
Optimizing Secure Computation Programs with
Private Conditionals

Peeter Laud1 and Alisa Pankova1,2,3

1 Cybernetica AS
2 Software Technologies and Applications Competence Centre (STACC)

3 University of Tartu
{peeter.laud|alisa.pankova}@cyber.ee

Abstract. Secure computation platforms are often provided with a pro-
gramming language that allows a developer to write privacy-preserving
applications and hides away the underlying cryptographic details. The
control flow of these programs is expensive to hide, hence branching on
private values is often disallowed. The application programmers have to
specify their programs in terms of allowed constructions, either using
ad-hoc methods to avoid such branchings, or the general methodology of
executing all branches and obliviously selecting the effects of one at the
end. There may be compiler support for the latter.
The execution of all branches introduces significant computational over-
head. If the branches perform similar private operations, then it may
make sense to compute repeating patterns only once, even though the
necessary bookkeeping also has overheads. In this paper, we propose a
program optimization doing exactly that, allowing the overhead of pri-
vate conditionals to be reduced. The optimization is quite general, and
can be applied to various privacy-preserving platforms.

1 Introduction

There exist a number of sufficiently practical methods for privacy-preserving
computations [1–3], as well as secure computation platforms implementing these
methods [4–7]. To facilitate the use of such platforms, and to hide the crypto-
graphic details from the application programmer, the platforms allow the compi-
lation of protocols from higher-level descriptions, where the latter are specified in
some domain-specific language [4,8–11] or in a subset of some general language,
e.g. C, possibly with extra privacy annotations [12,13]. Operations with private
values are compiled to protocols transforming the representations of inputs of
these operations to the representation of the output.

In secure multiparty computation (SMC) protocol sets based on secret shar-
ing [2, 3, 14, 15], the involved parties are usually partitioned into input, compu-
tation, and output parties [16]. The computation parties are holding the private
values in secret-shared form between them, and are performing the bulk of com-
putation and communication. In this setting, if- and switch-statements with
private conditions are among unsupported operations. Namely, the taken branch

should not be revealed to anyone, but it is difficult to hide the control flow of
the program. Instead of choosing the right branch, all the branches are executed,
and the final values of all program variables are chosen obliviously from the out-
comes of all branches [13,17]. This introduces a significant overhead. An obvious
optimization idea, which has not received much attention so far except for [18]
in a different setting, is to locate similar operations in different branches and
try to fuse them into one. The operation is not trivial, because the gathering of
inputs to fused operations introduces additional oblivious choices.

In this work, we consider a simple imperative language with variables typed
“public” and “private”, invoking secure protocols to process private data. The use
of expressions typed“private” is allowed in the conditions of if and switch state-
ments. We translate a program written in this language into a computational
circuit and optimize it, trying to fuse together the sets of operations, where the
outcome of at most one of them is used in any concrete execution. Our optimiza-
tion is based on mixed integer linear programming, but some greedy heuristics
are proposed as well for better performance. Our optimization is very generic
and can be applied on the program level, without decomposing high-level opera-
tions to arithmetic or boolean circuits. We do the optimization for some simple
programs with private conditionals, and evaluate them top of the Sharemind
SMC platform [14], showing that the optimization is indeed useful in practice.

2 Preliminaries

Secure computation There is a computing party (or several parties) whose task
is to compute some function on secret inputs, without being allowed to infer any
information about the inputs and/or the outputs. The inputs for such a function
may be either encrypted on secret shared among several computing parties.

Languages for secure computation A privacy-preserving application is often de-
scribed as a higher level functionality, without taking into account the un-
derlying cryptographic protocols. Existing platforms usually come with a lan-
guage [4, 13, 14, 19] to program such applications. A program looks very similar
to an ordinary imperative language (such as Java, Python, or C), but it does
much more, as it is being compiled to a sequence of cryptographic protocols.

Mixed integer linear programming [20] A mixed integer linear programming is
an optimization task stated as

minimize cT · x, s.t Ax ≤ b,x ≥ 0, xi ∈ {0, 1} for i ∈ I , (1)

where x ∈ Rn is a vector of variables that are optimized, and the quantities
A ∈ Rm×n, b ∈ Rn, c ∈ Rn, I ⊆ {1, . . . , n} are the parameters defining the task.

3 Related Work

There are a number of languages for specifying privacy-preserving applications
to be run on top of secure computation platforms. These may be either domain-

specific languages [4, 8, 10] or variants of general-purpose languages [12]. Often
these languages do not offer support for private conditionals.

The support of private conditionals is present in SMCL [9], as well as in
newer languages and frameworks, such as PICCO [13], Obliv-C [21], Wyste-
ria [22], SCVM [23], or the DSL embedded in Haskell by Mitchell et al. [11]. A
necessary precondition of making private conditions possible is forbidding any
public side effects inside the private branches (such as assignments to public
variables or termination), since that may leak information about which branch
has been executed. All the branches are executed simultaneously, and the value
of each variable that could have been modified in at least one branch is updated
by selecting its value obliviously. Planul and Mitchell [17] have more thoroughly
investigated the leakage through conditionals. They have formally defined the
transformation for executing all branches and investigated the limits of its ap-
plicability to programs that have potentially non-terminating sub-programs.

The existing compilers that support private conditionals by executing both
branches do not attempt to reduce the computational overhead of such execution.
We are aware of only a single optimization attempt targeted towards this sort
of inefficiencies [18], but the details of their setting are quite different from ours.
They are targeting privacy-preserving applications running on top of garbled
circuits (GC), building a circuit into which all circuits representing the branches
can be embedded. Their technique significantly depends on what can be hidden
by the GC protocols about the details of the circuits. Our approach is more
generic and applies at the language level.

4 Programs and Circuits

The imperative language with private conditionals We start from a simple im-
perative language, which is just a list of assignments and conditional statements.
The variables x in the language are typed either as public or private, these types
also flow to expressions. Namely, the expression f(e1, . . . , en) is private iff at least
one of ei is private. The special operation declassify turns a private expression
to a public one. An assignment of a private expression to a public variable is not
allowed. Only private variables may be assigned inside the branches of private
conditions [13,17]. The syntax c denotes compile-time constants.

prog ::= stmt

f ::= arithmetic blackbox function

exp ::= xpub | xpriv | c | f (exp∗) | declassify(exp)

stmt ::= x := exp | skip | stmt ; stmt | if exp then stmt else stmt

During the execution of a program on top of a secure computation platform,
public values are known by all computation parties, while private values are
either encrypted or secret-shared among them [8]. An arithmetic blackbox func-
tion is an arithmetic, or relational, or boolean, etc. operation, for which we have
implementations for all partitionings of its arguments into public and private

values. E.g. for integer multiplication, we have the multiplication of public val-
ues, as well as protocols to multiply two private values, as well as a public and
a private value [14].

Computational circuits Due to the existence of private conditionals, the pro-
grams written in this language need to be translated into computational circuits
before execution. These circuits are not convenient for expressing looping con-
structs. Also, our optimizations so far do not handle loops. For this reason, we
have left them out of the language. We note that loops with public conditions
could in principle be handled inside private conditionals [13].

A computation circuit is a directed acyclic graph where each node is assigned
a value that can be computed from its immediate predecessors, except the input
nodes which obtain their values externally.

Definition 1. Let V ar be the set of program variables. A computational circuit
is defined as a set of gates G = {g1, . . . , gm} for some m ∈ N, where each gate
g ∈ G is defined as g = (op, [v1, . . . , vn]):

– op is the operation that the gate computes (an arithmetic blackbox function
of the secure computation platform);

– [v1, . . . , vn] for vi ∈ G∪V ar is the list of the arguments to which the operation
op is applied when the gate is evaluated.

For g = (op, args) ∈ G, we write opG(g) = op, and argsG(g) = args.
The circuits that we work on are going to contain gates whose operation is

the oblivious choice; such gates are introduced while transforming out private
conditionals. Such a gate g has opG(g) = oc, argsG(g) = [b1, v1, . . . , bn, vn]), and
it returns the output of vi iff the output of bi is 1. If there is no such bi, then it
outputs 0. It works on the assumption that at most one gate bi outputs 1.

if b:

x := 2;

else:

x := x + y;

y := 5*y;

⇒

2 x b y 5

ococ

y

+ ¬ ∗

x

Fig. 1. Example of program transformation

Transforming programs to
circuits Each assignment
y := f(x1, . . . , xn) of the
initial program can be
viewed as as single cir-
cuit computing a set of
gates G defined by the de-
scription of f on inputs
x1, . . . , xn. A sequence of
assignments is put to-
gether into a single circuit using circuit composition.

If the program statement is not an assignment, but a private conditional
statement, all its branches are first transformed to independent circuits Gi. Let
gyi be the gate of Gi that outputs the value of y. The value of each variable
y is then selected obliviously amongst the output vertices gyi ∈ Gi, where the
choice bit bi of gyi is the condition of executing the i-th branch. So far, the
transformation is similar to the related work [13,17]. An example of transforming
a conditional statement to a circuit is given in Fig.1.

5 Optimizing the Circuit

Let G be a computational circuit. Without loss of generality, let G = {1, . . . , n}.
The weakest precondition φGg of evaluating a gate g ∈ G is a boolean expression

over the conditional variables, such that φGg = 1 iff the gate g is evaluated for
the given valuation of conditional variables.

The main idea of our optimization is the following. Let g1, . . . , gk ∈ G be
the gates such that argsG(gi) = [xi1, . . . , x

i
n], and opG(gi) = op for all i. Let

φGg1 , . . . , φ
G
gk

be mutually exclusive. This happens for example if each gi belongs
to a distinct branch of a set of nested conditional statements. In this case, we can
fuse the gates g1, . . . , gk into a single gate g that computes the same operation op,
choosing each of its inputs xj obliviously amongst x1j , . . . , x

k
j . This introduces n

new oblivious choice gates, but leaves just one gate g computing op. An example
of optimizing a circuit of two branches is given in Fig. 2.

As discussed in Sec. 4, private branches are not allowed to assign to public
variables, so we are fusing only private gates. Hence such a transformation does
not affect any public variables through which some additional data might have
leaked, and it does not modify the privacy of the initial program.

5.1 High-Level Overview

Preprocessing First, we look for the pairs of mutually exclusive gates. Find
the weakest precondition φGi of each gate i. For i, j ∈ G, define mexG(i, j) = 1 iff
(i = j) ∨ (φGi ∧ φGj is unsatisfiable). For a correct (but not necessarily optimal)
solution, it suffices to find only a subset of mutually excluding pairs.

if b:

...

z1 := x1==y1;

...

else:

...

z2 := x2==y2;

...

⇒
==

z1

x1 y1
b

==

z2

x2 y2
¬b

⇒

y1 y2

oc oc

x1 x2 φb ¬φb

==

z1 z2

Fig. 2. An example of gate fusing

Since fusing forces all the gate arguments to become chosen obliviously, all the
inputs of a fused gate in general are treated as private. Depending on the secure
computation platform and the particular operation, this may formally change
the gate operation, possibly becoming more expensive, or even unsupported. We
define mexG(i, j) = 0 for the gates i or j that have any public inputs, and whose
cost may change if these inputs become private.

Plan We partition the gates into disjoint sets Ck, planning to leave only one
gate in each Ck after the optimization. The following conditions should hold:

– ∀i, j ∈ Ck : i 6= j =⇒ mexG(i, j) = 1: we fuse only mutually exclusive
gates, so that indeed at most one gate of Ck will actually be evaluated.

– ∀i, j ∈ Ck : opG(i) = opG(j): only the same operation gates are fused.
– Let E := {(Ci, Cj) | ∃k, ` : k ∈ Ci, ` ∈ Cj , ` ∈ argsG(k)}. The relation

(Ci, Cj) ∈ E denotes that Cj should be evaluated strictly before Ci. We
require that the graph ({Ck}k, E) should be acyclic.

If we treat the gates G as vertices, and the relation mexG(i, j) as edges, we
get that Ck are disjoint cliques on this graph. A possible fusing of gates into
a clique is shown in Fig. 3, where the gray lines connect the gates for which
mexG(i, j) holds, and the shaded gates are treated as a single clique.

b1 b2 b3

∗
==

∗

==

==
==

==

Fig. 3. Fusing gates into cliques

To ensure that the optimized circuit is
acyclic, define the following predicates, that
can be easily derived from the initial circuit:

– predG(i, k) = 1 iff k ∈ argsG(i);
– cpredG(i, k) = 1 iff k ∈ φGi .

The predicate predG(i, k) is true just if k is an
immediate predecessor of i inG. The predicate
cpredG(i, k) is true if k is used to compute the
weakest precondition of i. This means that k
does not have to be computed strictly before
i in general. However, if i is fused with some other gate, we will need the value
of k for computing the choice of the arguments of i, and in this case k has to be
computed strictly before i. We call k a conditional predecessor of i.

The number of cliques may vary between 1 and |G|. For simplicity, we assume
that we always have exactly |G| cliques, and some of them may just be left
empty. We denote the clique {i1, . . . , ik} by Cj , where j = min(i1, . . . , ik) is the
representative of the clique Cj , which is the only gate of Cj left after the fusing.

Transformation The plan gives us a collection of sets of gates Cj , each having
gates of certain operation opj . Consider any Cj = {g1, . . . , gmj

}. Let the inputs
of the gate gi be xi1, . . . , x

i
n. Let bi be the wire that outputs the value of φGi .

Introduce n new oblivious choice gates v` = (oc, [b1, x
1
` , . . . , bmj

, x
mj

`]) for ` ∈ [n].
Add a new gate g = (opj , [v1, . . . , vn]). Discard all the gates gi. Any gate in the
rest of the circuit that has used some gi as an input should now use g instead.

The Cost In a privacy-preserving application, each gate operation corresponds
to some cryptographic protocol. In SMC platforms, such protocols require com-
munication between the parties. We choose the total number of communicated
bits as the cost. This metric is additive w.r.t the cost of individual gates. We
note that introducing new oblivious choices may increase the number of rounds.

Greedy Construction of Cliques First, we propose some simple heuristic
optimizations of the cost. The gates G are partitioned into subsets, grouped by
their operation. These subsets are sorted according to the cost of their operation,
so that more expensive gates come first. The subsets are turned into cliques one
by one, starting from the most expensive operation. A clique Ck is formed only
if it is valid and is not in contradiction with already formed cliques, i.e:

– any two gates i, j ∈ Ck satisfy mexG(i, j) = 1;
– no i ∈ Ck has already been included into some other clique;
– Ck does not introduce cycles.

We use two main greedy strategies for forming a set of cliques for a particular
subset of gates. The first one merges the largest possible clique first. The second
one merges the cliques pairwise, trying to form as many cliques as possible.

5.2 Reduction to an integer programming task

As an alternative to greedy algorithms, we reduce the gate fusing task to an
integer program and solve it using an external solver (such as [24]).

We consider mixed integer programs of the form (1), defined as a tuple
(A,b, c, I). We describe how these quantities are constructed from G.

Variables The core of our optimization are the variables that affect the cost of
the transformed circuit. We also need some variables that help to avoid cycles.
For all i, j ∈ G, we define the following variables:

– gji ∈ {0, 1}, g
j
i = 1 iff gi belongs to the clique Cj .

The gate j will be the representative of Cj . Namely, gjj = 1 iff Cj is non-
empty. Fixing the representative reduces the number of symmetric solutions
significantly. This also allows us to compute the cost of all the cliques.

– `j ∈ R is the circuit topological level on which the gate j is evaluated. All
the gates with the same level are evaluated simultaneously. Each gate must
have a strictly larger level than all its predecessors.

– cj ∈ {0, 1}, cj = 1 iff the gate gj is fused with some other gate.
Each gate should have a strictly larger level than all its conditional prede-
cessors iff it it is merged with some other gate.

Cost function We minimize the value
∑|G|

j=1 cost(op
G(j)) ·gjj , which is the total

cost of the gates left after fusing, except the new oblivious choice gates, and the
new boolean operations possibly introduced for the weakest preconditions. This
is sufficient as far as the cost of the oblivious choice and the bit operations is
smaller than the cost of the gate operation being merged.

Inequality constraints The constraints Ax ≤ b state the relations between
the variables. Since Ax ≥ b can be expressed as −Ax ≤ −b, we may as well use
≤, ≥, and = relations in the constraints.

Building blocks We describe how some logical statements are encoded as sets of
constraints. Their correctness can be easily verified by case distinction.

Multiplication by a bit. z = x ·y for x ∈ {0, 1}, y, z ∈ R, where C is a known
upper bound on y. We denote this set of constraints P(C, x, y, z).
– C · x+ y − z ≤ C;
– C · x− y + z ≤ C;
– C · x− z ≥ 0.

Threshold. y = 1 if
∑

x∈X x ≥ A, and y = 0 otherwise, for ∀x ∈ X : x ∈
{0, 1}, y ∈ R, some constant A. We denote this set of constraints F(A,X , y).
– P(1, y, x, zx) for all x ∈ X , where zx are fresh variable names;
– A · y −

∑
x∈X zx ≤ 0;

–
∑

x∈X x−
∑

x∈X zx + (A− 1)y ≥ (A− 1).
Implication of inequality. (z = 1) =⇒ (x− y ≥ A) for z ∈ {0, 1}, x, y ∈ R,

some constant A, where C is a known upper bound on x, y. We denote this
constraint by G(C,A, x, y, z).
– (C +A) · z + y − x ≥ C.

Structural Constraints These ensure that the fusing forms a correct graph.

1. Only mutually exclusive gates may belong to the same clique.
gji + gjk ≤ 1 for i, k ∈ G, ¬mexG(i, k).

2. Each gate belongs to exactly one clique.∑|G|
j=1 g

j
i = 1 for all i ∈ G.

3. If the clique Cj is non-empty, then it contains the gate j. This makes gate j
the representative of Cj .

gjj − g
j
i ≥ 0 for all i, j ∈ G.

4. We assign an operation to each clique, based on its representative: opG(Cj) =
opG(j). The gate i may to belong to Cj only if opG(Cj) = opG(i).

gji = 0 if opG(i) 6= opG(j).
5. Prevent from fusing gates with cost 0, reducing the search space.
gjj = 1 for all j such that cost(opG(j)) = 0.

6. The cliques are not allowed to form cycles. We assign a level `i to each gate
i. If k is a predecessor of i, then `k < `i. To avoid degenerate solutions to
the ILP, we introduce some difference between the levels: `i − `k ≥ 1. If a
gate i belongs to the clique Cj , then `i = `j . We take |G| as the maximal
value for `i, since we need at most |G| distinct levels.
(a) `i − `k ≥ 1 for all i, k ∈ G, predG(i, k);
(b) G(|G|, 0, `i, `j , gji), G(|G|, 0, `j , `i, gji) for all i, j ∈ G;
(c) `i ≥ 0, `i ≤ |G|.
We need to take into account the conditional predecessors. Let cj = 1 iff the

gate j is fused with some other gate. That is, either gjj = 0 (j belongs to

some other clique), or
∑

i∈G,i 6=j g
j
i ≥ 1 (there is some other gate in Cj).

(d) dj = (1− gjj) for all j ∈ G;

(e) F(1, {dj} ∪ {gji | i ∈ G, i 6= j}, cj) for all j ∈ G;
Finally, if ci = 1 (i is fused with some other gate), then lk − li ≥ 1 (i is
computed strictly before its conditional predecessor k).
(f) G(|G|, 1, `i, `k, ci) for all i, k ∈ G, cpredG(i, k);

Binary constraints Dealing with a mixed integer program, we need to state
explicitly that gji ∈ {0, 1} for all i, j ∈ G. The condition cj ∈ {0, 1} may remain

implicit, as it follows from gji ∈ {0, 1} and the inequality constraints for cj .

6 Implementation and evaluation

We have implemented the transformation of the program to a circuit, the opti-
mizations, and the transformation of the circuit according to the obtained set of
cliques in SWI-Prolog [25]. The ILP is solved externally by the GLPK solver [24].

The optimizations have been tested on small programs. Since we are dealing
with a relatively new problem, there are no good test sets, and we had to invent
some sample programs ourselves. In general, the programs with private condi-
tionals are related to evaluation of decision diagrams with private decisions. We
provide five different programs, each with its own specificity.
• loan (31 gates, integer): A simple binary decision tree, which decides whether

a person should be given a loan, based on its background. Only the comparisons
that are needed for making decisions are fused.
• sqrt (123 gates, integer): Uses binary search to compute the square root of

an integer. Since the input is private, it makes a fixed number of iterations. The
division by 2 is on purpose inserted into both branches, modified in such a way
that it cannot be trivially outlined without arithmetic theory.
• driver (53 gates, floating point [26]): We took the decision tree that is applied

to certain parameters of a piece of music in order to check how well it wakes up
a sleepy car driver [27], assuming a privacy-preserving setting of this task. Some
decisions require more complex operations, such as logarithms and inverses.
• stats (68 gates, floating point): choosing a particular statistical test may

depend on the type of data (ordinal, binary). Here we assume that the decision
bits (which analysis to choose) are already given, but are private. The program
chooses amongst the Student t-test, the Wilcoxon test, the Welch test, and the
χ2 test, whose privacy-preserving implementations are taken from [28].
• erf (335 gates, integer): The program evaluates the error function of a float-

ing point number, which is represented as a triple (sign, significand, exponent)
of integers [26]. The implementation is taken from [29]. The method chosen to
compute the answer depends on the range in which the initial input is located.

All our programs are vectorized. During optimization, we treated vector op-
erations as single gates. We ran the optimizer on a Lenovo X201i laptop with a
4-core Intel Core i3 2.4GHz processor and 4GB of RAM running Ubuntu 12.04.
The optimization times are given in the Table 1. The rows correspond to differ-
ent strategies, where lp1 is the ILP approach described in Sec. 5.2, and lp2 is an
extended ILP that takes into account the new oblivious choice gates, and the
gates computing weakest preconditions. The columns are the programs, where
the numbers after the program name (for stats and erf) specify the depths of the
subcircuits into which the gates were merged before optimization, being treated
as single gates. In general, there was little variation in optimization times for
depths of 2 or more. The greatest difference was noted for stats and erf, where the

Table 1. Optimization times

times (ms) times (s)

driver sqrt loan stats, 0 stats, 1-5 erf, 0 erf, 1-7

greed 75-125 495-571 41-53 103-123 181-185 43.5 2.5-8.5
lp1 118-181 584-780 83-97 142-170 292 47 2.9-8.2
lp2 171-381 593-1300 115-121 214-262 16291 47.6 15.3-52.5

Table 2. Execution times

n = 10 driver sqrt loan erf stats

time (ms) 156-193 71-77 12-15 85-121 1700-1750
w/o opt. 156 73 16 91 1760

best strat. greed1 depth 0 depth 0 depth 1,5+ lp1, lp2
worst strat. greed1 depth 0 depth 1 greed2 depth 0 depth 2-4 greed1,greed2

n = 103 driver sqrt loan erf

time (ms) 588-809 249-291 32-41 275-334
w/o opt. 705 283 51 316

best strat. lp1, lp2, greed1 depth 0 depth 0 depth 1,4+
worst strat. greed1 depth 0 greed1 depth 3 greed2 depth 0 depth 2,3

n = 106 driver sqrt loan erf stats, n = 100

time (s) 200-336 97-120 10-14 95-111 136-146
w/o opt. 256 121 19.5 108 148

best strat. lp1, lp2, greed1 depth 0 depth 0 depth 1,4+ no preference
worst strat. greed1 depth 0 depth 2+ greed2 depth 0 depth 2,3 no preference

optimization time was significantly larger without constructing the subcircuits
first. The overhead comes mainly from looking at all possible pairs of mutually
exclusive gates. The details of lp2, as well as the construction of subcircuits from
gates, are given in the full version of this paper [30].

We compiled the optimized graphs into programs, executed them on Share-
mind (three servers on a local 1Gbps network; the speed of the network is the
bottleneck in these tests) and measured their running time. Each test was run
100 times on n = 10, n = 103 inputs, and 10 times on n = 106 inputs. The sum-
mary of the results is given in Table. 2. For each program, we give the runtime
range of its optimized versions, the runtime of the non-optimized version, and
which strategies have been the best and the worst. Here greed1 is the strategy
that chooses the largest clique first, and greed2 fuses the gates pairwise.

Since the runtime depends also on the number of rounds that we did not op-
timize, our results are not good for small inputs. However, as the total amount
of communication and computation increases, our optimized programs are be-
coming more advantageous. While greedy approaches may outperform ILP ap-
proaches for smaller inputs, ILP is more stable for large inputs.

In general, it is preferable not to merge the initial gates into subcircuits
(take depth 0). The greedy strategies work quite well for the given programs,
but their results are too unpredictable and can be very good as well as very
bad. The results of ILP are in general better. In practice, it would be good to

estimate the approximate runtime of the program before it is actually executed,
so that we could take the best variant. Our optimizations seem to be most useful
for library functions, where several different optimized versions can be compiled
and benchmarked before choosing the final one.

7 Conclusion

We have presented a generic optimization for programs written in imperative
languages for privacy-preserving computation platforms. We have benchmarked
some programs on Sharemind, and see that we indeed can obtain better runtimes.
As future work, we might consider decomposing blackbox operations deeper into
subprotocols, allowing to partially fuse different blackbox operations.
Acknowledgements. Supported by Estonian Research Council, grant IUT27-1.

References

1. Yao, A.C.: Protocols for secure computations (extended abstract). In: CSF 1982,
pp. 160–164. IEEE Computer Society (1982)

2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.), STOC
1987, pp. 218–229. ACM (1987)

3. Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.), EUROCRYPT, vol. 1807
of LNCS, pp. 316–334. Springer (2000)

4. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party computa-
tion system. In: SSYM 2004, USENIX Security Symposium, pp. 287–302, Berkeley,
CA, USA. USENIX Association (2004)

5. Bogdanov, D., Laur, D., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., López, J. (eds.), ESORICS, vol. 5283 of
LNCS, pp. 192–206. Springer (2008)

6. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving
aggregation of multi-domain network events and statistics. In: SSYM 2010, USENIX
Security Symposium, pp. 223–239, Washington, DC, USA. USENIX Association
(2010).

7. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS 2015. The Internet Society (2015)

8. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of
privacy-preserving applications. In: Russo, A., Tripp, O. (eds.), PLAS@ECOOP 2014,
page 53. ACM (2014)

9. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: Hicks, M.W. (ed.), PLAS 2007, pp. 21–30. ACM
(2007)

10. Schröpfer, A., Kerschbaum, F., Müller, G.: L1 - an intermediate language for
mixed-protocol secure computation. In: COMPSAC 2011, pp. 298–307. IEEE Com-
puter Society (2011)

11. Mitchell, J.C., Sharma, R., Stefan, D., Zimmerman, J.: Information-flow control
for programming on encrypted data. In: Chong, S. (ed.), CSF 2012, pp. 45–60. IEEE
Computer Society (2012)

12. Franz, M., Holzer, A., Katzenbeisser, S., Schallhart, C., Veith, H.: CBMC-GC: an
ANSI C compiler for secure two-party computations. In: Cohen, A. (ed.), CC 2014,
vol. 8409 of LNCS, pp. 244–249. Springer (2014)

13. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private
distributed computation. In: Sadeghi, A-R., Gligor V.D., Yung, M. (eds.), CCS 2013,
pp. 813–826. ACM, 2013.

14. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. International Journal of Information
Security, pp. 403–418 (2012)

15. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.),
CRYPTO, vol. 7417 of LNCS, pp. 643–662. Springer (2012)

16. Pruulmann-Vengerfeldt, P., Kamm, L., Talviste, R., Laud, P., Bogdanov, D.: Ca-
pability Model, March 2012. UaESMC Deliverable 1.1.

17. Planul, J., Mitchell, J.C: Oblivious program execution and path-sensitive non-
interference. In: CSF 2013, pp. 66–80. IEEE (2013)

18. Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying circuit clauses for secure
computation. Cryptology ePrint Archive, Report 2016/685 (2016). http://eprint.

iacr.org/2016/685.
19. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty

computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.), PKC
2009, vol. 5443 of LNCS, pp. 160–179. Springer (2009)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley Series in Discrete
Mathematics & Optimization. John Wiley & Sons (1998)

21. Zahur, S., Evans, D.: Obliv-c: A language for extensible data-oblivious computa-
tion. Cryptology ePrint Archive, Report 2015/1153 (2015). http://eprint.iacr.

org/2015/1153.
22. Rastogi, A., Hammer, M.A., Hicks, M.W.: Wysteria: A programming language

for generic, mixed-mode multiparty computations. In: SP 2014, pp. 655–670, IEEE
Computer Society (2014)

23. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: SP 2014, pp. 623–638, IEEE Computer Society (2014)

24. GLPK. GNU Linear Programming Kit. http://www.gnu.org/software/glpk.
25. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and
Practice of Logic Programming, pp. 67–96 (2012)

26. Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite
collision analysis. International Journal of Information Security, pp. 1–18 (2014)

27. Liu, N-H., Chiang, C-Y., Hsu, H-M.: Improving driver alertness through music
selection using a mobile eeg to detect brainwaves. Sensors, pp. 8199–8221 (2013)

28. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: a tool for cryptographically
secure statistical analysis. Cryptology ePrint Archive, Report 2014/512 (2014). http:
//eprint.iacr.org/2014/512.

29. Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers in
secure multiparty computations. In: ISC 2014, pp. 179–197. Springer (2014)

30. Laud, P., Pankova, A.: Optimizing Secure Computation Programs with Private
Conditionals (full version). Cryptology ePrint Archive, Report 2016/942 (2016).
http://eprint.iacr.org/2016/942.

