Confidentiality analyses correct wrt. computational semantics

Peeter Laud
peeter.l@ut.ee

Tartu Ülikool
Cybernetica AS
Overview

- Computationally secure information flow.
- A program analysis, correct wrt. above.
- Confidentiality in cryptographic protocols.
- A very simple analysis.
- Using the def. of secure encryption.
Problem statement

Inputs come from a known source, i.e. the distribution of inputs is known.

- Public outputs should be independent of secret inputs.
- We want tools checking that.
- The input to these tools is the program text.
 - ... possibly also the description of input distribution.
Programming language — syntax

The WHILE-language (simple imperative language).

\[
P ::= \begin{align*}
 & x := o(x_1, \ldots, x_k) \\
 | & \text{skip} \\
 | & P_1; P_2 \\
 | & \text{if } b \text{ then } P_1 \text{ else } P_2 \\
 | & \text{while } b \text{ do } P'
\end{align*}
\]

\(b, x, x_1, \ldots, x_k \in \text{Var. } o \in \text{Op. } \text{Enc, Gen} \in \text{Op.}\)
Programming language — semantics

Denotational semantics: $[P] : \text{State} \rightarrow \text{State}_\bot$.

State = Var \rightarrow Val.

State$_\bot$ has an extra element \bot, denoting nontermination.

For each $o \in \text{Op}$ with arity k, a function $[o] : \text{Val}^k \rightarrow \text{Val}$ is given.

Semantics is defined inductively over program structure.

This is the traditional setup...
Cryptographic considerations

- Security definitions in theoretical cryptography require primitives with probabilistic functionality;
- the security parameter.
- Also, all values are bit-strings.

Therefore:
- \([P] = \{[P]_n\}_{n \in \mathbb{N}}\);
- \([P]_n : \text{State}_n \rightarrow \mathcal{D}(\text{State}_{n \perp})\);
- \(\text{State}_n = \text{Var} \rightarrow \text{Val}_n\);
- \(\text{Val}_n = \{0, 1\}^*\).

Also, \([o] = \{[o]_n\}_{n \in \mathbb{N}}, [o]_n : \text{Val}_n^k \rightarrow \mathcal{D}(\text{Val}_n)\).
Computationally secure information flow

A program has CSIF, if its public outputs are computationally independent from its secret inputs.

- **Secret inputs** — initial values of variables in $\text{Var}_S \subseteq \text{Var}$.
- **Public outputs** — final values of variables in $\text{Var}_P \subseteq \text{Var}$.

Let $D_n \in \mathcal{D}(\text{State}_n)$ be the distribution of input states for security parameter n. Computational independence means:

$$\{ (s_n|\text{Var}_S, t_n|\text{Var}_P) : s_n \leftarrow D_n, t_n \leftarrow [P]_n(s_n) \} \approx$$

$$\{ (s_n|\text{Var}_S, t'_n|\text{Var}_P) : s_n, s'_n \leftarrow D_n, t'_n \leftarrow [P]_n(s'_n) \}$$
Programs running in polynomial time

This def. is good for programs running in expected polynomial time.

If a program leaks information only after exponentially long time, then the previous definition still considers it insecure.

Let \(P^\ell \) be a program that makes at most \(\ell(n) \) steps of \(P \). If \(P \) has not stopped, then \(P^\ell \) stops in a special state \(\bot \). (\(\ell \) — a polynomial)

\(P^\ell \) can be expressed in the WHILE-language.

The rewrite of \(P \) to \(P^\ell \) is quite simple.

\[P \text{ is secure} \iff \forall \ell : P^\ell \text{ is secure.} \]
Timing-insensitive def.

Definition on previous slide is timing-sensitive.
- This is good.

Sometimes we do not want timing sensitivity.
- Good timing-sensitive analyses are hard to construct.
- Timing issues seem to be orthogonal to computational issues.

P is secure \iff \exists \ell_0 \forall \ell \geq \ell_0 : P^\ell \text{ is secure.}

To analyse P, we analyse P^\ell.
- ...but the number of executed steps is only checked at loop heads.
Having secure information flow is uncomputable in general.

Description of inputs — whatever is known about D.

... and expressible in the domain of the analysis.
Domain of the analysis

Analysis maps the description of the input distribution to the description of the output distribution.

Description of $D = \{D_n\}_{n \in \mathbb{N}}$ is $(\mathcal{X}, \mathcal{K}) \in \mathcal{P}(\mathcal{P}(\text{Var}) \times \mathcal{P}(\text{Var})) \times \mathcal{P}(\text{Var})$.

- $(X, Y) \in \mathcal{X}$, if X and Y are independent in D.
- $k \in \mathcal{K}$, if (the value of) k is distributed like a key.

Assume the program does not change the variables in Var_S.

If $(\text{Var}_S, \text{Var}_P) \in \mathcal{X}_{\text{output}}$, then the program has secure information flow.

The analysis is defined inductively over the program structure.
Example: analysing assignments

Consider the program $x := o(x_1, \ldots, x_k)$.

If $(X \cup \{x_1, \ldots, x_k\}, Y) \in X_{\text{input}}$

then $(X \cup \{x_1, \ldots, x_k, x\}, Y) \in X_{\text{output}}$.
Let k be distributed like a key in D_{input}.

- Consider the program $l := k + 1$. Then $\{l\}$ is not independent of $\{k\}$ in D_{output}.

- Consider the program $x := \text{Enc}(k, y)$. Then $\{x\}$ is not independent of $\{k\}$ in D_{output}.

- To check whether x and k come from the same or from different samples of D_{output}, try to decrypt x with k.

These two cases should be distinguished as l is usable for decryption but x is not.
Encrypting black boxes

Let \(k \in \text{Var} \). Let \(S_n \) be a program state.

- \(S_n([k]\mathcal{E}) \) denotes a black box that encrypts with \(k \). I.e.
 - \(S_n([k]\mathcal{E}) \) has an input tape and an output tape;
 - When a bit-string \(w \) is written on the its tape,

\[
\begin{align*}
\mathcal{E}_{\text{nc}}(S_n(k), w)
\end{align*}
\]

is invoked and the result written to the output tape.

- Indistinguishability can be defined for distributions over black boxes.
 - Independence can be defined, too.

- Security of \((\mathcal{G}_{\text{en}}, \mathcal{E}_{\text{nc}}) \) is defined as the indistinguishability of certain black boxes.
Security of encryption

- \((G, E)\) is secure against CPA, iff

\[
\{ [E_k(\cdot) : k \leftarrow G] \} \approx \{ [E_k(0) : k \leftarrow G] \}
\]

- \((G, E)\) is which-key concealing, iff

\[
\{ ([E_k(\cdot), E_{k'}(\cdot)] : k, k' \leftarrow G] \} \approx \{ ([E_k(\cdot), E_k(\cdot)] : k \leftarrow G] \}
\]

\([\text{Gen}, [\text{Enc}]]\) must satisfy both.
Modified domain of the analysis

Let \(\widetilde{\text{Var}} = \text{Var} \uplus \{ [x]_\mathcal{E} : x \in \text{Var} \} \).

Description of a distribution \(D \) is

\[
(\mathcal{X}, \mathcal{K}) \in \mathcal{P}(\mathcal{P}(\widetilde{\text{Var}}) \times \mathcal{P}(\widetilde{\text{Var}})) \times \mathcal{P}(\text{Var}) .
\]

\((X, Y) \in \mathcal{X} \) if \(X \) and \(Y \) are independent in \(D \).

\(k \in \mathcal{K} \), if the distribution of \([k]_\mathcal{E}\) according to \(D \) is indistinguishable from \([\mathcal{E}nc]_k(\cdot)\).
Analysing encryptions

Consider the program \(x := \text{Enc}(k, y) \).

If \((X, Y) \in X_{\text{input}}\)

and \(k \in K_{\text{input}}\)

and \(\{[k]_{\mathcal{E}}\}, X \cup Y \cup \{y\}\) \(\in X_{\text{input}}\)

then \((X \cup \{x\}, Y) \in X_{\text{output}}\).

Generally \((\{[k]_{\mathcal{E}}\}, \{[k]_{\mathcal{E}}\}) \in X_{\text{input}}, \text{ hence } (\{x\}, \{[k]_{\mathcal{E}}\}) \in X_{\text{output}}.\)

If we have a program \(l := k + 1 \), then \((\{1\}, \{[k]_{\mathcal{E}}\}) \not\in X_{\text{output}}.\)
On security def. of encryptions

In the definition a system is considered, consisting of
- the adversary,
- the encrypting black box,
- ...

The key is inside the black box.
- I.e. the usage of the key is quite restricted.

Programming language puts no restrictions on the usage of the variable containing the key.

Requirement \((\{ [k] \}, X \cup Y \cup \{ y \}) \in X_{\text{input}} \) gives the necessary restrictions.
Analysing key generations

Consider the program $k := Gen()$.

If $(X, Y) \in \mathcal{X}_{\text{input}}$

then $k \in \mathcal{K}_{\text{output}}$

and $(X \cup \{[k]_{\mathcal{E}}\}, Y \cup \{[k]_{\mathcal{E}}\}) \in \mathcal{X}_{\text{output}}$.
Analysing if-then-else

Consider the program \(\text{if } b \text{ then } P_1 \text{ else } P_2 \).

- Let \(\{x_1, \ldots, x_k\} = \text{Var}_{\text{asgn}} \subseteq \text{Var} \) be the set of variables assigned to in \(P_1 \) and \(P_2 \).

- Let \(\text{Var}' = \text{Var} \cup \{N, x_1^{\text{true}}, \ldots, x_k^{\text{true}}, x_1^{\text{false}}, \ldots, x_k^{\text{false}}\} \)

- Program at right has the same functionality.

- \(P_1^{\text{true}} \) is \(P_1 \), where each \(x_i \) is replaced with \(x_i^{\text{true}} \).

- Similarly for \(P_2^{\text{false}} \).
Consider the program $x := b \ ? \ y : z$. Let $y, z \in \mathcal{K}_{\text{input}}$.

- If $(X, Y) \in \mathcal{X}_{\text{input}}$ and $(\{y\}_E, \{z\}_E, X \cup Y \cup \{b\}) \in \mathcal{X}_{\text{input}}$
 then $(X \cup \{x\}_E, Y \cup \{x\}_E) \in \mathcal{X}_{\text{output}}$.

- If $(\{y\}_E, \{z\}_E, \{b\}) \in \mathcal{X}_{\text{input}}$ then $x \in \mathcal{K}_{\text{output}}$.

$(X_1, \ldots, X_k) \in \mathcal{X}$ means

$(X_1, X_2) \in \mathcal{X}$
$(X_1 \cup X_2, X_3) \in \mathcal{X}$

\[\cdots \]
$(X_1 \cup \cdots \cup X_{k-1}, X_k) \in \mathcal{X}$
Analysing loops

Consider the program \(\text{while } b \text{ do } P \). Its analysis is the repeated application of the analysis of

\[
\text{if } b \text{ then } P \text{ else skip}
\]

It stabilises due to finiteness of the domain and monotonicity of the analysis.
Active adversaries — problem statement

M remains confidential if for all adversaries \mathcal{A}, the adversary’s experience is independent of M.

Diagram:
- Secret M originates from \mathcal{M} and flows to S.
- S is connected to A and B.
- A and B exchange information.
- \mathcal{A} observes the interactions.
Language for protocols

A party is a sequence of statements. Statements are:

- \(k := Gen \)
- \(x := \text{random} \)
- \(x := (y_1, \ldots, y_m) \)
- \(y := \pi_i^m(x) \)
- \(x := \text{encr}_k(y) \)
- \(y := \text{decr}_k(x) \)
- \(\text{send } x \)
- \(x := \text{receive} \)
- \(\text{check}(x = y) \)

Protocol is a set of parties.

Some additional statements (generation of long-term keys) are done at the very beginning of execution.

Each variable may occur at LHS at most once.
Semantics

Protocol runs in parallel with the adversary.

- Adversary takes care of message forwarding.
- If something goes wrong during the execution of a party, then this party becomes stuck.
 - \(\text{check}(x = y) \) returns false;
 - operand types do not match the operator;
 - a message does not decrypt.

- Parties execute one statement at a time, the adversary does the scheduling.
 - When a party gets stuck, the adversary is not notified immediately.
Adversary’s experience

- Adversary learns the values of the variables x, where send x is a statement in some party.
- No timing information is available, because the adversary schedules.
- Therefore there is again a set of public variables Var_P, whose values make up the entire experience.

$$\text{Var}_P = \{x \mid \text{some party contains send } x\}$$
Denning-style analysis

Suppose a statement $x := O(x_1, \ldots, x_m)$ occurs in some party.

- x_1, \ldots, x_m are all variables occurring in RHS.
- O can be any operation — tupling, projection, decryption, encryption.

There is information flow from x_i to x.

- Denote $x_i \Rightarrow x$.

Protocol is insecure, if $M \Rightarrow^* x$ for some $x \in \text{Var}_P$.
- Otherwise it is secure.

An extremely conservative analysis.
Security against CCA

Encryption system \((\mathcal{G}, \mathcal{E}, \mathcal{D})\) is secure against CCA, if

\[
\left\{ \left(\mathcal{E}_k(\cdot), \mathcal{D}_k(\cdot) \right) : k \leftarrow \mathcal{G} \right\}
\]

is indistinguishable from

\[
\left\{ \left(\mathcal{E}_k(0), \mathcal{D}_k(\cdot) \right) : k \leftarrow \mathcal{G} \right\}
\]

by all adversaries that do not give the output of the left black box to the right black box.
Main idea

- Replace statements $x := \text{encr}_k(y)$ with statements $x := \text{encr}_k(Z)$, where $[Z] = 0$.

- Z is a new variable.

- This makes the information flow relation \Rightarrow sparser.

- The replacement is valid only when certain conditions are satisfied.

- Valid \equiv does not change the adversary’s experience.
Conditions for replacing

When replacing the statement $x := \text{en}cr_k(y)\ldots$

- We must know exactly, where else the key k is used.
 - The same key may occur under different names.
 - To find it out, we symbolically execute the protocol.

- When computing the values of the variables in Var_P, the key k may only be used to encrypt and decrypt.

- We may not decrypt the ciphertexts created with key k.
 - We achieve this with a program transformation.
Symbolic execution of protocols

We assign a term to each variable. They terms T are

- $\text{const}(x)$
- $\text{tuple}^m(T_1, \ldots, T_m)$
- $\text{secret}(M)$
- $\pi^m_i(T)$
- $\text{key}(x)$
- $\text{enctr}(l, T_k, T_y)$
- $\text{key}(l)$
- $\text{decr}(T_k, T_y)$
- $\text{random}(l)$
- $\text{received}(l)$
- stuck

l — statement label.

(x) is assigned to the variable x that is initialised before the run of the protocol.

There are some obvious simplification rules.
Symbolic execution of *Check-s*

There are some rules telling us, when the bit-strings corresponding to two terms are certainly different.

For \(\text{check}(x = y) \), we check whether terms assigned to \(x \) and \(y \) are certainly different.

- If yes, the protocol party is stuck.
- If no, then we replace the more complex term with the simpler one everywhere.

Complexity is the same as size.

But: the terms containing subterms \(\text{received}(l) \) are the most complex.

We consider the key corresponding to \(\text{key}(l) \) to be used exactly where the subterm \(\text{key}(l) \) occurs.
Replacing decryptions

Let k be used for encryption at statements

\[x_1 := encr_{k_1}(y_1), \ldots, x_m := encr_{k_m}(y_m) \]

Replace $z := decr_k(w)$ by

\[z := case \ w \ of \]
\[x_1 \rightarrow y_1 \]
\[\ldots \ldots \ldots \ldots \]
\[x_m \rightarrow y_m \]
\[else \rightarrow decr_k(w) \]

No change to adversary's view
Semantics of *case*-constructs

- z is assigned the first y_i, where x_i matches w.
- If this y_i has not been defined yet, then the protocol party gets stuck.
 - This never happens in our transformed protocols.
- A yet undefined x_i never matches.
Ciphertext integrity

An encryption system $(\mathcal{G}, \mathcal{E}, \mathcal{D})$ has ciphertext integrity, if:

No PPT algorithm \mathcal{A} with access to oracles $\mathcal{E}_k(\cdot)$ and $\mathcal{D}_k(\cdot)$ can submit to $\mathcal{D}_k(\cdot)$ a bit-string y, such that

- $\mathcal{D}_k(y)$ exists, i.e. y is a valid ciphertext;
- y was not an output of $\mathcal{E}_k(\cdot)$.

i.e. we need no else-clause.

If nothing matches in a case-statement, then the protocol party gets stuck.

The replacement — wrap-up

- Do the symbolic execution.
- Choose a key $\text{key}(x)$ or $\text{key}(l)$, such that
 - In terms assigned to $y \in \text{Var}_P$, this $\text{key}(\ldots)$ occurs only as the key in en-/decryptions.
- Replace the decryption statements $z := \text{decr}_k(y)$, where the term assigned to k is this $\text{key}(\ldots)$.
 - Replace them with case-statements.
- Replace the encryption statements $x := \text{encr}_k(y)$, where the term assigned to k is this $\text{key}(\ldots)$.
 - Replace them with $x := \text{encr}_k(Z)$.
Getting rid of *case*-statements

\[z := \text{case } w \text{ of } x_1 \to y_1 \cdots x_m \to y_m, \]

where

\[x_1 := \text{encr}_{k_1}(y_1), \ldots, \quad x_m := \text{encr}_{k_m}(y_m) \]

is replaced by

\[
\begin{align*}
\text{wait}(s) \\
\text{check}(w = x_i) \\
z := y_i
\end{align*}
\]

and \textit{signal}(s) is added after \(x_i := \text{encr}_{k_i}(y_i) \).

\(i \) is chosen non-deterministically (we get \(m \) new protocols).

\(s \) is a new semaphore.

Executing \textit{wait}(s) before \textit{signal}(s) gets stuck.
Handling *wait*-s and *signal*-s

- In the next round, the symbolic execution must proceed in an order consistent with *wait*-s and *signal*-s.
- We may have to do simultaneous symbolic execution of the parties.
- If there are cyclic dependencies, then the statements in and after the cycle are stuck.
Conclusions

- Cryptographic effects can be faithfully abstracted away.
- Resulting analyses are not overwhelmingly complex.
Future work

- Track the keys in the first analysis presented.
- Do not track the keys in an analysis with active adversaries.
 - Assume that keys are never sent out.
- More expressive language for the second analysis.
- More cryptographic primitives.
 - Public key encryption, digital signatures, ...
- Other security properties. (Integrity)
- Different security definitions for cryptographic primitives.
 - Encryption as a PRP ...
- One-way functions.
 - New confidentiality definition is necessary.