primitive. A cryptographic primitive Prim is a subset of Σ, e.g.
the randomized symmetric encryption primitive is R-ENC = {Enc,Dec, e r, isenc}.
Beside the encryption and decryption function we also have a unary randomness
extraction function with the equality e r(Enc(r, k, x)) =E r and the unary type
verifier with the equality isenc(Enc(r, k, x)) =E true, where true is a nullary
operation. Many implementations of symmetric randomized encryption (in the
computational model) allow the randomness used in encryption to be recovered
from the ciphertext, and our intended implementation has the same property.
The possibilities it gives to the adversary must be reflected at the primitive level.
Another reason for including e r and isenc in R-ENC is, that the security proof
of our implementation in Sec. 4 makes significant used of these symbols.

An implementation assigns to each function symbol f ∈ Prim a term f i overΣ
with no free names and with free variables x1, . . . , xarity(f). The implementation
defines a mapping (a second-order substitution) tr from terms to terms, replacing
each occurrence of each f ∈ Prim in the term with f i. Formally,

tr(u) = u

tr(f(M1, . . . ,Mn)) = f(tr(M1), . . . , tr(Mn)) if f 6∈ Prim

tr(f(M1, . . . ,Mn)) = f i[x1 ← tr(M1), . . . , xn ← tr(Mn)] if f ∈ Prim.

To make the translation well-behaved with respect to the equational theory
E we require tr(M) =E tr(N) for each (M,N) ∈ E. The mapping tr can
be straightforwardly extended to processes, extended processes and evaluation
contexts. When defining secure implementations, we want to state that A and
tr(A) are somehow indistinguishable for all extended processes A.

Example 1. We can give the following implementation to the randomized sym-
metric encryption primitive R-ENC. Let eq? be a ternary function symbol. Let
eq?(x, x, y) =E y be a pair of terms in the equational theory E. Let the imple-
mentation of R-ENC be

Enci = (x1, H(x2, H(x2, x1, x3))⊕ x3, H(x2, x1, x3))

Deci = eq?(H(x1, π
3
1(x2), H(x1, π

3
3(x2))⊕ π3

2(x2)), π3
3(x2), H(x1, π

3
3(x2))⊕ π3

2(x2))

e ri = π3
1(x1)

isienc = eq?((π3
1(x1), π3

2(x1), π3
3(x1)), x1, true)

(recall that the arguments of Enc were the formal randomness x1, the key x2 and
the plaintext x3, while the arguments of Dec were the key x1 and the ciphertext
x2). The application of H to several arguments denotes the application of H to
the tuple of these arguments.

Our implementation of Enc(r, k, x) is similar to the OFB- or CTR-modes of
operation of block ciphers [11]. The randomness r (the initialization vector IV)
is included in the ciphertext and used, together with the key k, to generate a
random-looking sequence which is then reversibly combined with the plaintext x.
Hence the result of the OFB- or CTR-mode can be modelled as (r,H(k, r)⊕x).
Formal encryption also provides integrity of the plaintext. Thus we add the
third component H(k, r, x) as a formal message authentication code. Finally, we
note that if the randomness r is reused (this case is ruled out in computational
definitions, but in this paper we are considering the most general way of using the
primitives), then the adversary is able to find x⊕x′ from the implementations of
Enc(r, k, x) and Enc(r, k, x′) by XOR-ing their second components. Such recovery
of x⊕x′ is not possible with primitive Enc. We rule out the reuse of randomness
by making it depend also on the key and the plaintext — we replace r in the
second component H(k, r)⊕ x by H(k, r, x). In this construction, similarities to
the resettable encryption [22] can be seen. But the use of H(k, r, x) in two roles
seems to be novel to our construction.

The decryption Dec(k, y) recovers the plaintext by extracting H(k, r, x) from
y, XOR-ing the second component of y with H(k,H(k, r, x)), and checking the
authentication tag.

The only pair in E relating Enc and Dec to other primitives (or each other)
is Dec(k,Enc(r, k, x)) =E x. It is simple to verify that Deci(k,Enci(r, k, x) =E x.
Also, obviously e ri(Enci(r, k, x)) =E r and isienc(k,Enci(r, k, x)) =E true. The
implementation of isenc is unsatisfactory because it declares all triples to be
ciphertexts, but in the following we’ll see how to improve it.

Defining the secureness of the implementation as A ≈ tr(A) for all extended
processes A immediately leads to problems. Consider e.g. the following process

νrνkνx.(c〈Enc(r, k, x)〉|c(y).if y = (π3
1(y), π3

2(y), π3
3(y)) then PImpl else PPrim) .

(1)
It generates a ciphertext and then proceeds to check whether it is a triple or
not. A triple means that we are dealing with the implementation, while a non-
triple is a sign of using primitive encryption. Clearly, we have to restrict the
processes A if we want to have a meaningful definition. There should be a set of
function symbols Σfb ⊆ Σ that it is forbidden to apply. These function symbols
express the “internal details” of the implementation of the primitive. A process
just using the primitive should have no need to use them. Denote Σok = Σ\Σfb.

Example 2. It is unreasonable to restrict A from constructing and decomposing
triples. We thus introduce (̄·, ·, ·̄) as the tagged [9, 6] version of tripling and H̄ as
the tagged version of hashing (these can be thought of as normal operations with
one extra argument that is fixed as a constant that is used nowhere else). We use
these operations to implement R-ENC. The use of these operations, as well as
the projections π̄1, π̄2 and π̄3 from tagged triples, should be unnecessary for any
process A whose security we care about (and for which we desire A ≈ tr(A)).

Continuing our running example, we redefine

Enci = (̄x1, H̄(x2, H̄(x2, x1, x3))⊕ x3, H̄(x2, x1, x3))̄

Deci = eq?(H̄(x1, π̄1(x2), H̄(x1, π̄3(x2))⊕ π̄2(x2)), π̄3(x2), H̄(x1, π̄3(x2))⊕ π̄2(x2))

e ri = π̄1(x1)

isienc = eq?((̄π̄1(x1), π̄2(x1), π̄3(x1))̄, x1, true)

The forbidden set of function symbols is Σfb = {H̄, π̄1, π̄2, π̄3, (̄·̄)}. The newly
introduced symbols are related to each other by π̄i((̄x1, x2, x3)̄) =E xi. No other
(M,N) ∈ E contains those function symbols. We see that the tagging of triples
induces the tagging also for encryptions.

In the definition of observational equivalence, the usage of function symbols
in Σfb has to be restricted in evaluation contexts, too, or the test (1) can still
be performed in cooperation with the process A (generating the ciphertext) and
the context (testing whether it is a tagged triple). We see that the contexts must
also be translated — if A is enveloped by C[], then tr(A) should be enveloped
by tr(C)[]. This models the fact that both A and C implement the primitive
Prim in the same manner (otherwise they would be different primitives). Thus
we modify the notion of observational equivalence as follows.

Definition 2. The observational equivalence modulo implementation, denoted
≈tr , is the largest relation R over closed extended processes with the same domain
such that A R B implies
1. A ⇓ c if and only if B ⇓ c, for all channel names c;
2. if A→∗ A′, then there exists a process B′, such that B →∗ B′ and A′ R B′;

3. if B →∗ B′, then there exists a process A′, such that A→∗ A′ and A′ R B′;
4. C[A] R tr(C)[B] for all closing evaluation contexts C ∈ Ctxt(Σok)

While we can show that A ≈tr tr(A) for all extended processes in the random-
ized symmetric encryption example, the relation ≈tr also does not satisfactorily
capture the meaning of secure implementation. Namely, the context is restricted
in the operations it can perform; as it cannot use the function symbols in Σfb, it
cannot attack the implementation of the cryptographic primitive. We would like
to have a simulation-based definition — for any attacker D attacking tr(A) there
is an attacker S attacking A, such that A |S and tr(A) |D are indistinguishable
[7, 17]. This motivates our definition of secure implementation.

Definition 3. Let Σ be a signature and E an equational theory over it. An im-
plementation of a cryptographic primitive Prim ⊆ Σ = Σok ∪̇Σfb with forbidden
symbols Σfb is secure if for any closed process A ∈ Proc(Σok) and any closed pro-
cess D ∈ Proc(Σ) (the adversary) there exists a closed process S ∈ Proc(Σok)
(the simulator), such that A | S ≈tr tr(A) | D. Here the mapping tr is induced
by the implementation.

The definition captures the notion of tr(A) being at least as secure as A
— anything that the environment tr(C) can experience when interacting with
tr(A), it (as C) can also experience when interacting with A. Hence, if nothing
bad can happen to C when running together with A, then nothing bad can
happen to tr(C) when running together with tr(A). The first can be established
by analyzing A (and possibly C), without considering the implementation details
of the cryptographic primitive.

An immediate consequence of the definition is, that the process A we’re trying
to protect does not have to be quantified over.

Proposition 1. Let an implementation of a cryptographic primitive Prim ⊆
Σ = Σok ∪̇Σfb with forbidden symbols Σfb be given; let the mapping tr be induced
by the implementation. If for any closed process D ∈ Proc(Σ) there exists a
closed process S ∈ Proc(Σok), such that S ≈tr D, then the implementation is
secure.

Proof. Let A ∈ Proc(Σok) and D ∈ Proc(Σ) be closed processes. By the
premise of the proposition, there exists a closed process S ∈ Proc(Σok), such
that S ≈tr D. Consider the context C[] = A | []. It does not use symbols in Σfb.
Item 4 of the definition of ≈tr implies that A|S = C[S] ≈tr tr(C)[D] = tr(A)|D.

ut

We propose the following method for showing the security of a certain im-
plementation. We rewrite any process D as νcq.(Dctrl |VM) where VM does not
depend on D (it only depends on Σ) and Dctrl does not contain any function
symbols. Intuitively, the process Dctrl sends computation requests to the process
VM (the “virtual machine”) which performs those computations and stores their
results in its database, responding with handles (new names) that the process
Dctrl can later use to refer to them. The channel cq is used for communication

between the two processes. We then construct a process VM sim and show that
VM sim ≈tr VM (this construction is primitive-specific). As tr(Dctrl) = Dctrl, we
deduce that νcq.(Dctrl |VM sim) ≈tr νcq.(Dctrl |VM).

By defining a suitable bisimulation [2], it will be straightforward to show that
D ≈ νcq.(Dctrl | VM). To complete the security proof, we only need refer to the
following proposition that is given here in a somewhat more general form.

Proposition 2. Let A1, A2, B1, B2 be four closed extended processes with the
same domain. If A1 ≈ A2, A2 ≈tr B1 and B1 ≈ B2, then A1 ≈tr B2.

Proof. Co-induction over the definition of ≈tr . Consider the relation ≈ ◦ ≈tr

◦ ≈. It is easy to verify that it satisfies the requirements put on relations R in
Def. 2. Hence (≈ ◦ ≈tr ◦ ≈) ⊆≈tr . ut

The process VM is depicted in Fig. 2. We use syntactic sugar u(=key,−→x).P
for the process u(z,−→x).if z = key then P else u〈z,−→x 〉 that reads a tuple of
values from the channel u and continues as P , with the restriction that the first
component of the tuple must be equal to key. The VM process can “obey” the
commands for putting a new value in the database (input: the value; output: a
handle to it), getting a value from the database (input: handle; output: corre-
sponding value) and applying a function symbol f to the values in the database
(input: handles to arguments; output: handle to result). Here “put”, “get”, and
“compf” for each function symbol f ∈ Σ are fixed free names. The process VM
gives its output on a channel cb that is given together with the input.

VM = νcint.
(
!
(
cq(=put, x, cb).νn.(cb〈n〉 | !cint(=n, co).co〈x〉)

)
|

!
(
cq(=get, x, cb).cint〈x, cb〉

)
|

!
(
cq(=compf , (x1, . . . , xk), cb).νco.cint〈x1, co〉.co(v1) . . . cint〈xk, co〉.co(vk).

νn.(cb〈n〉 | !cint(=n, co).co〈f(v1, . . . , vk)〉)
))

Fig. 2. The process VM

The translation from D to Dctrl = [[D]]fn(D) is given in Fig. 3. The process
[[M]]Nc causes the handle to the value of M to be sent on the channel c if run
in parallel with VM . Here N is a set of names of sort Data that are supposed
to be free in the transformed process. In the transformed process, the values of
the names in N will be the same as in the original process, while the variables
and the names not in N will contain handles to their values in the original

process. The notations c(−→u ,−→c) and c〈
−→
M,−→c 〉 indicate the inputs and outputs

of sort Data and C(. . .), respectively. We see that data is handled by the virtual
machine, while the values of sort “channel” are not affected by the translation.

The bisimilarity relates each closed process P to a process P̂ = ([[P]]N |VM |
Store) where N is a subset of free names in P and Store is a parallel composition

[[u]]Nc = c〈u〉 if u 6∈ N

[[n]]Nc = cq〈put, n, c〉 if n ∈ N

[[f(M1, . . . ,Mk)]]Nc = νc1 . . . νck.
(
[[M1]]Nc1 | · · · | [[Mk]]Nck | c1(x1) . . . ck(xk).cq〈compf , (x1, . . . , xk), c〉

)
[[0]]N = 0

[[P | Q]]N = [[P]]N | [[Q]]N

[[!P]]N = ![[P]]N

[[νu.P]]N = νnνcb.cq〈put, n, cb〉.cb(u).[[P]]N\{u} if u is data

[[νc.P]]N = νc.[[P]]N if c is channel

[[if M = N then P else Q]]N = νcMνcN .
(
[[M]]NcM | [[N]]NcN | cM (xM).cN (xN).

νcb.(cq〈get, xM , cb〉.cb(yM).cq〈get, xN , cb〉.cb(yN).if yM = yN then [[P]]N else [[Q]]N)
)

[[c(u1, . . . , uk,
−→c).P]]N = c(x1, . . . , xk,

−→c).

νcb.cq〈put, x1, cb〉.cb(u1) . . . cq〈put, xk, cb〉.cb(uk).[[P]]N

[[c〈M1, . . . ,Mk,
−→c 〉.P]]N = νc1 · · · νck.

(
[[M1]]Nc1 | · · · | [[Mk]]Nck | c1(x1) . . . ck(xk).νcb.

cq〈get, x1, cb〉.cb(y1) . . . cq〈get, xk, cb〉.cb(yk).c〈y1, . . . , yk,−→c 〉.[[P]]N
)

Fig. 3. Transforming out computations

of processes of the form !cint(=n, co).co〈M〉 associating the names n to values M .
Moreover, the terms occurring in P (except for names in N) must correspond to
names in [[P]]N that are mapped to the same terms by Store. One transition step
of P may correspond to several internal steps of P̂ . The processes at intermediate
steps are also related to P .

4 Security of the Implementation of Randomized
Symmetric Encryption

We have to present a process VM sim, such that VM sim ≈tr VM . The process VM
performs computations on behalf of the processes knowing the channel name cq.
Given handles to values v1, . . . , vk, it returns the handle to value f(v1, . . . , vk),
where f ∈ Σ = Σok ∪̇ Σfb. The process VM sim must respond to the same com-
putation (and put/get) queries, but it may not use the operations in Σfb. These
queries must be handled in some other way.

For the R-ENC primitive, the set Σ of function symbols contains at least
tupling, projections, Enc, Dec and the operations in Σfb outlined in Example 2.
Any other operations must be handled by VM sim, too. In the following, we are
not going to present VM sim as precisely as VM in Fig. 2, but we explain in detail
the operations it performs and appeal to the Turing-completeness of π-calculus
[16] in order to convince ourselves that such VM sim exists.

The process VM sim responds to the same commands as VM in the same
manner (receives a channel for sending its output as part of the input). It keeps
a table Tval of values it has received or constructed. Each entry (row) R in Tval has
the fields “handle” (denoted R.hnd), “value” (denoted R.v) and extra arguments
for bookkeeping (denoted R.args). For the rows R where R.v has been computed
by VM sim after a request to apply a symbol in Σfb, the extra arguments record
that request.

The process VM sim also keeps a second table Tct of ciphertexts it has seen
or constructed. Each row R in this table has the fields R.ct (the ciphertext),
R.snd , R.thd (the second and third component of the ciphertext, considered as
a tagged triple), R.k (the correct key) and R.pt (the corresponding plaintext).
The field ct is a unique identifier for rows in this table. We let Tct[M] denote
the row of the table Tct where the field ct equals M .

The process VM sim handles the commands as follows.
Storing. To a store a value M , the process VM sim generates a new name n and
a new row R in the table Tval with R.hnd = n, R.v = M and R.args = ⊥. If M
is a valid ciphertext (checked by comparing isenc(M) to true) and Tct does not
yet contain a row Tct[M], then this row is added, the field ct is initialized to M
and other fields to ⊥. The command returns n.
Retrieving. To retrieve a value by handle n, the process VM sim locates the row
R of Tval with R.hnd = n, and replies with R.v. If there is no such R, there will
be no answer (This is similar to the behavior of VM).
Computing. To apply a function symbol f to values with handles n1, . . . , nk,
the process VM sim locates the rows R1, . . . , Rk of Tval with Ri.hnd = ni for
i ∈ {1, . . . , k}. If some Ri cannot be located, or if k is different from the arity
of f , there will be no answer. Otherwise, VM sim generates a new name n and a
new row R in Tval with R.hnd = n, and replies with n. Before replying, it also
defines R.v and R.args as follows.

– If f ∈ Σok, then R.v = f(R1.v, . . . , Rk.v) and R.args = ⊥. Additionally,

• If the operation was Enc and the row Tct[R.v] was not present, then it
is added (and the field ct initialized with R.v). The field k of this row is
set to R2.v and the field pt to R3.v.

• If the operation was Dec, the row Tct[R2.v] exists (recall that ciphertext
was the second argument of Dec), and R1.v was the correct key (checked
by comparing Enc(e r(R2.v), R1.v, R.v) to R2.v) then the field k of this
row is updated to R1.v and the field pt is updated to R.v.

– If f ∈ Σfb and there exists a row R′, such that R′.args indicates that the
same computation query has been made to VM sim before (i.e. R′.args names
the operation f and the arguments R1.v, . . . , Rk.v), then let R.v = R′.v and
R.args = R′.args. In the following cases, we assume that the same query has
not been made before.

– If f is H̄ and the argument R1.v is a triple (x, y, z) then check whether Tct
contains a row Tct[M], where M = Enc(y, x, z). If such row exists, then its
fields k and pt are updated to x and z. If such row does not exist, then it
is created and its fields k and pt likewise set to x and z. If Tct[M].thd is

not ⊥ then VM sim sets R.v to Tct[M].thd , otherwise it generates new names
n′, n̄, sets both R.v and Tct[M].thd to n′, and adds a new row R̄ to Tval with
hnd = n̄, v = n′ and args = (π̄3,M). Next, it generates new names ñ, n̂ and
adds a two new rows R̃, R̂ to the table Tval with R̃.hnd = ñ, R̂.hnd = n̂,
R̃.v = (x,R.v), R̃.args = ⊥, R̂.args = (H̄, R̃.v). If Tct[M].snd is not ⊥ then
VM sim sets R̂.v to Tct[M].snd ⊕ z. Otherwise it generates a new name n′′,
sets R̂.v to n′′ and Tct[M].snd to n′′ ⊕ z, and adds a new row to Tval with
hnd = ⊥, v = n′′ ⊕ z and args = (π̄2,M).
We see that if VM sim is requested to create a value that may serve as the
third component of a ciphertext then this ciphertext will also appear in the
table Tct and the entire row corresponding to it will be initialized. Also, all
entries in that row will also appear in Tval.

– If f is H̄ and the argument R1.v is a pair (x, y) then check whether there ex-
ists a row Tct[M], such that Tct[M].thd = y and x is the correct key for M . If
there is no such row then y cannot have the form H̄(a, b, c); hence VM sim gen-
erates a new name n and sets R.v = n. Otherwise check whether Tct[M].snd
is not ⊥. If this is the case, then set R.v = Tct[M].snd⊕Dec(x,M). Otherwise
generate a new name n′, set R.v = n′ and Tct[M].snd = n′⊕Dec(x,M), and
add a new row to Tval with hnd = ⊥, v = n′⊕Dec(x,M) and args = (π̄2,M).

– If f is H̄ and the argument R1.v is neither a pair nor a triple then generate
a new name n′ and set R.v = n′.

– If f is (̄·, ·, ·̄) then check whether there exists a row Tct[M], such that e r(M) =
R1.v, Tct[M].snd = R2.v and Tct[M].thd = R3.v. If such row exists then
set R.v = M . Otherwise generate new names nk, nx and add a new row
Tct[Enc(R1.v, nk, nx)] to the table Tct. Initialize the field snd of this row to
R2.v and field thd to R3.v. Also set R.v = Enc(R1.v, nk, nx).
We see that the result of applying the symbol (̄·̄) is always a ciphertext. If the
three components would result in an invalid ciphertext, then we generate this
ciphertext using a throw-away key, thereby making its decryption impossible.

– If f is π̄1 then set R.v = e r(R1.v).
– If f is π̄2 and there is a row Tct[R1.v] in Tct and Tct[R1.v].snd is not ⊥, then

let R.v = Tct[R1.v].snd . If Tct[R1.v].snd is ⊥ then generate a new name n′

and let both R.v and Tct[R1.v].snd equal it. If the row Tct[R1.v] does not exist
then R1.v is not a ciphertext, because this fact would have been noticed at
the time when the row R1 was added to Tval. Generate a new name n′ and
let R.v = n′.

– If f is π̄3 then behave similarly to the case f = π̄2.

In all cases of handling a function symbol f from Σfb, the process VM sim sets
the fields args of the newly created row R of Tval to (f,R1.v, . . . , Rk.v), where
R1.hnd, . . . , Rk.hnd were the arguments given to f .

Proposition 3. VM sim ≈tr VM .

Proof (Sketch). Both VM and VM sim maintain a database that maps from
handles to values, update it according to certain rules, and reveal the values
of queried elements. A context C ∈ Ctxt(Σok) trying to distinguish VM and

VM sim (i.e. having a channel c, such that C[VM sim] ⇓ c, but tr(C)[VM] 6⇓ c)
will at some point query for certain elements of the database and then perform
a test (check the equality of two terms built from the queried elements), the
result of which determines whether the communication on c happens. We will
show that at no point in the execution there exists a test that can tell apart
the databases of VM and VM sim. Formally, a test is a pair of test messages
M,N ∈ TΣok

(Names ∪ Refs), where Refs is the set of “references” to the cells
of the database of VM sim. A reference r ∈ Refs can either be n.v, where n is the
handle of a row R in Tval, or Tct[Me].field , where the ciphertext Me identifies a
row in Tct and the value of field ∈ {snd , thd} in this row is different from ⊥. The
context C can access these references by using get-queries, possibly preceded by
a compπ̄2

or compπ̄3
query. The names that a test message may contain are free

names generated by C.
If the context C[] encapsulating VM sim evaluates a test message M , then the

value 〈〈M〉〉sim it learns is obtained by replacing the references to database cells
in M with their actual values, as kept by VM sim. If C[] encapsulates VM , then
it learns the value 〈〈M〉〉real instead, where the reference n.v is replaced with the
value VM associates with the handle n. In this case, the references Tct[Me].snd
and Tct[Me].thd are replaced with π̄2(tr(Me)) and π̄3(tr(Me)), respectively.

Example 3. Suppose that the context C[] issues the following commands: n1 ←
put(r); n2 ← put(k); n3 ← put(x); n4 ← comp(,,)(n2, n1, n3); n5 ← compH̄(n4);
n6 ← comp(,)(n2, n5); n7 ← compH̄(n6); n8 ← comp⊕(n7, n3); and finally n9 ←
comp(̄,,̄)(n1, n8, n5). Through these queries, the handle n9 will correspond to the

ciphertext Enc(r, k, x). Let M = (n9.v, n5.v, Tct[Enc(r, k, x)].thd) and nhash be a
new name generated by VM sim.. Then 〈〈M〉〉sim = (Enc(r, k, x), nhash, nhash) and
〈〈M〉〉real = ((̄r, H̄(k, H̄(k, r, x))⊕ x, H̄(k, r, x))̄, H̄(k, r, x), H̄(k, r, x)).

We show that the following claim holds.
Claim (*) At any step of the computation of VM sim, the equivalence 〈〈M〉〉sim =
〈〈N〉〉sim ⇔ 〈〈M〉〉real = 〈〈N〉〉real holds for all M,N ∈ TΣok

(Names ∪ Refs).
If (*) would not hold for some M , N at some step of VM sim, then we can

show that for some Mprev, Nprev ∈ TΣok
(Names ∪ Refs) the claim (*) would not

hold at the previous step. We will not present the full analysis of cases in this
paper, but as an example, consider the computation step where f is H̄ and
the argument R1.v is a triple (x, y, z). If M and N do not refer to any newly
created entries of Tval or Tct, then we can set Mprev = M and Nprev = N .
Otherwise we obtain Mprev and Nprev by replacing the new entries in M and N
as follows. Let Me = Enc(y, x, z). We consider four possibilities, depending on
whether Tct[Me].thd is defined (1&2) or not (3&4), and whether Tct[Me].snd is
defined (1&3) or not (2&4). Fig. 4 outlines the replacements for references to
possibly new entries in Tct and Tval. An empty cell indicates that the reference
existed before the current computation step, or the row was not created in this
computation step. We refer to the description of VM sim for the meaning of new
rows and definitions of new names. The table in Fig. 4, describing how Mprev

is constructed from M , should be understood as follows: if e.g. M contains the

reference ñ.v, and the cells Tct[Me].thd and Tct[Me].snd are not defined (4th
case), then ñ.v should be substituted with the pair (x, n′), where n′ is a new
name.

ref. replacement

Tct[Me].snd n′′ ⊕ z n′′ ⊕ z
Tct[Me].thd n′ n′

n.v Tct[Me].thd Tct[Me].thd n′ n′

n̄.v n′ n′

ñ.v (x, Tct[Me].thd) (x, Tct[Me].thd) (x, n′) (x, n′)

n̂.v Tct[Me].snd ⊕ z n′′ Tct[Me].snd ⊕ z n′′

Fig. 4. Replacement of new references in simulating H̄(x, y, z)

The replacement gives us Mprev and Nprev , such that 〈〈M〉〉sim = 〈〈Mprev 〉〉sim
and 〈〈N〉〉sim = 〈〈Nprev 〉〉sim. The induction assumption states that 〈〈Mprev 〉〉sim =
〈〈Nprev 〉〉sim if and only if 〈〈Mprev 〉〉real = 〈〈Nprev 〉〉real. The values 〈〈M〉〉real and
〈〈N〉〉real are obtained from 〈〈Mprev 〉〉real and 〈〈Nprev 〉〉real by substituting some
names with (possibly more complex) values. If 〈〈Mprev 〉〉real = 〈〈Nprev 〉〉real then
also 〈〈M〉〉real = 〈〈N〉〉real. If 〈〈Mprev 〉〉real 6= 〈〈Nprev 〉〉real then we also have 〈〈M〉〉real 6=
〈〈N〉〉real, because the structure of substituted values cannot be explored using
only the function symbols in Σok.

In such manner we obtain a bisimilarity modulo implementation between
VM sim and VM even for the case where their entire databases are public. Hence
also VM sim ≈tr VM . ut

5 Related Work

The implementation of cryptographic primitives is a certain case of process re-
finement. While various aspects of refinement have been explored [3, 19, 18],
mostly concerned with the refinement of possible behaviors of a process, the work
reported in this paper has primarily been inspired by the notions of universal
composability [7] and (black-box) reactive simulatability [17], both originating
in the computational model of cryptography. The notion of indifferentiability by
Maurer et al. [15] is similar. These definitions have been recently carried over to
the symbolic model by Delaune et al. [9]. In all these definitions, there is a notion
of two interfaces — one for the “legitimate” user and one for the adversary —
of the process under investigation. Two processes can be equivalent (or in the
refinement relation) only if the user’s interface stays the same. The adversary’s
interface can change and a simulator process is used to translate between differ-
ent interfaces. This is in contrast to our problem, where the user’s interface is
also naturally considered as changing, and the replacement of the primitive with

the implementation is more invasive for the user process. While we think that
the definition of secure implementation could be based on the notion of strong
simulatability by Delaune et al. [9], the setup would be less natural and possibly
the virtual machine process VM has to be included even in the definition.

The question of secure protocol composition is related to the issues of im-
plementability of abstract processes or primitives. In recent work, Ciobâcă and
Cortier [8] give sufficient conditions for the security of composition of two proto-
cols using arbitrary primitives to follow from the security of stand-alone proto-
cols. Interestingly, they have a similar restriction on primitives used by different
protocols — the sets of primitives have to be disjoint.

Regarding the study of implementability of primitives, it is worth mentioning
that in the same paper where they introduced applied pi-calculus, Abadi and
Fournet [2, Sec 6.2] also considered an implementation of the MAC primitive,
inspired from the HMAC construction [5]. Still, the construction is ad hoc and
puts restrictions on how the process uses certain values.

6 Conclusions

We have explored the notion of securely implementing a cryptographic primi-
tive in the symbolic model, and presented definitions that are more general and
convenient to use than definitions that could be obtained from the application
of existing treatment of process refinement and simulation. We have shown the
usefulness of the proposed definition by demonstrating a secure implementation
for the randomized symmetric encryption primitive. Future work in this topic
would involve a systematic treatment of the implementability of common cryp-
tographic primitives from each other. Obtained reductions and simulations may
also give new insights to the security proofs in the computational model. The
first step in this direction would be the analysis of the Luby-Rackoff construction
[14] for constructing pseudorandom permutations (“deterministic” symmetric
encryption, where Enc(k, ·) and Dec(k, ·) are inverses of each other) from ran-
dom functions (modeled in the symbolic model as hashing) and exclusive or.
Another line of future work is the application of the results of this paper, as well
as [9], to the analysis of complex protocols.

References

1. Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, July 17-19, 2010. IEEE Computer Society,
2010.

2. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In POPL, pages 104–115, 2001.

3. Luca Aceto and Matthew Hennessy. Towards action-refinement in process algebras.
Inf. Comput., 103(2):204–269, 1993.

4. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A Universally Compos-
able Cryptographic Library. In Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, Washington, DC, October 2003. ACM Press.
Extended version available as Report 2003/015 of Cryptology ePrint Archive.

5. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

6. Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols:
Tagging enforces termination. In Andrew D. Gordon, editor, FoSSaCS, volume
2620 of Lecture Notes in Computer Science, pages 136–152. Springer, 2003.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

8. Stefan Ciobâca and Véronique Cortier. Protocol composition for arbitrary primi-
tives. In CSF [1], pages 322–336.

9. Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based secu-
rity in the applied pi calculus. In Ravi Kannan and K. Narayan Kumar, editors,
FSTTCS, volume 4 of LIPIcs, pages 169–180. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2009.

10. Danny Dolev and Andrew Chi-Chih Yao. On the Security of Public Key Protocols.
IEEE Transactions on Information Theory, 29(2):198–207, 1983.

11. Morris Dworkin. Recommendation for Block Cipher Modes of Operation. NIST
Special Publication 800-38A, 2001.

12. Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer
and System Sciences, 28(2):270–299, April 1984.

13. Madeline González Muñiz and Peeter Laud. On the (Im)possibility of Perennial
Message Recognition Protocols without Public-Key Cryptography. In 26th ACM
Symposium On Applied Computing, volume 2, pages 1515–1520, March 2011.

14. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373–386, 1988.

15. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Im-
possibility Results on Reductions, and Applications to the Random Oracle Method-
ology. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2004.

16. Robin Milner. Functions as processes. Mathematical Structures in Computer Sci-
ence, 2(2):119–141, 1992.

17. Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive sys-
tems and its application to secure message transmission. In IEEE Symposium on
Security and Privacy, pages 184–, 2001.

18. Steve Reeves and David Streader. Comparison of data and process refinement. In
Jin Song Dong and Jim Woodcock, editors, ICFEM, volume 2885 of Lecture Notes
in Computer Science, pages 266–285. Springer, 2003.

19. Markus Roggenbach. CSP-CASL - a new integration of process algebra and alge-
braic specification. Theor. Comput. Sci., 354(1):42–71, 2006.

20. Mark D. Ryan and Ben Smyth. Applied pi calculus. In Véronique Cortier and Steve
Kremer, editors, Formal Models and Techniques for Analyzing Security Protocols.
IOS Press, 2010.

21. Andrew C. Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, November 1982. IEEE Computer Society Press.

22. Scott Yilek. Resettable public-key encryption: How to encrypt on a virtual ma-
chine. In Josef Pieprzyk, editor, CT-RSA, volume 5985 of Lecture Notes in Com-
puter Science, pages 41–56. Springer, 2010.

