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Abstract. We present a platform that allows a protocol researcher to
specify the sequence of games from an initial protocol to a protocol where
the security property under consideration can be shown to hold using
“conventional” means. Our tool represents the protocol in the form of
a program dependency graph. A step in the sequence corresponds to
replacing a local fragment in the current graph. The researcher interacts
with the tool by pointing out the location of this fragment and choosing
the applied transformation from a list. The tool guarantees the error-
freeness of the sequence. By our knowledge, this is the first time where the
aspects of user interaction have been seriously considered for a sequence-
of-games-based protocol analyzer.

1 Introduction

The sequence-of-games-based approach is a method for giving security proofs
for cryptographic protocols that is at the same time computationally sound and
sufficiently organized for keeping track of all the details about the probabilities
and conditional probabilities of various events. It is based on the fact that most
cryptographic primitives have their security definitions stated as two experiments
(or cryptographic games) that an adversary can interact with. A primitive is
secure if the adversary cannot tell those two experiments apart. In this approach,
the security proof of a cryptographic protocol (or a primitive) consists of two
steps (which may take place simultaneously). The first step is the construction of
a sequence of cryptographic games, the first of which is the original protocol and
the last is a game that obviously fulfills the security property we want to prove
(e.g. if the goal is the confidentiality of some value, the final game should contain
no references to that value). The second step is the verification that to a resource-
bounded adversary, each protocol in that sequence is indistinguishable from the
one that immediately precedes it. To make such verification easy, the neighboring
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protocols in that sequence should syntactically differ only a little. For example,
a protocol in that sequence may have been obtained from the previous one by
locating one of the experiments from the definition of a cryptographic primitive
in the code of this protocol, and replacing that part of the code with the code
of the other experiment. Alternatively, the change from one protocol to the next
could be a simple program transformation/optimization (e.g. copy propagation),
done in order to make locating one of the aforementioned experiments easier.

A protocol researcher needs tool support for both steps of the proof done
in the style of sequences of games. As a protocol in the sequence is constructed
by applying a rather small change to the previous protocol, it makes sense to
constrain the researcher in constructing the next protocol, thereby avoiding tran-
scription errors. The verification of the proof (the second step) is also better left
to an automated theorem prover.

The most recent results in this area mostly tackle the second problem — veri-
fying the given sequence of games. Languages for cryptographic games have been
proposed and certain program transformations have been proven (using proof
assistants, such as Coq or Isabelle/HOL) to keep the games indistinguishable to
an adversary [5, 9]. In contrast, we consider the first problem in this paper. We
present a tool that helps a protocol researcher to interactively construct that se-
quence. So far, similar tools (Blanchet’s CryptoVerif [12, 13] and the analyzer of
Tšahhirov and Laud [37]) have worked almost fully automatically. An automatic
generation of a game sequence is convenient, but not necessarily scalable. There
are no guarantees that the set of transformations that the analyzer applies is
convergent. Hence the analyzer may get stuck in a game that is not yet obvi-
ously secure but also cannot be transformed any longer, while a different order
of transformations could have lead to a complete sequence. One may try to come
up with heuristics for choosing the order of transformations, but this approach
is certainly not complete and may not be worth the effort. Instead, one should
rely on the knowledge of the protocol designer — he/she should have some idea
why the protocol is secure, and be able to guide the analyzer.

Our tool is an extension of our protocol analyzer [37, 36]. The protocol is pre-
sented to the protocol researcher in a form (a dependency graph) that we believe
is relatively easy comprehend and where, importantly, the location where one
wishes to apply a certain transformation can be easily indicated. The researcher
starts with the initial protocol representation (translated from a language simi-
lar to applied π-calculus) and applies one transformation after another until the
protocol is easy to analyze. The tool makes sure that the researcher will not make
invalid transformations. The form in which the protocols are represented has a
well-defined semantics, hence it should not be too difficult to combine our tool
with some of the verifiers of game sequences we have mentioned above to create
a complete tool-chain for producing computationally sound proofs of protocols.
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2 Related Work

The task of tool-supported computationally sound proving of security properties
of cryptographic properties has received closer attention for almost a decade
now. Starting from Abadi and Rogaway [4], a line of work [3, 29, 16, 22, 15] has
attempted to show that the security of a protocol in formal model implies its
security in the computational model, thereby leveraging the body of work on
protocol analysis in the formal model. In parallel to that, program analyses
have been devised that are correct with respect to the computational security
definitions of cryptographic primitives [39, 23, 24, 27, 33, 20]. A somewhat similar
line of work tries to axiomatize the computational semantics of protocols [28, 17,
18].

A somewhat different “formal model” with full computational justification
was offered by Backes et al. [7] in the form of a universally composable cryp-
tographic library. Various methods of protocol analysis (in the formal model)
have been successfully carried over to this model, including type systems [26, 1],
abstract interpretation [6] and theorem-proving [34, 35].

The consideration of the sequence of code transformations as a universally
and automatically applicable method for protocol analysis first appeared in [25].
The method was generally popularized by Bellare and Rogaway [11] as the game-
based method. It was quickly recognized as allowing automated or computer as-
sisted analysis of protocols [32]. By now, the underlying principles of the method
have been formalized, also in proof assistants [14, 30, 5, 9] and automatic analyz-
ers have appeared [12, 37]. Active research is going on in this area.

3 Game-Based Protocol Analysis

A cryptographic game is the interaction between the adversary and its envi-
ronment containing the protocol we want to analyze. A game is specified by
describing the operations that the environment performs and values it makes
available to, or receives from the adversary. The adversary’s goal is to bring the
game to a state that is considered as winning for it. For example, the adversary
may win a game if it correctly guesses a bit generated by the environment.

To formally argue about a game, and to locate a game (or an experiment)
in a larger game, it has to be expressed in a programming language with formal
semantics. In the sequence-of-games-based protocol analysis, the initial game is
transformed to a final game that is obviously secure. Each transformation step
changes the game in a way that makes the adversary’s winning probability larger
or only negligibly smaller. In the latter case we have assumed that the adversary’s
running time is constrained to be polynomial; in the following we only consider
probabilistic polynomial-time (PPT) adversaries. The obviousness of the security
of the final game just means that it is easy to analyze and bound the adversary’s
probability of winning by using some conventional means. For example, if the
adversary’s goal is to guess a randomly generated bit, and the final game makes
no references to that bit, then the adversary’s winning probability is definitely
no more than 1/2.
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4 Protocol representation

We use dependency graphs as our intermediate representation of protocols [37,
36]. It has advantages with respect to abstract syntax trees / control flow graphs
(used by CryptoVerif) in naturally allowing certain transformations one would
like to invoke after applying a cryptographic transformation. Also, the depen-
dency graph emphasizes the producers and consumers of different data items
and henceforth appears to be a natural way to specify cryptographic games (de-
spite the tendency to use imperative languages for that purpose in cryptographic
literature).

The dependency graph is a directed graph, where each node corresponds
to a computation, producing a value (either a bit-string or a Boolean). The
edges of the graph indicate which nodes use values produced at another nodes.
A computation happening at a node could be the execution of a cryptographic
algorithm, an arithmetic or a boolean operation. The values produced are either
bit strings or boolean values. The values produced outside of the graph (for
example, random coin tosses, incoming messages, secret payloads) are brought
into it via special nodes, having no incoming edges. Additionally, certain nodes
(modeling the sending of messages) explicitly make their input values available
to the adversary.

Program dependency graphs have originated as a program analysis and op-
timization tool [19], systematically recording the computational relationships
between different parts of a program. Since then, several flavors of dependency
graphs have been proposed, some of them admitting a formal semantics [8, 31],
thus being suitable as intermediate program representations in a compiler. Pro-
grams represented as dependency graphs are amenable to aggressive optimiza-
tions as all program transformations we may want to apply are incremental on
dependency graphs. The translation from an optimized dependency graph back
to a sequence of instructions executable on an actual processor may be tricky as
the optimizations may have introduced patterns that are not easily serializable.
This is not al issue for us because we do not have to translate the optimized /
simplified / analyzed protocol back to a more conventional form.

The formal definition and semantics of dependency graphs (DGs) can be
found in [36]. Informally, DG is a directed, possibly infinite graph where each
node v contains an operation λ(v) and edges carry the values produced by their
source node to be used in the computation at the target node. The nodes have
input ports to distinguish the roles of incoming values. For each port of each
node, there is exactly one incoming edge. The “normal” nodes of a DG are
functional — same inputs cause it to produce the same output. Special nodes
are used for inputs from and outputs to the outside world.

To represent scheduling information, most computational nodes of a DG have
a special boolean input — the control dependency. A node can execute only if
the value of its control dependency is true (initially, the value of all nodes is
either ⊥ (for nodes producing bit-strings) or false). During the execution of the
dependency graph, the adversary can set the values of certain Boolean-valued
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input-nodes labeled Req to true and thereby initiate the execution of (certain
parts of) the DG.

The execution of a DG proceeds in alteration with the adversary. First the
adversary sets some Req-nodes and/or the values of some Receive-nodes (these
nodes bring bit-string inputs to the DG). The setting of these nodes causes cer-
tain nodes of the DG to compute their values. If a value reaches some Send-node
then such value is reported back to the adversary. The adversary can then again
set some Req- and Receive-nodes and the process repeats, until the adversary
decides to stop. The adversary then tries to output something related to secret
values in the environment, made available to the DG through Secret-nodes.

Two dependency graphs G1 and G2 with the same set of input/output nodes
(labeled Req, Receive or Send) are indistinguishable if for all PPT adversaries A,
the output of A running in parallel with G1 is indistinguishable from its output
if it runs in parallel with G2. A dependency graph is polynomial if at any time
the number of its nodes with values different from ⊥ or false is polynomial in
the number of its Receive- and Req-nodes that the adversary has set.

A game transformation is given by two dependency graph fragments (DGF).
A DGF is basically a DG without the input/output nodes of a regular DG, but
having some input/output nodes of its own (in principle: edges with one end
inside and the other end outside of the DGF), for both Booleans and bit-strings.
A DGF can be executed by the adversary, similarly to a regular DG. Again, the
adversary can (iteratively) set the inputs to the DGF and learn the outputs. The
indistinguishability and polynomiality for DGF-s is defined in the same way as
for DG-s.

Definition. An occurrence of a DGF H in a DG G is a mapping ϕ from the
input and internal nodes of H to the nodes of G, such that

– if v and w are input or internal nodes of H, then there is an edge from v to
the port π of w iff there is an edge from ϕ(v) to the port π of ϕ(w);

– if there is an edge from ϕ(v) to some node u in G, such that u is not the
image of some internal node of H under ϕ, then there must be an edge from
v to an output node in H.

If H and H ′ have the same inputs and outputs, and ϕ is an occurrence of H
in G then we can replace this occurrence by H ′ by removing from G all nodes
ϕ(v), where v is an internal node of H, and introducing the internal nodes and
edges of H ′ in their stead.

Theorem. If polynomial DGFs H and H ′ are indistinguishable, and DG G′

is obtained from polynomial G by replacing an occurrence of H with H ′, then
G and G′ are indistinguishable and G′ is polynomial, too [36].

Each node of the DG corresponds to a single operation that the system may
perform. To model that some role of some protocol may be executed up to n
times, we have to analyze a DG containing n copies of that role. To model that
some role of some protocol may be executed an unbounded number of times, or
that a party can take part in unbounded number of protocol sessions, requires
infinite dependency graphs. In infinite dependency graphs, the set of nodes is
countably infinite. Also, certain nodes (conjunction and disjunction) may have a
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countable number of predecessors. A dependency graph fragment can similarly
be infinite.

As the infiniteness of a dependency graph is typically caused from the in-
finite repeating of certain finite constructs, the graph is regular enough to be
finitely represented. Details can be found in [36]. Here we mention only that
we are actually working with dependency graph representations (DGR-s) where
each node may represent either a single, or countably many (identified with the
elements of NX for a certain finite set X, recorded in the DGR node) nodes
in the actual DG. Similarly, DGFs generalize to DGFRs — dependency graph
fragment representations.

On the choice of protocol representation We believe that the representa-
tion based on dependency graphs will be more convenient to use than the one
based on abstract syntax trees as used by CryptoVerif. There are several reasons
for that. First, the enabling conditions for transformations are more often locally
represented in dependency graphs. Hence they should be easier to notice by the
protocol researcher (but importantly, the visualizer also has to make it easy to
locate interesting vertices and to explore their neighborhoods). Second, point-
ing at the to-be-transformed part of the protocol is very simple using a graph
representation, while it may require doing a complex selection in a textual rep-
resentation. Third and most importantly, all information is easily available in a
dependency graph of the protocol, possibly annotated with nodes carrying the
results of its static analysis. CryptoVerif contains not just the language for rep-
resenting protocols, but also a language for true facts and rewrite rules it has
collected for a protocol [13, App. C.2–C.5]. The user cannot control which facts
are derived. In an interactive tool, these facts might be added to the textual rep-
resentation of the program as annotations, but there does not necessarily exist
an obvious location in the text for them. Fourth, the graphical representation
allows certain natural transformations for which there is no equivalent in the
syntax-tree-based representation.

5 The Tool

Our tool takes as an input a protocol specified in a language remniscient to
the applied π-calculus [2], translates it into a dependency graph representation,
presents it on the screen and allows the researcher to pick a particular transfor-
mation and the occurrence of the first DGFR. This occurrence is validated and
then replaced by the second DGFR specified by the transformation, the result is
again displayed and the researcher can choose the next transformation to apply.
There is no obvious end-point to the analysis; at some moment the researcher
can decide that the transformed protocol is now obviously secure.

We use the graph visualizer uDraw(Graph) [21, 38] as the front-end of our
tool. It receives the commands to change the displayed graph from our tool, and
sends back the actions of the user — the selected nodes and edges, as well as
names of the chosen transformations. The visualizer allows the user to explore the
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graph and to change its layout. Fig. 1 shows a screenshot of the visualizer after
loading a protocol that has just been translated from the π-calculus-like language
to a DGR. We see that the translation procedure itself is straightforward and
does not attempt to optimize the DGR. In the visualizer, the first row of a node

Fig. 1. A screenshot of the visualizer with a loaded DGR

shows its ID and label, and the second row shows the elements of the (multi)set
X of its replication dimensions. This node of the DGR corresponds to NX nodes
in the actual DG.

The tool has been implemented in OCaml. The components of the tool are
its main loop (driving the interaction), the graph transformer and the various
transformations. A transformation is specified as an OCaml module describing
the initial and the final DGFR. Additionally, it contains a method for helping
the user to choose the occurrence of the initial DGFR in the DGR. Instead
of selecting all nodes and edges comprising a DGFR, as well as specifying the
embedding of the DGFR in the DGR, the user has to select only a couple of fixed
nodes/edges of the DGFR and this method will reconstruct the whole DGFR.
The graph transformer is an OCaml functor receiving a graph transformation as
an input and returning a module containing a function that takes as arguments
a DGR and the names of the selected nodes / edges, and returns the transformed
DGR (or an error message). The main loop receives the node and edge selection
commands from the visualizer, as well as the name of the transformation menu
element that the user has selected. It calls the correct graph transformation
function, finds the difference between the original and the modified DGR, and
sends that difference back to the visualizer.
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5.1 Specifying a Family of Pairs of DGFRs

It makes sense to parameterize certain parts of DGFRs. For example, to express
that tupling followed by projection just selects one of the inputs (modulo con-
trol dependencies and ⊥-s): πn

i ((x1, . . . , xn)) → xi, then there should not be a
separate transformation for each n and i, but those should be the parameters of
the transformation.

The DGFR pairs are specified as OCaml modules with a certain signature.
In effect, our approach can be described as a shallow embedding of DGFRs into
OCaml. A module conforming to that signature has to first define an OCaml
data type for variable names. The variable names are used as a part in the
type for variables; the variables map to the nodes and edges of DGFRs, but also
to other values. As next, the module has to declare a mapping from variable
names to their types. There are 5+1 possible types for a variable or a variable
name — it can denote either an integer, a node, an edge, a set of dimensions, a
map of dimensions (attached to edges going from one summary node in the DGR
to another one; describing how the edges of DGR must be mapped to edges in
the DG), or an array where all elements have the same type. The type “node”
has three subtypes — a node can be either an input node, an internal node or
an output node.

Given the datatype X of variable names, the variables of type V are defined
either as scalars of type X or elements (v, i), where v ∈ V and i is a natural
number. The module then has to define a number of functions that map the
variables to their values, in effect describing a DGFR. The following functions
have to be defined

– a map from variables of type “array” to their length;
– maps from variables of type “edge” to their source and target (variables of

type “node”), dimension map (variables of type “dimension map”) and the
input port at the target node;

– maps from the variables of types “integer”, “dimension”, and “dimension
map”, giving their actual values;

– maps from variables of type “node” giving their label, and their dimension
(and also the input dimension if it the node is a contracting node).

Importantly, all those functions can call each other if necessary. Circular depen-
dencies will be detected.

The module has to specify two lists of variable names. The elements of these
lists correspond to the nodes and edges in the initial and final DGFR, respec-
tively. During the transformation, the nodes and edges only in the first list will
be removed and those only in the second list will be added.

In the code of the functions that the module has to define, it is possible to
ask for the actual parameters of the nodes and edges that are the values of the
variables with the names in the list defining the initial DGFR. One can ask for
the actual labels and dimensions of the variables of type “node”, and dimension
maps of the variables of type “edge”.
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The module has to define a validation function that tells whether the
values of initial variables (variables whose names are in the first list) define a
valid DGFR. The function can assume that the nodes and edges are connected
in the way given by the functions we described before, but it still has to verify
that the nodes have the correct labels. If the transformation depends on it, this
function also has to verify that the dimensions and dimension maps of nodes
and edges are suitable.

We see that our definition of DGFRs abstracts away from the actual DGR.
Indeed, both the validation of the initial DGFR and the construction of the final
DGFR are made in terms of DGFR variables. Only the expansion function
that the module also has to define has access to the actual DGR. The task of
this function is to assign values to the variables whose names are in the list of
variable names for the initial DGFR. For variables of type “array”, it also has to
define the length of the array. The inputs to this function are the DGR, and the
identities of certain nodes and edges of the DGR, which the expansion function
will treat as the values of certain fixed DGFR variables.

5.2 The Graph Transformer

A graph transformer will be defined for each of the transformations specified
as the pair of two DGFRs, but the definition is through an OCaml functor.
Given the transformation module TrM , the transformer function will take a
DGR and the node identities as arguments. First, it passes the arguments to the
expansion function of TrM and receives a mapping ϕ from initial variables to
nodes and edges of the graph. Second, it verifies that the ϕ indeed constitutes
an occurrence of a DGFR in the given DGR — the internal nodes must have
all their predecessor and successor nodes also as elements of the DGFR. Third,
it invokes the validation function of TrM on the received DGFR. Fourth, it
performs the actual change of the DGFR — it deletes the nodes and edges that
occur in the initial DGFR, but not in the final. Then it adds new nodes and
edges (corresponding to the variable names that occur in the list for the final
DGFR, but not in the list for the initial DGFR). It calls the functions of TrM
to find the parameters of those nodes and edges.

The graph transformer also makes sure that the values computed by the
functions of TrM are memoized and that the computation of a certain function
on a certain variable does not (possibly indirectly) invoke the same function on
the same variable again. Additionally, the graph transformer verifies the outputs
of the functions of TrM . For example, if the result of the function returning the
dimension of a variable of type “node” is not a variable of type “dimension”
then the transformation is immediately halted. Hence the typing of variables is
enforced, albeit dynamically.

5.3 Example Analysis

Let us consider a situation where A and B have a long-term shared key KAB ,
but whenever B wants to send a secret M to A, first A generates a short-term
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key k, sends it encrypted under KAB to B who then uses k to protect M . In the
conventional “arrow-notation” this protocol can be specified as follows:

A−→B : {k}KAB

B−→A : {M}k
A−→ : OK

(1)

The initial protocol (game), directly corresponding to (1), but simplified
from the output of the translator is depicted in Fig. 2. Here solid edges carry
bit-strings and dashed edges booleans. The node 43 generates the key KAB .
The nodes 60–179 represent a session of A; those nodes have the (multi)set of
dimensions {A}, i.e. we are modeling an unbounded number of sessions. The
first message is constructed by nodes 60 and 96 (the random coins for these
operations are provided by special RS-nodes 63 and 99), and sent away by the
node 118; the adversary can request it to be sent by setting (an instance of) the
node 119 to true. The second message is received in node 136, decrypted in 142,
and if it decrypts successfully (node 154) then the third message is sent in nodes
171 and 178. Similarly, nodes 196–245 represent a session of B — receiving the
first and constructing and sending the second message.

As the node 43 is only used for encryption and decryption, we can apply
a transformation corresponding to the IND-CCA- and INT-CTXT-security of
symmetric encryption [10] to it. We select node 43 and choose “Replace a secret-
key decryption” from the menu. The resulting graph is depicted in Fig. 3.

The transformation introduced the nodes 674–680. At first, it replaced the
encryption node 96 with the node 676 labeled SymencZ. This operation encrypts
a fixed bit-string ZERO using the random coins and the key that are given to it.
The string ZERO cannot be the output of any node in the DG. The SymencZ-
node does not use the plaintext argument (60) of the original node. Still, it
should not produce output if the original plaintext has not been computed.
Hence the test (node 674) whether it has been computed is part of the control
dependency of node 676. At the decryption side, the ciphertext 196 is compared
to all computed encryptions of ZERO in node 677 (note its set of dimensions). If
one of them matches then it the corresponding plaintext (node 60) is selected as
the result of decryption by nodes (“multiplexers”) 679 and 680. The MUX-nodes
have an arbitrary (finite) number of inputs, their output is the least upper bound
of their inputs. I.e. if all inputs are ⊥ then the output is ⊥ and if exactly one
input is different from ⊥ then the output is equal to that input. If more than
one input is different from ⊥ (in this transformation, the number of inputs to
MUX-nodes is equal to the number of SymEnc-operations) then the result of this
operation is >, denoting an inconsistency in the DG. A inconsistency means an
immediate termination of the computation; this is visible to the adversary (i.e.,
if the transformations are correct, then this can happen only with negligible
probability). Similarly, an lMUX is a “long MUX” — in a DG it is a node with
infinite number of pairs of inputs (a bit-string and a boolean). If no boolean
inputs are true, it returns ⊥. If exactly one of the boolean inputs is true then it
returns the corresponding bit-string input. In a DGR, a lMUX is a contracting
node — in our example, node 679 contracts the dimension A.
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Fig. 2. Initial protocol

We would like to apply the symmetric encryption transformation also to node
60, but it has two uses forbidding that. We get rid of the use by node 674 by
noting that SymKey succeeds if there are random coins incoming from RS, and if
the control dependency is true. The RS-node 63 always produces coins because
its control dependency is true. Hence the value of node 674 equals the value of
node 384 and we get rid of this use of node 60.

The other use by node 679 eventually ends up in the SymEnc-node 220. As
MUX- and lMUX-nodes do not change the values passing through them, we can
swap them with the operations following them. Hence we can move the SymDec-
node first to the other side of node 680 and then node 679, resulting in the graph
depicted in Fig. 4. We see that the encryption node (with new ID 704) is now
right next to the SymKey-node 60. The ability to do such swaps of operations
with multiplexers is one of the main advantages of dependency graphs.

It is instructive to consider how the second message {M}k (sent by node 244)
is computed in this graph. In the b-th round of B, this rounds secret message
Mb is encrypted with keys ka for all rounds a of A. The correct round a is then
chosen by nodes 795 and 697 by comparing the first message received by B (node
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Fig. 3. Applying encryption transformation to KAB

196) in this round with the first messages sent by A (node 118, sending the result
of node 676) in all rounds.

The next transformation steps should be obvious. After getting rid of the
node 674 (described above) we apply the symmetric encryption transformation
to the key generation 60. This will get rid of the use of the Secret-node by node
704. The Secret-node will then be used by the nodes replacing the decryption
node 142, as it has to be returned as the plaintext. It will be an input to a
multiplexer whose output is only used by node 154. The position of node 154
will be swapped with multiplexers, making the OK?-node an immediate successor
of the Secret-node. The use of Secret-node by an OK?-node can be transformed
away and the Secret-node had no other uses. We are left with a dead Secret-node
that can be removed. Thus the confidentiality of secrets is preserved.
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Fig. 4. Moving Symenc over MUX-s

Conclusions The presented example was very simple. More complex exam-
ples require the introduction of more and different kinds of nodes, as well as
extending the definition of semantics of the dependency graph (but still keep-
ing it mostly functional, i.e. without side effects) [36]. Nevertheless, we have
managed to analyze several protocols from the secure protocols open repository
(http://www.lsv.ens-cachan.fr/spore), including all protocols reported as
success in [37]. The work on the analyser is still ongoing, it should be expanded
with more cryptographic primitives, as well as different control structures (for
the latter, we can rely on previous work on dependency graphs).
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36. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model — Depen-
dency Flow Graphs-Based Approach. PhD thesis, Tallinn University of Technology,
2008.
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