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Problem statement

● Given a cryptographic protocol
– More generally, a distributed computing system

● It works with some secret data
● No outside adversary should be able to learn 

anything about this secret data
– Even when allowing active attacks



Problem statement (contd.)

● We fix a programming language
● ... and its semantics
● The specification of the system is given

– Each part is implemented in that language
● We must decide, whether it is secure

– Automatically
– Which is not always possible (problem undecidable)
– Err to the safe side



Running example

● Transmit the secret M from A to B:
A→S: enc(KAS: B, KAB)
S→B: enc(KBS: A, KAB)
A→B: enc(KAB: M)
B→  : OK

● S is a server, trusted by A and B
● KAS and KBS are long-term keys shared by S and A 

resp. B



The semantics

● We don't use Dolev-Yao semantics / intruder
● All values are bit-strings

– Tagged by their type
● Operations are implemented by probabilistic 

polynomial-time (PPT) algorithms
● The adversary may be any PPT algorithm

– ... it does not have to tag the values correctly



Running example

A→S: enc(KAS: B, KAB)
S→B: enc(KBS: A, KAB)
A→B: enc(KAB: M)
B→  : OK
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Control dependencies
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?



Criterion for security

No path from M to any Si

The system is secure



Security does not follow
KAS

KAB

KBS

M

B A

(,)
enc

S1

R3R2R1

S4S3S2

dec

π1 π2

=?

(,)

enc
enc

dec

π2

dec

π1

=?



Encryption systems

● Encryption system is a triple of PPT algorithms:
– Key generation algorithm K

● probabilistic
– Encryption algorithm E

● may be probabilistic
– Decryption algorithm D

● deterministic



Security against chosen-ciphertext 
attacks
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In the programming language terms:

We may replace
enc(key: msg)

with
enc(key:const)

If certain conditions hold then the adversary's view 
does not change

This replacement deletes a data dependency edge.



Our contribution

Checking, whether these 
conditions hold, can be automated.



Use the following intuition...

Party 1 Party 2 Party 3 Party n...

Network / adversary



... all parties are physically together

Party 1 Party 2 Party 3 Party n...

Network / adversary



The conditions...

● enc(K:M) may be replaced with enc(K:0) for all 
uses of K if
1. K is not really necessary for creating the adversary's 

view
● access to oracles EK(•) and DK(•) must suffice

2.ciphertexts encrypted with K are not subsequently 
decrypted with it



1: find, where the keys are used
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1: find, where the keys are used

● Track the values of keys from their generations to 
their uses
– Including their flow into and out of constructed values

● Don't consider keys coming from received 
messages
– They're ineligible anyway

● Consider only keys used only for encryption and 
decryption



Keys under consideration
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2: replace decryptions

● Let K be a key found in step 1
● Let y1,...,ym be the ciphertexts created with K from 

x1,...,xm

● Replace z:=dec(K, w) with
z:=case w of

y1 → x1

………………
ym → xm

else → dec(K, w)



Ciphertext integrity

● No adversary with access to EK(•) and DK(•) can 
create a valid ciphertext different from the ones 
returned by E.
– Validity: D does not reject it.

● In programming language terms:
– Remove the else-clause in the case-statement.



Replace decryptions
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Replace decryptions
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Replace plaintexts
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A way to handle case-s
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Iterate

● Security does not follow
– S3 still depends on M

● We try once more
– In general, do the preceding replacement as long as 

there are changes.
– In later iterations do not consider keys that were already 

handled in previous iterations.



Find, where the keys are used
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Replace decryptions
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Replace plaintexts
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Replace case, security follows
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Generalizability
● Other cryptographic primitives

– Security def: Indistinguishability of real and ideal 
functionality

– Ideal functionality implementable in prog. language
● Public-key encryption
● Signatures
● etc.

● Other security properties
– Original protocol has the property iff the modified 

protocol has the property
● If the adversary can observe violations of the property


