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Overview

Computationally secure information flow.
A program analysis, correct wrt. above.

Confidentiality in cryptographic protocols.

A very simple analysis.
Using the def. of secure encryption.
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Problem statement

public
} outputs

inputs outputs

secret
inputs {

Inputs come from a known source, i.e. the distribution of
Inputs is known.

# Public outputs should be independent of secret inputs.
# We want tools checking that.

# The input to these tools is the program text.
s ...possibly also the description of input distribution.
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Programming language — syntax

The WHILE-language (simple imperative language).

P = x:=o0(x4q,...,xg)
skip

P1; P2

of b then Py else Po
while b do P’

b,X,X1,...,Xx € Var. o € Op. €nc, Gen € Op.
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Programming language — semantics

Denotational semantics: [P] : State — State .
State = Var — Val.
State | has an extra element L, denoting nontermination.

For each o € Op with arity k&, a function [o] : Val* — Val is
given.
Semantics is defined inductively over program structure.

This is the traditional setup. ..
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Cryptographic considerations

# Security definitions in theoretical cryptography require
s primitives with probabilistic functionality;
s the security parameter.

# Also, all values are bit-strings.

Therefore:

® [P] ={[P]n}tnen;

® [P], : State,, — D(State, | );
® State,, = Var — Val,;

#® Val, ={0,1}".

Also, [0] = {[0]n tnen, [0]n : Val®¥ — D(Val,).
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Computationally secure information flow

A program has CSIF, if its public outputs are
computationally independent from its secret inputs.

#® Secret inputs — initial values of variables in
Varg C Var.

# Public outputs — final values of variables in
Varp C Var.

Let D,, € D(State,) be the distribution of input states for
security parameter n. Computational independence means:

ﬂ(3n|Varsatn‘Varp) Sy — Dy, Ty [[P]]n(sn)ﬂ ~

{|(5n|Varsat;1‘Varp) - Sn, Sf/rz N Dnvtf/n, N [[P]]H(Sf/n)l}
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Programs running in polynomial time

This def. is good for programs running in expected
polynomial time.

If a program leaks information only after exponentially long
time, then the previous definition still considers it insecure.

® Let P be a program that makes at most ¢(n) steps of P.

If P has not stopped, then P* stops in a special state L.
(¢ — a polynomial)

® P’ can be expressed in the WHILE-language.
s The rewrite of P to P is quite simple.

P is secure :<= V¢ : P! is secure.
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Timing-insensitive def.

# Definition on previous slide Is timing-sensitive.
s This is good.

# Sometimes we do not want timing sensitivity.

s Good timing-sensitive analyses are hard to
construct.

s Timing issues seem to be orthogonal to
computational issues.

P is secure ;< 3¢y V¢ > {, : Pt is secure.

# To analyse P, we analyse P*.

s ...but the number of executed steps is only checked
at loop heads.
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Program analysis’s approach

“Secure”

or

# Having secure information flow is uncomputable in
general.

Desc. of inputs “Maybe not secure”

# Description of inputs — whatever is known about D.
s ...and expressible in the domain of the analysis.
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Domain of the analysis

Analysis maps the description of the input distribution to
the description of the output distribution.

Description of D = {D, },,en IS

(X, X) € P(P(Var) x P(Var)) x P(Var).

s (X,Y)eX,If X andY are independentin D.

s k € X, If (the value of) k is distributed like a key.

Assume the program does not change the variables In
Varg.

If (Varg, Varp) € Xoutput, then the program has secure
Information flow.

The analysis is defined inductively over the program
structure.
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Example: analysing assignments

Consider the program x := o(xy, .. ., Xk).
If (X U {X17 coee 7Xk}7 Y) < xinput
then (X U{xy,...,xx,x},Y) € Xoutput-



Analysing encryptions — problems

Let k be distributed like a key In Djypyt.

# Consider the program 1 := k + 1.
Then {1} is not independent of {k} IN Doytput-

o Consider the program x := Enc(k,y).
Then {x} Is not iIndependent of {k} IN Doytput-

o To check whether x and k come from the same or
from different samples of Dgyput, try to decrypt x
with k.

These two cases should be distinguished as 1 is usable for

decryption but x Is not.
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°

Encrypting black boxes

Let k € Var. Let S,, be a program state.

Sn(|k]e) denotes a black box that encrypts with k. l.e.
s S,(k|e) has an input tape and an output tape;
s When a bit-string w Is written on the Its tape,

[Enc]n(Sh(k), w)

IS Invoked and the result written to the output tape.

Indistinguishabllity can be defined for distributions over
black boxes.

s Independence can be defined, too.

Security of ([Gen|, [Enc]) Is defined as the
iIndistinguishability of certain black boxes.
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Security of encryption

® (G,¢&)Is secure against CPA, iff

{

Ex(+)

k=G =

¢1(0)

® (G, &) Is which-key concealing, iff

{( Ex() b| Er ()

([Gen], [Enc]) must satisfy both.

. k— G}

) ¢ kK = G = {(E())

Ex()]) : k< G}




Modified domalin of the analysis

® Let Var = Var W {[x]¢ : x € Var}.
# Description of a distribution D is

(X, %K) € P(P(Var) x P(Var)) x P(Var) .

s (X,Y)eXIif X andY are independentin D.

s k € X, If the distribution of |k|¢ according to D Is

Indistinguishable from

[Enc].(-) |
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Analysing encryptions

Consider the program x := Enc(k, y).
If (X,Y) € Xinput
and k € Kiyput
and ({[kle}, X UY U {y}) € Xinput

then (X U {x},Y) € Xoutput-
Generally ({(k]¢},{k|¢}) € Xinput, hence ({x}, {kle}) € Xoutput-

If we have a program 1 :=k + 1, then ({1}, {|k]e}) € Xoutput-



On security def. of encryptions

In the definition a system is considered, consisting of
s the adversary,
s the encrypting black box,

o ...

The key Is Iinside the black box.
s l.e. the usage of the key Is quite restricted.

Programming language puts no restrictions on the
usage of the variable containing the key.

Requirement ({k]¢}, X UY U{y}) € Xinput gives the
necessary restrictions.
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Analysing key generations

Consider the program k := Gen().
|f (X, Y) - xinput
then k ¢ :Koutput

and (X U{[Kle},Y U {[Kle}) € Xourpur



Analysing If-then-else

Consider the program if b then Py else Ps.

-. Let {Xl, .« o e 7Xk} — Varasgn g Va.r be Ntii b

the set of variables assigned toin ~~ *1 "= *1
Xfalse — x

P and Ps. 1 : 1

® Let Var’ = Var U ;{:cr.ue —

true true . false false kT %k
{N7X1 7"°7Xk 7X1 7"'7Xk Xfalse._X
. kT

# Program at right has the same ptrue
functionality. pfalse

® Pieis Py, where each x; is xq 1= N7 xfrue: glalse

replaced with xtme,

7 gtrue . yfal
» Similarly for Pflse, Xy i= N 7 x{rue ; xfalse
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Analysing 7 :

Consider the program x :=b?7y:z. Lety,z € Kiyput-

® I1(X,Y) € Xinpus @Nd ({[yle J, {[z]e }, X UY U{b}) € Xinpu
then (X U{lx]e}, Y U{lx]e}) € Xoutput-

o If ({[yle,|z]e}, {b}) € Xinput then x € Koutput-

(X1,...,X%) € X means

(Xl,XQ) cX
(X1 U X9, X3)eX
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Analysing loops

Consider the program while b do P.

Its analysis is the repeated application of the analysis of

if b then P else skip

It stabilises due to finiteness of the domain and monotonicity

of the analysis.
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Active adversaries — problem statement
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M remains confidential if for all adversaries A, the adver-

sary’s experience is independent of M.
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_anguage for protocols

A party Is a sequence of statements. Statements are:

k := Gen X := random
x:=(y1,...,¥n) y:=m"(x)
x := encrg(y) y := decry(x)
send x X := receive
check(x = y)

Protocol is a set of parties.

Some additional statements (generation of long-term
keys) are done at the very beginning of execution.

Each variable may occur at LHS at most once.
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Semantics

Protocol runs in parallel with the adversary.

#® Adversary takes care of message forwarding.

# If something goes wrong during the execution of a
party, then this party becomes stuck.
» check(x = y) returns false;
s operand types do not match the operator;
s a message does not decrypt.

# Parties execute one statement at a time, the adversary
does the scheduling.

» When a party gets stuck, the adversary is not
notified immediately.
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Adversary’s experience

# Adversary learns the values of the variables x, where
send x IS a statement in some party.

# No timing information is available, because the
adversary schedules.

#® Therefore there is again a set of public variables Varp,
whose values make up the entire experience.

Varp = {x| some party contains send x}
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Denning-style analysis

# Suppose a statement x := O(x4,...,xy) OCCUIS INn SsoMe
party.
s x4,...,%p are all variables occuring in RHS.

s O can be any operation — tupling, projection,
decryption, encryption.

® Thereis information flow from x; to x.
s Denote x; = x.

® Protocol is insecure, if M = x for some x € Varp.
o Otherwise it Is secure.

An extremely conservative analysis.
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Security against CCA

Encryption system (G, £, D) iIs secure against CCA, if

{( k() | Dr(-)]) = k< G}
IS indistinguishable from
{(€£(0) || Di(-)]) : k< G|

by all adversaries that do not give the output of the left black

box to the right black box.
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°

Malin idea

Replace statements x := encri(y) with statements
x := encrx(Z), where [Z] = 0.

s Z IS anew variable.

This makes the information flow relation = sparser.

The replacement is valid only when certain conditions
are satisfied.
s Valid = does not change the adversary’s experience.
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Conditions for replacing

When replacing the statement x := encrg(y). ..

# We must know exactly, where else the key k is used.
s The same key may occur under different names.
s To find it out, we symbolically execute the protocol.

# When computing the values of the variables in Varp,
the key k may only be used to encrypt and decrypt.

# We may not decrypt the ciphertexts created with key k.
» We achieve this with a program transformation.
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Symbolic execution of protocols

We assign a term to each variable. They terms 7" are

const(x)
secret(M)
key (x
key(l)
random(l)

stuck

® | — statement label.

tuple™ (T, ..., Ty)
mi"(T)

[

encr(l, Tk, Ty)
decr (T, Ty)

received (1)

® ...(x)Is assigned to the variable x that is initialised
before the run of the protocol.

#® There are some obvious simplification rules.
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Symbolic execution of Check-S

# There are some rules telling us, when the bit-strings
corresponding to two terms are certainly different.

® For check(x = y), we check whether terms assigned to
x and y are certainly different.

s If yes, the protocol party is stuck.

s If no, then we replace the more complex term with
the simpler one everywhere.
s Complexity is the same as size.

s But: the terms containing subterms received(l) are
the most complex.

We consider the key corresponding to key(l) to be used ex-
actly where the subterm key(l) occurs.
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Replacing decryptions

Let k be used for encryption at statements

X1 1= ENCry, (yl), covy Xp &= €nC7°km(Ym)

Replace z := decry(w) by

Z .= case w of

X1 —Y1 No change to
.............. adversary’s
Xm — Vm view

else — decry(w)
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Semantics of case-constructs

# =z is assigned the first y;, where x; matches w.

# If this y; has not been defined yet, then the protocol
party gets stuck.

s This never happens in our transformed protocols.
# A yet undefined x; never matches.
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Ciphertext integrity

An encryption system (G, €, D) has ciphertext integrity, if:

No PPT algorithm A with access to oracles |€;(-) | and

Di(+) | can submit to | D (-) | a bit-string y, such that

® D, (y) exists, I.e. y is a valid ciphertext;

# y was not an output of | Ex(-) |.

l.e. we need no else-clause.

# If nothing matches in a case-statement, then the
protocol party gets stuck.

See [Bellare and Namprempre, ASIACRYPT 2000] for
constructions of encryption primitives.
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°

The replacement — wrap-up

Do the symbolic execution.
Choose a key key(x) or key(l), such that

» Interms assigned to y € Varp, this key(...) occurs
only as the key in en-/decryptions.

Replace the decryption statements z := decrg(y), where
the term assigned to k Is this key(. . .).

» Replace them with case-statements.

Replace the encryption statements x := encrg(y), where
the term assigned to k Is this key(. . .).

» Replace them with x := encry(Z).
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Getting rid of case-statements

Z:=Ccase W of X1 — Y1 -** Xp — Vm,

where

Xy = encry,(y1), ..., Xp:= €ncrk,(¥m)

IS replaced by
wait(s)
check(w = x;)
Z =y
and signal(s) Is added after x; := encryg, (yi).

i IS chosen nondeterministically (we get m new protocols).
s IS a new semaphore.

Executing wait(s) before signal(s) gets stuck.
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Handling wast-s and signal-s

# in the next round, the symbolic execution must proceed
In an order consistent with wait-s and signal-S.

s We may have to do simultaneous symbolic execution
of the parties.

# |f there are cyclic dependencies, then the statements In
and after the cycle are stuck.
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Conclusions

o Cryptographic effects can be faithfully abstracted away.
# Resulting analyses are not overwhelmingly complex.
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°

Future work

Track the keys in the first analysis presented.

Do not track the keys in an analysis with active
adversaries.

s Assume that keys are never sent out.

More expressive language for the second analysis.
More cryptographic primitives.

s Public key encryption, digital signatures,...
Other security properties. (Integrity)

Different security definitions for cryptographic primitives.
s Encryption as a PRP...

One-way functions.
» New confidentiality definition is necessary.
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