
Symmetric Encryption
in Automatic Analyses

for Confidentiality
against Active Adversaries

Peeter Laud
Tartu University & Cybernetica AS

http://www.ut.ee/~peeter_l

Problem statement

● Given a cryptographic protocol
– More generally, a distributed computing system

● It works with some secret data
● No outside adversary should be able to learn

anything about this secret data
– Even when allowing active attacks

Problem statement (contd.)

● We fix a programming language
● ... and its semantics
● The specification of the system is given

– Each part is implemented in that language
● We must decide, whether it is secure

– Automatically
– Which is not always possible (problem undecidable)
– Err to the safe side

Running example

● Transmit the secret M from A to B:
A→S: enc(KAS: B, KAB)
S→B: enc(KBS: A, KAB)
A→B: enc(KAB: M)
B→ : OK

● S is a server, trusted by A and B
● KAS and KBS are long-term keys shared by S and A

resp. B

The semantics

● We don't use Dolev-Yao semantics / intruder
● All values are bit-strings

– Tagged by their type
● Operations are implemented by probabilistic

polynomial-time (PPT) algorithms
● The adversary may be any PPT algorithm

– ... it does not have to tag the values correctly

Running example

A→S: enc(KAS: B, KAB)
S→B: enc(KBS: A, KAB)
A→B: enc(KAB: M)
B→ : OK

Data dependencies
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?

Control dependencies
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?

Criterion for security

No path from M to any Si

The system is secure

Security does not follow
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?

Encryption systems

● Encryption system is a triple of PPT algorithms:
– Key generation algorithm K

● probabilistic
– Encryption algorithm E

● may be probabilistic
– Decryption algorithm D

● deterministic

Security against chosen-ciphertext
attacks

K

DE

query query

K

DE
0|•|

No PPT adversary can distinguish left black box from
the right
Without querying the second algorithm with the outputs from the first

answer answer
query query

answer answer

In the programming language terms:

We may replace
enc(key: msg)

with
enc(key:const)

If certain conditions hold then the adversary's view
does not change

This replacement deletes a data dependency edge.

Our contribution

Checking, whether these
conditions hold, can be automated.

Use the following intuition...

Party 1 Party 2 Party 3 Party n...

Network / adversary

... all parties are physically together

Party 1 Party 2 Party 3 Party n...

Network / adversary

The conditions...

● enc(K:M) may be replaced with enc(K:0) for all
uses of K if
1. K is not really necessary for creating the adversary's

view
● access to oracles EK(•) and DK(•) must suffice

2.ciphertexts encrypted with K are not subsequently
decrypted with it

1: find, where the keys are used
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?

1: find, where the keys are used

● Track the values of keys from their generations to
their uses
– Including their flow into and out of constructed values

● Don't consider keys coming from received
messages
– They're ineligible anyway

● Consider only keys used only for encryption and
decryption

Keys under consideration
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?

2: replace decryptions

● Let K be a key found in step 1
● Let y1,...,ym be the ciphertexts created with K from

x1,...,xm

● Replace z:=dec(K, w) with
z:=case w of

y1 → x1

………………
ym → xm

else → dec(K, w)

Ciphertext integrity

● No adversary with access to EK(•) and DK(•) can
create a valid ciphertext different from the ones
returned by E.
– Validity: D does not reject it.

● In programming language terms:
– Remove the else-clause in the case-statement.

Replace decryptions
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?

Replace decryptions
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

case

π1 π2

=?

(,)

enc
enc

case

π2

dec

π1

=?

Replace plaintexts
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

case

π1 π2

=?

(,)

enc
enc

case

π2

dec

π1

=?0

0

A way to handle case-s
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

=?

π1 π2

=?

(,)

enc
enc

=?

π2

dec

π1

=?0

0

Iterate

● Security does not follow
– S3 still depends on M

● We try once more
– In general, do the preceding replacement as long as

there are changes.
– In later iterations do not consider keys that were already

handled in previous iterations.

Find, where the keys are used
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

=?

π1 π2

=?

(,)

enc
enc

=?

π2

dec

π1

=?0

0

Replace decryptions
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

=?

π1 π2

=?

(,)

enc
enc

=?

π2

case

π1

=?0

0

Replace plaintexts
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

=?

π1 π2

=?

(,)

enc
enc

=?

π2

case

π1

=?0

0
0

Replace case, security follows
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

=?

π1 π2

=?

(,)

enc
enc

=?

π2

=?

π1

=?0

0
0

Generalizability
● Other cryptographic primitives

– Security def: Indistinguishability of real and ideal
functionality

– Ideal functionality implementable in prog. language
● Public-key encryption
● Signatures
● etc.

● Other security properties
– Original protocol has the property iff the modified

protocol has the property
● If the adversary can observe violations of the property

