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Summary. The paper presents the formal security analysis of 3GPP
standardized OpenID with Generic Bootstrapping Architecture protocol
which allows phone users to use OpenID services based on SIM creden-
tials. We have used an automatic protocol analyzer to prove key security
properties of the protocol. Additionally, we have analyzed robustness of
the protocol under several network attacks and different threat models
(e.g., compromised OP, user entity). The result shows the protocol is se-
cure against key security properties under specific security settings and
trust assumptions.

1 Introduction

In today’s world, digital identity [26] of a person is important for accessing online
services. At present, most online (i.e., application) service providers maintain
their own identity management systems. This approach requires the user to
register and authenticate separately for each online services. OpenID is one such
solution which can overcome these problems. OpenID (OpenID 2.0 [22]) allows
the user to control his identity information and it also allows access to several
online services (i.e., web sites) with a single identifier [23].

Although OpenID provides an easy way for services to identify the user, the
usability of OpenID is questionable [9]. The user is still required to type username
and password (most common authentication mechanism) at OpenID provider to
prove his identity. Moreover, from the security perspective, humans are not good
at choosing and remembering strong passwords [18]. All these problems suggest
that current OpenID implementations are not user friendly and secure for smart
phone platforms.

For a long time, telecommunication companies have been successfully dealing
with large subscriber identity systems. Telecommunication companies can easily
assert identity attributes to a real person or against a subscriber identity module
(SIM). Using this unique property, 3rd Generation Partnership Project (3GPP)
has defined an internetworking combining OpenID with generic bootstrapping
architecture (GBA). GBA is a mechanism for generating shared keys between
a smartphone and a mobile network operator (MNO) [1]. The generated shared
key is used to authenticate the user to the OpenID provider. This process poses
a number of interesting security questions. We have addressed those questions
by performing a formal security analysis of the protocol. Our analysis concludes
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that the protocol is secure within the specific trust relationships of participating
parties.

To date, a number of security analyses of OpenID have been performed.
Existing analyses concentrate mostly on the (lack of) protection of the HTTP
traffic between the user, the relying party, and the OpenID provider. Sovis et al.
[24] have found that if the HTTP 302 redirection performed by the relying party
and the OpenID provider is onto HTTP (not HTTPS) endpoints, then these
redirections can be changed later by the attacker. Urueña et al. [25] discuss the
information leaks to third parties through HTTP headers. Both Sovis et al. and
Feld and Pohlmann [12] discuss attacks based on lack of authentication of the
OpenID provider. Same kinds of attacks are also discussed by Lindholm [17] who
has performed, by our knowledge, the only tool-supported analysis of OpenID
so far, using the AVISPA protocol analyser [5]. AVISPA is also used to analyze
security properties of EAP AKA [27], which similar to GBA is based on UMTS
authentication and key agreement protocol. In this paper, we are interested in the
interference of OpenID and GBA, hence we do not consider these kinds of issues
and model the protocols in a way that in the OpenID protocol, the necessary
authentication of parties has been performed. In this paper, section 2 describes
the inter-networking of OpenID with GBA and base security assumptions (i.e.,
honesty of parties and security of channels). Section 3 presents the formalization
of the protocol using Proverif [8]. Section 4 presents verification results from
our analyses. Finally, section 5 presents several scenarios based on modified base
security model.

2 OpenID with GBA protocol

This section describes the inter-networking of OpenID with GBA according to
TR 33.924 [2]. The OpenID with GBA protocol consists of the following parties.

– The user U wants to authenticate to a Relying party (RP) using OpenID with
GBA protocol. Our analysis assumes implicit users.

– The user entity (UE) (e.g., a client application combined with GBA modules
in a Smartphone) is actually used to access the RP. Although, the original
protocol [2] contains a separate GBA client module and a UICC1 module, we
consider them as a single user entity. Initially, both the UICC and the HSS2

share a master secret key K.
– The RP contains resources to which the user wants to connect.
– NAF-OP is a combination of OpenID Provider and Network Application Func-

tion. The NAF-OP has a secret key skO which has a public counterpart pkO
that is bound to the NAF-OP by certO. The NAF-OP acts as a trusted party
for the RP.

– The Bootstrapping server (BSF) is a central party of the protocol. It acts as
a trusted party and mediates the application specific user session key between

1 Universal Integrated Circuit Card
2 Home Subscriber System
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the user entity and the NAF-OP. The BSF has a secret key skB which has a
public counterpart pkB that is bound to the NAF-OP by certB .

– The Home Subscriber Server (HSS) shares a master secret with the UICC. The
HSS has a secret key skH which has a public counterpart pkH that is bound to
the HSS by certH . The BSF and the HSS maintain a both way secure channel.

Besides, a Certificate Authority (CA) exists to issue certificates for NAF-OP,
BSF, and HSS. There are also means to verify the validity of the certificate.

2.1 Protocol Description

The protocol is depicted in Fig. 1. The protocol session is initiated by the user
(not shown) deciding to access resources from the Relying party through the user
entity. The user entity provides the user-supplied identifier Ou to the Relying
party. The RP normalizes and discovers [22] an identity provider based on the Ou.
After the discovery, the RP and the NAF-OP establish a shared key using Diffie-
Hellman (DH) association. The DH is performed over a server authenticated TLS
tunnel [10].

The RP sends a redirection message (includes claimed id Oi, relying party
identity Ort, provider identity OPEnd, DH association key HDH to the NAF-OP
through the user entity. The redirection message between the UE and NAF-OP is
sent through a server authenticated TLS tunnel. The NAF-OP uses HTTP digest
authentication [13] for user authentication. According to HTTP authentication,
the NAF-OP sends a HTTP digest challenge to the UE containing a nonce N0

and NAFrealm. To reply this challenge, the UE requires a valid user name and
password. This leads the UE to start the bootstrapping process.

Bootstrapping is a four step process based on HTTP digest AKA [20]. At
first, the UE starts bootstrapping by sending the IMPI3 to the BSF. The BSF,
in turn, creates a two way secure channel with the HSS. The HSS contains
the shared master secret key K and a running sequence number SQN for each
IMPI. The HSS generates RAND: a random number; XRES: a number gener-
ated from one way hash function [6] using K, RAND, and SQN ; CK: a generated
session key for confidentiality; IK: a generated session key for integrity; AUTN :
contains encrypted sequence SQN , authentication management field AMF , and
a message authentication code (MAC) [21]. The generated RAND, XRES, CK,
IK, and AUTN are sent to the BSF using the secure channel. Second,the BSF
sends a challenge to the UE containing RAND, and AUTN . The UE generates
RES, CK, IK, and MAC based on its own shared master key K and sequence
number SQN ′. At this stage UE performs two equivalence tests: 1) it checks
the UE sequence number is big enough from the HSS sequence number. 2) it
also checks the equivalence of MAC received from the BSF with its own MAC.
The UE authenticates the BSF based on the results of these two tests. Third,
the UE sends a HTTP digest response (with RES as password) to the BSF.
The BSF validates the response against the previously stored XRES value. The

3 IP Multimedia Private Identity
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Fig. 1. OpenID with GBA protocol

BSF authenticates the UE if only if the received RES and generated XRES are
equal. Upon successful UE authentication, the BSF generates a bootstrap key
identifier (BTID) and a new temporary shared key Ks (Ks is a combination of
CK and IK). Finally, the BSF sends BTID to the UE. The integrity of BTID
is protected using HTTP digest parameter qop = auth− int. The UE stores the
BTID, temporary shared secret key Ks (i.e., generated from CK and IK). At
this stage, both the BSF and the UE are mutually authenticated and share a
new master session key Ks.

To complete the HTTP authentication with the NAF-OP, the UE generates
an application specific key KsNAF using Ks and NAF-OP identity. The UE
generates a HTTP digest response for the NAF-OP based on BTID as a user
name and KsNAF as a password. The NAF-OP verifies this reponse in consul-
tation with the BSF. Finally, the NAF-OP redirects the UE to the RP with a
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signed (i.e., using DH key) assertion. The UE is allowed to access RP resources
based on the assertion (e.g., signed digest) from the NAF-OP.

2.2 Constraints

OpenID with GBA can be deployed in several security contexts (e.g., messages
can communicate within server authenticated tunnel or in non-tunneled mode).
Our analysis is based on common deployment scenarios: the UE and the RP
communicates in the non-tunneled mode while the communication between the
UE and the OP, and the communication between the RP and the OP are within
tunneled mode. The communication between the UE and the BSF is in non-
tunneled mode while OP to BSF and BSF to HSS use two way secure channels.
In addition, the analysis is applicable for GBA ME [15, p. 45] which is the
most common variant of GBA. The model only focuses on the authentication
steps of GBA ME. This implies the synchronization of SQN in GBA ME has
been performed beforehand. Additionally, our model is valid for stateful OpenID
where an association (i.e. D-H) is performed between the RP and the OP to verify
the subsequent protocol messages.

2.3 Base Security Model

We have made the following assumptions about the security of various channels
and entities as our base security model.

1. There will be several users (i.e., user entity) and RP sites, some of the RP
sites are under adversarial control.

2. The UICC and the GBA modules reside within the user entity that is under
the control of the respective user. All these modules are trusted in our base
security model.

3. The channel between the user and his user entity is secure. We assume the
client is trustworthy and only trustworthy client can access the GBA and
the UICC module.

4. There are multiple honest NAF-OP servers.
5. There is only one honest BSF, and one HSS server controlled by the mobile

network operator. The channel between them is secure.

We are interested in the secrecy properties of master key K shared between
the UICC and the HSS, temporary session key Ks shared between the BSF and
the UE, and application session key KsNAF shared between the UE and the
NAF-OP. We are also interested in the TLS keys agreed between honest users
and servers. Additionally, we are interested in the correspondence properties
e.g., if a server thinks that it has communicated with a client controlled by a
user using a key k and the user is honest, then the user also thinks that it has
communicated with the server in a session where the client application is using
the key k (integrity of servers) [16]. The same principle must hold if we swap
the role of the user and the server (integrity of clients).
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3 Formalization in ProVerif

ProVerif [7] is a mature protocol analyzer based on the Dolev-Yao [11] (or:
perfect cryptography) model. This model, which has been extremely fruitful
for cryptographic protocol construction and analysis, abstracts from the actual
cryptographic algorithms by stating that only an enumeration of operations on
messages — the actual invocations of algorithms — make sense, both for the
honest parties and the adversary.

The analyzer takes as input a protocol specified in a dialect of the applied
pi-calculus [3] and a specification of a security property. It verifies whether the
protocol satisfies this property, answering either correctly or inconclusively (be-
cause of undecidability of protocol verification). The process language contains
primitives for sending and receiving messages over channels, generating new
names as keys, nonces, channel names etc., constructing and destructing mes-
sages, branching, sequential and parallel composition, and replication. The secu-
rity property can either be a secrecy property (the attacker is unable to deduce
a certain value), a correspondence property (certain parts of the protocol can
be executed only after other parts have been executed), or a certain process
equivalence. The verification proceeds by translating the protocol into a set of
Horn clauses (possibly abstracting from the actual behaviour of the protocol)
and then applying a specialized inference engine on it. Below we describe our
model of OpenID with GBA protocol.
Secure channels In the OpenID with GBA protocol, certain parties have
secure channels between them. To model those, we need a channel name that only
these parties know. We obtain such name for two parties as tochannel(sk1, pk2) =
tochannel(sk2, pk1) where sk i is the secret key of the i-th party, pk i = pk(sk i) is
the public key corresponding to it, tochannel and pk are term constructors, and
the equation is stated to hold (ProVerif can model certain equations, including
this one). The public keys are bound to names by means of certificates.
TLS handshake Certain parties exchange messages over confidentiality-
providing TLS tunnels where one end (the server) is authenticated. We do not
want to analyze the TLS protocol in this work, because its security properties
have been thoroughly studied [14, 19]. To model the tunnel, we again construct
a new channel name. It is done by the client C sending the server S a nonce
N encrypted under the public key of S, after which the channel is defined as
tlschan(N, pkS), where tlschan is a public constructor. The server is authenti-
cated by its ability to decrypt and find N . The honest parties will construct
secure channels and TLS tunnels only after checking the certificate of the other
party, thereby excluding man-in-the-middle attacks.
Certificates and identification The names of the parties of the protocol
are bound to their public keys by means of certificates. Certificates are public
messages, signed by a trusted party — the certificate authority (CA). While
detailed modeling of certificates and CAs is possible in ProVerif, we want to
avoid it, and thus abstract a certificate as a message cert(X, pkX , role), where
X is the name of the party, pkX its public key, and the third argument shows
in which role (NAF-OP, or BSF, or HSS) this public key is intended to be
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used. The issuing and publication of certificates of honest parties are modeled
by constructing that certificate inside the process of that party and outputting
it on a public channel. The constructor cert is private — the attacker cannot
cannot construct such messages itself. On the other hand, the destructors, giving
access to the components of a certificate, are public.

To model dishonest parties inside the system, the attacker needs a means to
obtain certificates to public keys where it knows the corresponding private key.
Hence we include a simple “CA” in our analyzed process. This CA receives a
public key from the attacker and issues certificates for it. The name appearing in
the certificate is chosen by the CA, not the attacker, hence the attacker cannot
masquerade as an honest party.

Symmetric master keys shared by the BSF and each of the user devices are
modeled similarly. There is a private constructor impi2key that transforms IMPI
into the master key. Similarly to certificates, the adversary can get (IMPI,key)-
pairs from the simple CA.
The Whole System After the abstractions described above, the modeling
of the system is quite straightforward. We have processes for the user equipment
(client application, GBA and UICC are all modeled in a single process), NAF-
OP, RP, BSF, and HSS running in parallel, and replicated (except BSF and
HSS) to model several parties of the same kind. All processes, except the user
equipment and the RP, start by generating a name for themselves and creating
their public and private key pair. They will publish the certificate binding their
name, their role and their public key, and will then continue with the protocol
sessions [4].

Note that in our model, RPs do not have certificates. The users will thus
communicate with them over public channels (i.e. using HTTP, not HTTPS).
The lack of RP certificates also means that they may be under adversarial con-
trol. It is noteworthy that the results we report in the next section are valid
in this setting. On the other hand, the lack of RP certificates means that the
users can never be sure about the identities of RPs and the security properties
mentioning those cannot be verified. We do not consider this the weakness of
our model — using HTTPS (or: TLS handshake) would be the standard way for
the user to verify the identity of RP and the properties of TLS imply that in
this case, the user can be sure who he has connected with.

The users also do not have certificates. However, the users have IMPIs and,
through the private mapping impi2key, the user shares symmetric keys with the
BSF.

4 Verification Results

In this section, we report the security properties we are interested in, the way
we are modeling them in ProVerif, and the verification result. We perform the
formal analysis in two phases: first only for bootstrapping process, second, the
combined OpenID with GBA protocol (which, according to our knowledge, has
not been subject of such formal analysis before).
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4.1 BootStrapping

Secrecy We are interested in the secrecy of long-term keys, as well as the short-
term keys Ks and KsNAF. In the Dolev-Yao model, we model this property as
the attacker’s inability to obtain the term corresponding to this key. In ProVerif,
such queries are straightforward to state. We obtain that all keys initially shared
or constructed during a protocol session between an honest user and an honest
BSF remain secret.

Authentication We want to make sure that if the BSF thinks it has completed
a session with the user U (and associated the value BTID with the IMPI of
U), then the user U actually has participated in a protocol session with the
BSF. This is a typical correspondence property and it can be easily specified in
ProVerif. The protocol code may contain statements “event M”, where M is
a message. The execution of this statement has no effect on the protocol run,
but the occurrence of the event M can be recorded. ProVerif can answer queries
regarding the order in which the events occur.

To model this property, we add events BSFEnd(impi) in the end of the pro-
cess modeling a session for BSF, and UICCBegin(impi) in the beginning of the
process modeling a session for UICC. We ask ProVerif whether each BSFEnd(i)
must be preceded by a UICCBegin(i) for any term i. The answer is negative
because the attacker may also be known as a user of the system to the BSF,
and the attacker does not emit the event UICCBegin(. . . ) in the beginning of its
session. So we check whether impi is the IMPI of an honest participant before
emitting BSFEnd(impi). We do this by the common technique of emitting the
honest IMPIs on a private channel (this is added to the user process) and trying
to receive impi from this channel before emitting the event. Now ProVerif states
that the correspondence property holds — each BSFEnd(impi) for an honest
impi is preceded by UICCBegin(impi) in all traces. The correspondence is even
injective — different BSFEnd -s are preceded by different UICCBegin-s.

We also want to make sure that if the UICC thinks it has completed an
authentication session, then the BSF also thinks the same and they also agree on
the sequence numbers (and other parameters) they used. To model this property,
we add the event BSFBegin(impi,sqn) before the last message sent by the BSF to
the UICC, and add the event UICCEnd(impi,sqn) after the UICC has received
this message. We want each UICCEnd -event to be preceded by a BSFBegin-
event with the same parameters. ProVerif can verify that the correspondence
property holds, but it cannot show injective correspondence. This is caused by
our inability to model that a sequence number can be used only in a single
session, and cannot be repeated. From the non-injective correspondence, and
from the non-repeatability of sequence numbers we can deduce that in reality,
there is an injective correspondence between those events.

4.2 OpenID with GBA

Secrecy The critical resource is application specific key KsNAF. ProVerif ver-
ifies that application specific key is still not revealed to the attacker.
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Authentication The main property that we are interested in, is that when a
protocol session is finished by RP with a user identified by UID, then there is a
user that also participated in this session and this user has a legitimate claim of
being identified as UID. Because of the multitude of identities and authorities,
the precise property is not trivial to state.

First we note that OpenID with GBA protocol, as we have specified it here,
is a pure authentication protocol — as the user and the RP are not establishing
any common secrets, the only information that the RP gets from the protocol
is that a user with a legitimate claim to the identifier UID was alive during the
protocol session and used the same OpenID provider that RP thinks it used.
Hence we put the event RPEnd(RPID ,UID ,OPID) to the end of RP’s process
for a protocol session.

The user is using the identifier UID with RP and OP, and the identifier
impi with the BSF. The identifier impi will be bound to the transient value
BTID by the BSF. The OP will receive BTID from both the BSF and the user.
The OP also received UID from the user and can bind it with BTID. Hence
we come up with the requirement that if the RP accepts the UID then a user
has started a session as UID and these bindings have been done. The property
can be modeled by adding event UserEnd(RPID , impi ,UID ,OPID) to the end
of the user process (before sending the last message to the RP), adding event
OPEnd(UID ,BTID ,OPID) to the end of the NAF-OP process (before sending
the last message to the user) and adding event BSFEnd(BTID , impi) to the BSF
process (before sending the last message to the OP). Our check with ProVerif
shows that the event RPEnd must be preceded by all of these three events with
matching parameters; the correspondence is even injective. As before, we emit
the RPEnd -event only if the user and the OP are honest.

Arguably, the property described in previous paragraph does not give strong
guarantees to the RP. It ensures that whenever RP accepts a user as UID,
there has been a user that has used UID and is correctly identified to the BSF.
Two different occurrences of the same UID may in principle come from different
users.

We thus also consider the scenario where the RP learns user’s real iden-
tity (derived from impi) from the OP at the end of the protocol [22]. In this
case the authentication property is straightforward to model — each event
RPEnd(RPID ,UID ,OPID) must be preceded by UserEnd(RPID ,UID ,OPID),
where UID is the real identity of the user. ProVerif states that this correspon-
dence property does indeed hold.

Anonymity We may be interested in the adversary not learning the real identi-
ties of the users (i.e. their impi -s) participating in the protocol. Such anonymity
is a type of process equivalence where the process with a random impi is indis-
tinguishable (to the adversary) from the process where impi has been selected by
the adversary. Such noninterference queries are supported by ProVerif, although
the treatment is incomplete — ProVerif checks the stronger property of the two
processes evolving in lock-step.
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For the case where RP does not learn the real identities of users (as the RP
may also be adversarial), we have checked whether the process is noninterferent
with respect to impi. Quite clearly, it is not — impi is sent in clear text from
the user to the BSF. But when we move this transmission to a private channel,
ProVerif succeeds in proving the noninterference.

5 Security Against Malicious Participants

The inter-networking of OpenID with GBA, as modeled in section 2.1 and based
on the base security model of section 2.3 is proved secure using ProVerif. How-
ever, the base security model only reflects an ideal situation. If we modify the
security model certain things can go wrong.

5.1 BSF under adversarial control

BSF acts as an identity provider both for the user and the NAF-OP (i.e., BTID
acts as a transient user identity for both). This means the protocol runs with
an honest BSF. Quite clearly, an adversarial BSF can break the protocol. We
have modeled this situation by distributing fake certificates of BSF (allowing the
adversary to obtain a certificate for the role BSF). In this case, both the user
and the OP lack knowledge of the honest BSF. As a result, any rogue client can
convince the OP and subsequently the RP that everything is fine.

5.2 NAF-OP under adversarial control

The NAF-OP provides an assertion to the RP that a user controls a particular
identity. Therefore, an honest NAF-OP is required to prove the validity of the
user claim. We modeled a NAF-OP under adversarial control by distributing
fake certificates of the NAF-OP. Under such circumstances, the malicious NAF-
OP can bypass the user authentication process with the BSF. In addition, it
can trick the RP to accept invalid users while rejecting the valid user from
gaining access to the service. Another form attack could be, the user is confused
about the identity of NAF-OP. This can lead the user to pass user credentials
to a malicious NAF-OP. The malicious NAF-OP, in turn, tries to use the user
credential to login to a different service. This type of phishing attack is not severe
against OpenID with GBA because the user only provides site specific key to the
malicious NAF-OP. This meas the attacker cannot use the same user credential
for login to a different service.

5.3 Attacker partially controls the user entity

The user entity consists of three modules: UICC, GBA client and an application.
The severity of the attack depends on the level of control attacker has over these
modules [15]. First, the UICC module can be considered secure because the
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UICC card securely contains the the shared master key K. Second, the GBA
client contains a temporary master session key Ks. Exposure of this key enables
the attacker to login any GBA supported NAF-OP within a particular session.
Third, if the attacker controls the application (e.g., browser) then the application
specific key KsNAF will be exposed. Exposure of KsNAF enables the attacker
to authenticate in a particular NAF-OP within a particular session. We see that
the control of any of these three modules directly leads to a successful attack,
justifying our coarse-grained model of the user entity.

6 Conclusion

The paper reports the formal specification and security properties of a non-
trivial, practical protocol — OpenID with GBA. The security analysis has been
performed based on specific security settings and trust relationships among par-
ticipating entities. The security analysis suggests that the inter-networking of
OpenID with GBA is secure in the ProVerif model. The protocol maintains both
the secrecy and the correspondence properties. However, the protocol breaks un-
der strong adversarial models. In our security model, one of the main concerns
is the identity of the RP due lack of RP certificates. In addition, we have not
considered the weaknesses of cryptographic algorithms.
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