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Abstract. We propose a new method for shared RSA signing between
the user and the server so that: (a) the server alone is unable to create
valid signatures; (b) having the client’s share, it is not possible to create a
signature without the server; (c) the server detects cloned client’s shares
and blocks the service; (d) having the password-encrypted client’s share,
the dictionary attacks cannot be performed without alerting the server;
(e) the composite RSA signature “looks like” an ordinary RSA signature
and verifies with standard crypto-libraries. We use a modification of the
four-prime RSA scheme of Damg̊ard, Mikkelsen and Skeltved from 2015,
where the client and the server have independent RSA private keys.
As their scheme is vulnerable to dictionary attacks, in our scheme, the
client’s RSA private exponent is additively shared between server and
client. Our scheme has been deployed and has over 200,000 users.

1 Introduction

Digital signature mechanisms require secure storage of private keys. It is often
recommended to hold keys in special hardware (like smart-cards). This is an
expensive solution for wide employment of digital signatures (e.g. national digital
ID). Moreover, nowadays people use mobile devices for their everyday business,
as well as for communicating with e-government services. Mobile devices may not
have a possibility to physically connect to a card-reader, the connection interfaces
change rapidly, and after all, connecting a card-reader with a mobile phone would
just be inconvenient. The cryptographic algorithms used for digital signatures
may become insecure and the key size insufficient. Changing the algorithm or
the key size would generally mean physical replacement of all smart-cards in use.

Software is much easier to change. Mobile devices update their software auto-
matically so that the users often do not even notice the updating process. From
economical perspective, digital signature solutions based solely on software are
extremely appealing. The hardest thing to solve in software-based digital signa-
ture schemes is private key management. Keys stored in the static memory of a
mobile device or any other type of computer can easily be cloned by attackers
who gain access to the memory. With cloned keys, attackers can create unlimited
amounts of forged signatures that are indistinguishable from the genuine ones.
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Private keys may be stored in encrypted form, where the decryption key is
derived from a password entered by the owner of the device. But practice shows
that human-memorisable passwords do not withstand dictionary attacks.

One way to make software-based digital signatures more secure is to share the
signature key between the mobile device and a service, so that a correct signature
can only be created when the mobile device and the service cooperate. So even
if the user’s share of the signature key is cloned, the use of the clone requires
communication with the service. If the user’s key-share is chosen randomly and
is camouflaged (i.e. encrypted with the user’s password in a proper way [19,
20, 22]), an off-line dictionary attack will not be possible, because the attacker
(without communicating with the server) cannot distinguish the right password
from the wrong guesses. If the attacker uses the service for the dictionary attack,
such an attempt is recognisable for the service, and after a fixed number wrong
guesses, the service may block the client and refuse to cooperate.

Shared keys are easy to generate for one party. In this case, the user’s mobile
device generates both shares, keeps one share, sends the second share to the
service, and deletes the second share. Such a solution however does not protect
against an attack where the mobile device is under adversary’s control during key
generation. After such an attack, the attacker is again able to create unlimited
number of forged signatures without communicating with the server. If the server
is the party who generates the shares and gives the share to the client, such an
attack is not possible but in that case, the service (if abused by insiders) would
be able to forge the signatures in unlimited way.

Hence, to withstand dictionary attacks and at the same time to avoid the
abuse of the key by potentially malicious servers, the mobile device and the
server must generate their shares in such a way that none of the parties at any
time has the complete private key of the user. Such cryptographic protocols
exist but have drawbacks. The general multi-party computation methods are
complex and inefficient. Some methods assume third parties’ involvement during
key generation, such as trusted dealers.

Recently, Damg̊ard, Mikkelsen and Skeltved [12] proposed an elegant scheme
in which two parties can generate their RSA key shares completely independently
and with the same computational effort than generating ordinary RSA keys.
Their scheme has a drawback though. If one wants to implement their scheme as
a software application for a mobile device, it turns out that even if the private
key is perfectly camouflaged (password-encrypted), the attacker always has a
reference point for a dictionary attack. This is because the client’s public modulus
is needed to create the client’s share of the signature and hence either the public
modulus is stored in the device in open form or is recoverable via password-based
decryption. As a reference point, an attacker may check the relationship between
the decrypted private exponent and the public modulus.

We present the Smart-ID scheme, a modification of the scheme of [12] to
make it invulnerable to dictionary attacks. The main idea is to additively share
the client’s RSA private exponent so that the camouflaged part of the key is
completely random and gives no reference points for dictionary attacks. We also
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consider some ways of making the scheme even stronger by adding a mechanism
that enables the service to discover clones of the client’s key and to block the
service timely.

2 State of the Art

RSA: The RSA signature scheme [23] is one of the most widely used digital
signatures. A message m ∈ Zn = {0, . . . , n− 1} is signed with a modular power
function σ(m) = md mod n, where d is the secret exponent and n = pq is a
product of two large prime numbers p and q. The verification check of a signed
message (m,σ) also involves a power function ν(σ) = σe mod n, where e is
the public exponent. A signed message (m,σ) verifies correctly, if ν(σ) = m.
The public and the private exponents satisfy ed ≡ 1 (mod ϕ(n)), where ϕ(n) =
(p− 1)(q − 1) is the Euler’s totient function.

Shared RSA: Suppose the private exponent d is the sum of two random compo-
nents d ≡ d′+ d′′ (mod ϕ(n)), where d′ and d′′ are held by two separate parties
(say, Client and Server). To sign a message m cooperatively, the parties create
their signature shares σ′ = md′ mod n and σ′′ = md′′ mod n. The shares are
then combined by

σ = σ′ · σ′′ mod n = md′ ·md′′ mod n = md′+d′′ mod n = md mod n ,

which is the ordinary RSA signature σ of m. This is called additive sharing of
RSA signature. Only the two parties together can create verifiable signatures.

The idea of shared key approach was first presented by Desmedt and Fraenkel
[13, 14]. For the RSA signature scheme [23], the shared keys approach is studied
in [9, 16, 24] and the mobile device and server case in [3, 22, 10, 8] but these
works do not investigate the problem of generating keys in a distributed way. It
is assumed that shares of the key are generated by a trusted dealer.

Shared Generation of RSA Keys: Distributed generation of shared RSA keys
has also been thoroughly studied. The first practically implementable solution
was proposed by Boneh and Franklin [5, 6]. The following schemes [7, 15, 17, 11,
18] are just variations of the original scheme [5]. The main idea is to generate
a candidate RSA modulus n = pq (where p, q are just random numbers) using
multi-party computation, so that p and q will be additively shared between the
parties. A special bi-primality test is then applied to n. The candidate n can
be used if both p and q are prime. Hence, the average number of attempts is
quadratic in the size of n, which means that the key generation time is very large
– hundreds of times slower than the original RSA key generation.

Damg̊ard-Mikkelsen-Skeltved Scheme: An elegant and efficient solution to
the problem of shared generation was proposed in [12]. In their scheme, after
fixing the public exponent e, the two parties first locally generate their own
RSA public keys (n1, e) and (n2, e) and the corresponding private exponents
d1 and d2. The final (composite) public key is (n1n2, e). To sign a message
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m ∈ Zn1n2
, both parties first create their own signatures σ1 = md1 mod n1 and

σ2 = md2 mod n2. They will then use the Chinese Remainder Theorem (CRT)
to compute the final signature σ = Cn1,n2(σ1, σ2) ∈ Zn1n2 , satisfying σ ≡ σi
(mod ni) for i ∈ {1, 2}. To verify such signature, one simply checks whether
σe ≡ m (mod n1n2). Hence any existing software supporting RSA signatures is
able to verify the signatures of [12] without modifications.

The problem with this solution is that dictionary attacks are still possible,
even if the client’s private exponent is encrypted – the client’s public modulus
(say n1) is public and can be used to verify the guessed passwords.

Camenisch et al. Scheme: A server-assisted RSA signature scheme was pro-
posed in [8]. In their scheme, the client is authenticated with the help of pass-
word, designed so that the dictionary attacks against it are impossible. While
aiming for a range of advanced properties, such as privacy against the server,
and universally composable security, the signing key in their scheme is gener-
ated fully by the client, and then shared with the server. Therefore, an adversary
who reads the client device during key generation has a power to create valid
signatures without contacting the server.

Dictionary Attacks: An adversary, having a dictionary of passwords, tries
them one by one until the right one has been found. For such attack:

– The number of possible passwords has to be relatively small. Random crypto-
graphic keys with a lot of entropy (≥ 80 bits) cannot be successfully guessed.

– It must be possibile to recognize the right password [4, Def. 3.10].

If the private exponent d of the RSA key is encrypted with a password pwd , and
the adversary has both the ciphertext cd and the public key (n, e), then it can
verify its guess pwd∗ by generating a random m ∈ Zn and checking whether

(me)decpwd∗ (cd) ≡ m (mod n) .

This is the case for the scheme in [12], where the client’s device must contain cd
and the client’s modulus n1, and the public exponent e is known to everybody.

Shared RSA may be used to take away the point of reference that the adver-
sary uses to check the correctness of its guesses. This has been done in [8], but
their scheme has other undesirable properties, as described previously.

3 New Scheme

We will now describe our scheme with the properties listed in the abstract. None
of the previously proposed schemes have all these properties. The main idea of
our solution is that we use a scheme similar to [12] where client and server have
independent RSA keys. We make their scheme resistant to dictionary attacks.
To simplify the presentation, we assume that each client of the scheme has only
a single key. Then we can talk about either blocking a key, or blocking a client.
We start with a definition.

Definition 1. A prime number p is an (`, s)-safe prime, if p = 2ap′1 · · · p′k + 1,
where p′i > s are prime numbers, and 1 ≤ a ≤ `.
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3.1 Description of the Scheme

Setup: Let the desired security level of the scheme be η bits. From η, suitable
values for ` and s, as well as the RSA modulus length k are selected. An example
of such selection is given in Sec. 6. The numbers T0 of wrong password guesses
for a client, and the public exponent e (e.g. 3, or 22
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+ 1) are also fixed.
For each active client C, the server stores the values n1C , n2C , d′′1C , d2C , rC ,

TC . In following, we drop the subscript C if it is clear from the context. Here n1
and n2 are k-bit RSA moduli, d′′1 ∈ Zn1

, d2 ∈ Zn2
, r is an η-bit string, and T is

the wrong password counter for the given client. In this scheme, the quantities
n1, n2, d2 are the same as in [12]. The client’s private exponent d1 is additively
shared as d1 = d′1 + d′′1 (mod ϕ(n1)) between the client and the server. The
one-time password r is used to detect clones of client’s signing functionality.

Let P ⊆ {0, 1}l be the set of possible passwords. Given a password pwd ∈ P,
there has to be a client-specific process of turning pwd into a value d′1 ∈ Zn1

.
Given a generic black-box pseudo-random function Φ : {0, 1}l+8 → {0, 1}k, a
possible way to construct such d′1 is given in Alg. 1. Different clients use different
functions Φ. In practice, Φ(·) is replaced by a pseudo-random function F (u, ·),
where u is a sufficiently long random bit-string. Such F can be constructed from
a block cipher.

Algorithm 1: genShareΦ(pwd , n1)- client’s key share generation using a
generic blck-box PRF Φ

for s ∈ {0, 1, 2, . . . , 255} do
d′1 ← Φ(pwd‖s);
if d′1 < n1 then

return d′1;

return ⊥;

We see that Alg. 1 may fail, but its probability of failure is less that 2−256.
Indeed, the probability of a single iteration failing is less than 1/2, because
n1/2

k−1 ≥ 1/2. If Φ is a random function, then all Φ(pwd‖0), . . . , Φ(pwd‖255)
are independent, hence we can multiply the probabilities.

To sign a message M , a cryptographic hash H(M) is computed and a padding
P is added. The hashed and padded message m = P (H(M)) is then input to
the signing protocol. The setup of the scheme includes fixing H and P [26].

Key generation: The client C finds two (`,s)-safe primes p1, q1 with gcd(p1−
1, e)=gcd(q1−1, e)=1, computes n1 =p1q1 and d1=e

−1(mod ϕ(n1)), and stores n1.
The client gets a password pwd ∈ P from the user, generates and stores a

random bit-string u, computes d′1 = genShareF (u,·)(pwd , n1) and d′′1 = d1 − d′1
(mod ϕ(n1)), generates and stores a random bit-string r. It sends 〈d′′1 , n1, r〉 to
the server. All communication between C and S takes place over secure channels.
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The server S generates two (`, s)-safe primes p2, q2 satisfying gcd(p2−1, e) =
gcd(q2−1, e) = 1. It computes n2 = p2q2, n = n1n2, and d2 = e−1 (mod ϕ(n2)).
It takes T = T0 and stores 〈n1, n2, d′′1 , d2, r, T 〉. It sends n back to the client. The
public key of C is (n, e). The client securely deletes all values except 〈n, n1, u, r〉.

Signing: To sign a (hashed and padded) message m, the client C gets a password
pwd from the user, finds d′1 = genShareF (u,·)(pwd , n1) and the signature share
y = md′1 (mod n1), picks a random r′←{0, 1}η and sends 〈y,m, r, r′〉 to S.

The server S checks that C is active, looks up its record 〈n1, n2, d′′1 , d2, r, T 〉,
computes the client’s signature s1 = y ·md′′1 (mod n1) and checks its correctness
by verifying if se1 = m (mod n1). If not, S decrements T and drops the request.
If T = 0, the server deactivates the client.

If the signature check succeeds, S checks if r in the request coincides with
server’s copy of r. In case of match, S computes s2 = md2 mod n2, creates the
composite signature s = Cn1,n2

(s1, s2), sends the signature reply 〈s,m〉 back
to the client’s device, stores the new password r′ as r (expecting that the next
signature request will contain r′), and assigns T0 to T . If the signature check
succeeds but r in the request differs from the stored value, the server deactivates
the client. Having received back the signature, C replaces its stored r with r′.

Verification: To verify the signature σ for a hashed and padded message m,
with respect to a public key (n1n2, e), one uses the standard RSA verification
scheme by just checking that me = m (mod n1n2).

3.2 Employed Detection Mechanisms

Key Clone Detection: For detection of fraud, the signing protocol exchanges
additional information between the server and the client and after every new
signature, a common (to client and server) random one-time password is formed.
The one-time password that was formed during the previous signature creation
is a part of the next signature request and is verified by the server during every
signing operation. If the state-vector verification fails but the signature request
itself verifies correctly (i.e. the partial signature is authentic), the server knows
that there are two copies of the client’s private key in use (this is the most likely
cause), and deactivates the client immediately. The clone detection mechanism
can be added as an additional protection layer to any two party (client-server)
type of a signature scheme, assuming that in the signing protocol, the client’s
share s1 of the signature can be verified by the server during the protocol.

If d′1 has been cloned, the adversary becomes able to impersonate the client.
The main idea of the method is that the client must know the content of the
previously made queries, and this knowledge is verified by the server during
every signing request. If there are two identical copies of the client private key
owned by two different parties, then only one of these parties will be able to
continue using the service: namely, the party who first makes the next signing
request. This is because if then also the second party will make a request, it has
no knowledge of the other party’s request and will not be served. The server
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will deactivate the client, once it has received a request with correctly verifying
client’s signature share, but with incorrect previous query identifier. Such a query
is a strong evidence of the existence of two copies of client’s private key.

Periodic Dummy Requests: For faster detection of key abuse, the device
may send periodic dummy signature requests, which are exactly the same as
real signing requests. They require authentication at the server side, but do
not create new signatures. The server has to reply with a dummy reply that is
processed at the device side in the same way as ordinary requests, except that the
device knows that the reply does not require any processing. The time between
two dummy requests is the maximal time the adversary who has a cloned share
of the client’s key (or the clone of the whole key) is able to create forgeries.

4 Robust Implementation

There are the following general types of attacks against a client’s signing device:

– Device Read: The adversary has a short-time access to the passive memory-
content of the device, like the encrypted key file via a cloud-stored backup.
The encrypted key file can then be a subject to dictionary attacks.

– Device Memory Read: The adversary obtains a copy of the active memory
of the device, which may contain the client’s private key share.

– Device Memory Read During Key Generation: The adversary reads
active memory of the device during key generation and obtains client’s pri-
vate exponent (not just the client’s share).

– Device Malware: The adversary inserts an active trojan to the signature
device that could stay in the device for arbitrarily long time, i.e. until it is
detected or is removed on a command of the adversary.

– Server Internal Attack: The adversary obtains client-specific secrets that
the service has, or even gets access to server’s private key. Insider attacks
fall into this category.

We analyze the vulnerabilities of possible implementations (represented as a
combination of features) of a server-supported personal signature solution based
on the new shared RSA signature scheme. We consider the following features:

– Independent key Generation: This means that the server and the client
generate their keys completely independently. This is the key feature of the
scheme of [12].

– Client’s Key is Shared with Server: This means that the client’s private
key is shared between the device and the server.

– Clone Detection: This means that the a special protocol is used for key
clone detection, which blocks the service once both copies of the key are used
at least once (after cloning). If tu is time until the next usage of the device,
then the adversary who cloned the key has tu units of time available to abuse
the cloned key. After tu, in case the genuine device also exists, it sends the
next signature request to the server and the service is blocked. If the client
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issues periodic dummy requests to the server as described in Sec. 3.2, then
tu has a well-defined upper bound.

There are 6 meaningful combinations of these features. We analyse their
vulnerability and also compare them to the solution where client’s private key is
held in a smart-card. We assume that the smart-card itself generates the client’s
key and is tamper-proof. The combined solutions are denoted as follows:

– 4RSA: The original 4RSA proposed by Damg̊ard et al [12]
– S: An ordinary (additively) shared RSA scheme
– 4D: 4RSA complemented with the clone detection mechanism
– SD: S complemented with the clone detection mechanism
– S4: 4RSA where the client’s private exponent is shared
– S4D: The solution that combines 4D and S4

Table 1. Comparison of vulnerabilities of the implementations: - means invulnerable,
+t means limited t-time vulnerability, + means unlimited vulnerability.

Name Indep.
key gen.

Client’s
key
shared

Clone
detec-
tion

Service
inner

Device
read

Device
mem.
read

Mem. read
during key
gen

Device
malware

Smart-card no no no - - - - +

S4D yes yes yes - - +tu +tu +

SD no yes yes - - +tu + +

S4 yes yes no - - + + +

S no yes no - - + + +

4D yes no yes - +tu +tu +tu +

4RSA yes no no - + + + +

The comparison of vulnerabilities of these solutions are summarised in Ta-
ble 1. All solutions are vulnerable against malware attacks because active mal-
ware is able to change the hash value that is intended to be signed and thereby to
forge any signature. None of the solutions is vulnerable to inner attacks against
the service because due to the security of RSA, the server is not able to deduce
useful information about client’s private key, having only the public parameters,
and the data disclosed to the server.

Server’s Key: Client-Specific or Common?

Should the server have just one private key or should the private key be client-
specific? It turns out that that in the case of common server key, the solution
S4D presented in Sec. 3 has unlimited vulnerability against the Memory Read
attacks during key generation. If the adversary is one of the client’s, say A, who
has cloned a private key of another client B, then A can forge B’s signature on
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Algorithm 2: Existential forgery via adaptive chosen message attack

(p1, q1, d1)← genKey(k, e);
n1 ← p1 · q1;

(M,σ)← AH,Σ(n1);

if σ ≡ P (H(M))d1 (mod n1) and A never called Σ(H(M)) then
return 1;

else
return 0;

m as follows. First, it signs m herself by sending a signing request to the server.
Server sends back the composite signature CnA,nS

(σA(m), σS(m)). After that,
A uses the stolen copy of B’s key to create σB(m) and forms the composite
signature CnB ,nS

(σB(m), σS(m)). Note that the clone detection mechanism will
not activate, because there is no communication that involved the cloned key.
Hence, the server’s key has to be client-specific.

5 Proofs of Security

The notion of exact security (first proposed in [2]) is needed when drawing
practical conclusions on security proofs. We use the definition from [21]:

Definition 2. A cryptographic scheme is S-secure if any t-time adversary has
success δ ≤ t

S , i.e. if every adversary has time-success ratio t
δ ≥ S.

For real-life cryptography, the notion of security bits is often used. For example,
the statement that RSA with 2048-bit modulus has 112 bits of security [25]
means, that the running time of the adversary is measured in time units equal
to the time of encrypting one single block with a typical block-cipher (like AES).

Definition 3. A cryptographic scheme has k bits of security, if any adversary
with running time of T block-cipher units has success δ ≤ T/2k.

In security proofs, we assume that (for certain S) the RSA signature Σ = P (·)d1
mod n1 together with the padding scheme P is S-secure against existential forg-
eries via adaptive chosen message attacks, where H is a hash function which we
model as a random oracle. Such attacks are defined as follows.

Definition 4. In an adaptive chosen message attack, an adversary AH,Σ(n1)
having access to the signing oracle produces a correct message-signature pair
M,Σ(H(M)), without querying Σ with H(M) (Algorithm 2).

For storing client’s share securely, we need pseudo-random functions.

Definition 5. By an S-secure Pseudo-Random Function we mean an efficiently
computable two-argument function F : {0, 1}n × {0, 1}p → {0, 1}m, such that if
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the first argument u is randomly chosen then the one-argument function F (u, ·)
(given to the distinguisher as a black box without direct access to u) is S-
indistinguishable from the truly random function F of the same type, i.e.Prob

u

[
1← DF (u,·)

]
− Prob

F

[
1← DF

] ≤ t

S
,

for any t-time distinguisher D, where u ← {0, 1}n and F is a function chosen
randomly and uniformly from the set of all functions of type {0, 1}p → {0, 1}m.

Outline of Proofs: We will prove the following aspects of security:

– Security of the composition procedure: The composed signature scheme
is almost as secure as the underlying RSA scheme.

– Security against malicious servers: Having the public key of the client
and the server-share of client’s private key, and being able to use client and
a signing-oracle, the adversary is unable to sign a message that has not been
used as an oracle query.

– Security against device read: Having the public key of the client and the
password-encrypted private key share, the adversary is not able to create
a forged signature with probability much larger than T

K , where K is the
total number of passwords (PINs), assuming that the password is chosen
uniformly from the set of all possible passwords, and T is the maximum
number of consecutive faulty trials.

– Security against device memory read: Having the public key of the
client, the actual private key share, and the one-time password r, the adver-
sary can create forged signatures only until the legitimate client makes the
next signing request.

Security proofs depend on the type of primes. Some types of primes may offer
better attack-resistance, while other types of primes might be easier to generate.

5.1 Security of the Composition Procedure

We show that if an attacker succeeds in adaptive chosen message attack against
the composite signature, then there is an attacker that succeeds in adaptive
chosen message attack against the ordinary RSA signature. Let Σ be an oracle
that, given as input a hashed message m, outputs the composite signature

σ(P (m)) = Cn1,n2
(σ1(P (m)), σ2(P (m))) .

Let Σ′ be an oracle such that Σ′(m) = σ2(P (m)).

Theorem 1. If RSA is S-secure against existential forgeries via adaptive chosen
message attack, then the composite signature is about S

tex
-secure against the same

attack, where tex is the time for one modular exponentiation.
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Proof. Let (m,σ(P (m))) ← AΣ(n1n2) be a t-time adversary that, with prob-
ability δ, produces a valid signature for a message m that was never queried
via the Σ-oracle. We construct an adversary (m,σ2(P (m))) ← AΣ

′

2 (n2, e) that
creates a valid signature of a message m that was never queried via the Σ′-
oracle. The adversary A2 generates an RSA key with public modulus n1 and
with secret exponent d1 such that ed1 ≡ 1 (mod ϕ(n1)) and then simulates
(m,σ(P (m))) ← AΣ(n1n2) so that the Σ(m)-calls are simulated by calling
σ2 ← Σ2(m), computing σ1 ← P (m)d1 mod n1, and finally combining σ1 and
σ2 to the composite signature σ ← Cn1,n2(σ1, σ2). If A produces a valid sig-
nature (m,σ(P (m))), then A2 decomposes σ(P (m)) to σ1 and σ2, and outputs
(m,σ2). If A did not make the oracle call Σ(m), then A2 did not call Σ′ with
m. Hence, A2 (like A) succeeds with probability δ. The running time of A2 does
not exceed tgen + ttex, where tgen is the time for RSA key generation. Hence, as
σ2 is S-secure,

δ ≤ tgen + ttex
S

≤
t(tex +

tgen
t )

S
≈ ttex

S
,

assuming that t� tgen which means that σ is about S
tex

-secure. ut

5.2 Security Against Malicious Servers

We consider a malicious server as an adversary A that has a share d′′1 of the
client’s private modulus d1 and also has a connection to client’s signature device
that sends signing requests to the server. We assume that A is able to use such
a connection as an oracle Σd′1 , i.e. to choose messages m, send m to the oracle

and obtain Σd′1(m) = P (m)d
′
1 mod n. Though, in practice, the server cannot

Algorithm 3: Existential forgery by malicious server

(p1, q1, d1)← genKey(k, e);
n1 ← p1 · q1;
p← P;

d′1 ← genShareΦ(p, n1);
d′′1 ← d1 − d′1 mod ϕ(n1);

(M,σ)← A
H,Σd′1 (n1, d

′′
1 );

if σ ≡ P (H(M))d1 (mod n1) and A never called Σd′1(H(M)) then

return 1;
else

return 0;

choose the message m to be signed, we may assume that it does. The goal of

A
H,Σd′1 (d′′1) is to produce a message M and the signature P (H(M))d mod n

such that the query Σd′1(H(M)) was never made. Algorithm 3 describes such an
attacking scenario. In the real scheme, Φ is F (u, ·) that is assumed to be a PRF.
In the idealized scheme, Φ is a truly random function.
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Theorem 2. If RSA is S-secure against existential forgeries via adaptive chosen
message attack and F (u, ·) is an S-secure PRF, then the shared signature system
is S

2tex
-secure against malicious servers, where tex denotes the time needed for

one modular exponentiation.

Proof. Let A
H,Σd′1 be a t-time adversary that with probability δ produces a pair

M , Σ(H(M)) without calling Σd′1 with H(M). If instead, we had the flipped
version of the idealized scheme where the parts d′1 and d′′1 are exchanged and
the server’s share is just a uniformly distributed random number r ← Zn1

, by

Lemmas 1, 2, the success of A
H,Σd′1 is at least δ − t+tgen+tex

S − 2
p −

2
q .

We construct an adversary AH,Σ with running time t′ ≈ t that succeeds
in the original adaptive chosen message attack (Algorithm 2) with probability
δ − t+tgen+tex

S − 2
p −

2
q (against the flipped idealized scheme). The adversary

AH,Σ(n1) first picks r′ ← Zn1 at random and then simulates A
H,Σd′1 , so that the

calls Σd′1(m) are answered with Σ(m) · P (m)−r
′

mod n1. As the simulation is

perfect, the success of A is δ− t+tgen+tex
S − 2

p−
2
q . The running time of A does not

exceed t+ t(tmul + tex). Thus, δ ≤ t(1+tmul+texp)
S +

t+tgen+tex
S + 2

p + 2
q . Assuming

t ≥ tex and tex ≥ tmul + 4 + 2S
p + 2S

q we have t
δ ≥

S
4+tmul+tex+

2S
p + 2S

q

≥ S
2tex

. ut

Lemma 1. If F (u, ·) is an S′-secure PRF, any t-time adversary A that succeeds
in the malicious server attack against the real scheme with probability δ, succeeds
against the idealized scheme with probability at least δ − t+tgen+tex

S′ .

Proof. Otherwise, the (t+tgen+tex)-time distinguisher Dφ defined by Algorithm 3

would have success δ′>
t+tgen+tex

S′ , contradicting the S′-security of F (u, ·). ut

Lemma 2. If in the idealized scheme, d′1 and d′′1 are the client’s and the server
part of the client’s private modulus d1 then the distributions of (d′1, d

′′
1) and

(d′′1 , d
′
1) are statistically

(
2
p + 2

q −
2
pq

)
-indistinguishable, which means that flip-

ping the components d′1 and d′′1 can change the success probability of any adver-
sary (regardless of the definition of the success) only by 2

p + 2
q −

2
pq .

Proof. Consider an attacking scenario that involves our signature scheme and an
adversary A. We construct a distinguisher D(x, y) which simulates the attacking
scenario, except instead of generating the parts d′1, d

′′
2 in the proper way, D just

assigns d′1 ← x and d′′2 ← y. The distinguisher outputs 1 if and only if A succeeds
in the simulation. Due to the statistical closeness of uniform distributions over
Zpq and Zϕ(pq), and the involutory nature of constructing d′′1 from d′1, the success

of D cannot exceed 2
p + 2

q −
2
pq . As the success of the distinguisher is by definition

the difference between A’s success in the original scheme and A′s success in the
flipped version of the scheme, this difference does not exceed 2

p + 2
q −

2
pq . ut

5.3 Security Against Device Read

The adversary has obtained the random value u stored in the device in open
form. This u is combined with user’s password p to obtain the client’s share d′1.

12



Adversary’s access to the server is modelled as an oracle S with internal state.
It receives queries of the form (m,md′1 mod n1) and returns md1 mod n1 if the
query is in such form. Otherwise, S returns ⊥. After T0 consecutive ⊥-returns,
S “blocks” and will return only ⊥ even if the queries were correctly formed.

Algorithm 4: Existential forgery via device read

(p1, q1, d1)← genKey(k, e);
n1 ← p1 · q1;
p← P;
u← {0, 1}m;

d′1 ← genShareF (u,·)(p, n1);
d′′1 ← d1 − d′1 mod ϕ(n1);

(M,σ)← AH,Σ,S(n1, u);

if σ ≡ P (H(M))d1 (mod n1) and A never called Σ(H(M)) then
return 1;

else
return 0;

Definition 6. For any two primes p, q, a padding function P : {0, 1}h → Zpq, a
positive integer s, and a uniformly random m← Zpq, we use the notation

πPp,q(s) = Prob
m

[ord(P (m)) < s] .

Theorem 3. If RSA signatures are S-secure against adaptive chosen message
attack and F (u, ·) is S′-secure PRF, then for every s, any t-time adversary
AH,Σ,S succeeds in existential forgery (Algorithm 4) with probability

δ ≤ T0
K

+ t · K
2

2s
+ t · K

S′
(tex + log2K) + t · πPp,q(s) +

t2

2h
+
ttex
S

,

where K is the number of possible passwords (PINs) and T0 is the maximum
allowed consecutive false password trials.

Proof. Let AH,Σ,S(n1, u) be a t-time adversary that succeeds in the existential
forgery attack via device read with probability δ. We may assume without loss
of generality that AH,Σ,S(n1, u) never repeats any oracle calls (with the same
input), and once it outputs (M,σ), it has made a call m← H(M). We construct
an adversary AH,Σ(n1) that simulates AH,Σ,S(n1, u) as follows:

1. AH,Σ(n1) picks u←{0, 1}m and p0←P and finds yp0←genShareF (u,·)(p0, n1).
2. A then simulates AH,Σ,S(n1, u) and records all Σ-calls and H-calls made by
A.

3. If A calls S(m, y), then A checks if P (m)yp0 ≡ y (mod n1) and in case of
match:

13



– If A has previously made a call σ ← Σ(m), then S(m, y) is replied with
σ. We say that such an S-call is repeating, otherwise the call is non-
repeating.

– If A did not make the call σ ← Σ(m) and made a call m← H(M), then
A stops and outputs (M,σ), that is a successful existential forgery.

– If A did not make a call H(m), then A makes a Σ-call σ ← Σ(m) and
answers S(m, y) with σ.

If there is no match, A increments the wrong-password counter and if the
counter reaches to the limit T , no S-calls are answered any more.

The running time of A does not exceed ttex because the only overhead comes
from the simulation of S-calls where one exponentiation is done in each call.

Hence, the probability that A succeeds without making any successful non-
repeating S-calls does not exceed ttex

S .

The probability that A succeeds with an S-call (m, y) so that before this
S-call, A did not make any H-call with output m (such as m ← H(M)), does

not exceed t2

2h
. This is because the number of S-calls with such m-s is limited by

the running time t and for every H-call m′ ← H(M ′), the probability that m′

belongs to the set of m-s that have been inputs of S-calls made before calling
m′ ← H(M ′) is limited to t

2h
.

The probability that A ever makes an S-call (m, y) such that the call m ←
H(M) was made prior to the S-call (m, y) and the period ord(m) of element
P (m) is less than s is by Definition 6 limited to t · πPp,q(s).

The probability that A ever makes an S-call (m, y) such that the call m ←
H(M) was made prior to the S-call (m, y) with ord(m) ≥ s and for which there
are two different passwords p, p′ ∈ P with myp ≡ myp′ (mod n) (where yp =
genShareF (u,·)(p, n) and yp′ = genShareF (u,·)(p′, n)) is by Lemma 4 limited to
K2

2s + K
S (tex + log2K).

The probability that A succeeds with an S-call while all the S-calls (m, y)
are such that {P (m)yp mod n1}p∈P are all different equals to the probability
of guessing the correct password, which does not exceed T

K . Hence, the success
probability of A is

δ ≤ T

K
+ t · K

2

2s
+ t · K

S′
(tex + log2K) + t · πPp,q(s) +

t2

2h
+
ttex
S

.

ut

Lemma 3. If a, b∈Zn, v ≥ ϕ(n), and y ← Zv, then Pr[ay≡b(mod n)] ≤ 1
ord(a) .

Proof. If b 6∈ 〈a〉, i.e. if b is not in the subgroup generated by a, then the proba-
bility is 0. If b = ac, where 0 ≤ c < ord(a), then there are no more than v

ord(a)

values of y, such that ay ≡ b (mod n). Indeed, ay ≡ b (mod n) is equivalent to
y = c + k · ord(a) and from 0 ≤ d < v, we get 0 ≤ k < v−c

ord(a) ≤
v

ord(a) . Hence,

Pr[ay ≡ b (mod n)] ≤ 1
v ·

v
ord(a) = 1

ord(a) . ut
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Algorithm 5: Distinguisher DΦ
n for F (u, ·).

Y ← ∅;
for every p ∈ P do

yp ← genShareΦ(p, n);
if yp ∈ Y then

return 1;
else

Y ← Y ∪ {yp};

return 0;

Lemma 4. Let m ∈ Zn and ord(m) ≥ s. Let F (u, ·) be an S-secure PRF. For
every password p ∈ P, let yp = genShareF (u,·)(p, n). Then, the probability δ of
having p, p′ ∈ P such that p 6= p′ and P (m)yp ≡ P (m)yp′ (mod n1) does not

exceed K2

2s + K
S (tex + log2K).

Proof. By Lemma 3, if {yp}p∈P were pairwise independent, then for any fixed
pair p 6= p′: Prob [myp ≡ myp′ (mod n1)] ≤ 1

s . As there are no more than K2/2
such pairs, the probability of having such a pair with P (m)yp ≡ P (m)yp′ does not

exceed K2

2s . Consider now the next distinguisher DΦ
n for F (u, ·) (Algorithm 5).

By definition, δ = Prob
u

[
DF (u,·) = 1

]
. If F is a random oracle, then {yp}p∈P

are pairwise independent and hence Prob
F

[
DF = 1

]
≤ K2

2s . The running time of

D includes the computation time Ktex of {yp}p∈P and the search time K log2K

for checking that yp ∈ Y and hence, δ ≤ K2

2s + K
S (tex + log2K) by the S-security

of F (u, ·). ut

Theorem 4. If p, q are (`, s)-safe primes, P : {0, 1}h → Zpq is a padding func-
tion (h < pq), then

πPp,q(s) ≤
16`4+4`+1

2h
≤ 16(`+1)4

2h
= 24 log2(`+1)+4−h .

Proof. As P is injective, there are 2h possible values of P (m) which due to the
uniform distribution of m, these values are uniformly distributed in the image
of P as a 2h-element subset of Zpq. By Lemmas 5,6, the number of elements in
Zpq with order less than s does not exceed 16`4 + 4`+ 1. ut

Lemma 5. If p, q are (`, s)-safe primes, there are at most 16`4 elements m ∈
Z∗pq with ord(m) < s.

Proof. By assumptions, there are prime numbers p′1, . . . , p
′
k, q
′
1, . . . , q

′
k ≥ s so

that p− 1 = 2ap′1 . . . p
′
k and q − 1 = 2a′q′1 . . . q

′
k, where both a and a′ belong to

the interval [1 . . . `−1]. Hence, the size of the group Z∗pq is ϕ(pq) = (p−1)(q−1) =
4aa′p′1 . . . p

′
kq
′
1 . . . q

′
k. As the order of an element must be a divisor of the size of

the group, any element m of Z∗n has order ord(m) that divides 4aa′ or is divisible
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by one of the primes p′i or q′i which means ord(m) ≥ s. As all the elements of

orders dividing 4aa′ are roots of the polynomial X4aa′ − 1 in Zpq ∼= Zp × Zq
and any polynomial of degree d may have no more than d roots in Zp and Zq,
the number of roots in Zn cannot exceed d2. Hence, the number of elements of
degree less than s does not exceed d2 = (4aa′)2 ≤ 16`4. ut

Lemma 6. If p, q are (`, s)-safe primes, there are at most 4`+ 1 elements m ∈
Zpq\Z∗pq with ord(m) < s.

Proof. As in the previous lemma, let p− 1 = 2ap′1 . . . p
′
k and q− 1 = 2a′q′1 . . . q

′
k.

An element of Zpq is non-invertible (i.e. ∈ Zpq\Z∗pq) if and only if it is divisible
by p or q. As Zpq ∼= Zp × Zq, the non-invertible elements are represented by
pairs (0,m′) and (m′, 0). An order of (m′, 0) in Zpq is hence the same as the
order of m′ in the field Zp. As the order of an element m′ 6= 0 must divide
p − 1 = 2ap′1 . . . p

′
k, then either the order divides one of p′i and is therefore at

least s, or ord(m′) divides 2a and hencem′ is a root of the polynomialX2a−1 = 0
in Zp. Hence, there are at most 2a ≤ 2` elements m′ 6= 0 with ord(m′) < s in
Zp. Hence, there are at most 2` non-zero elements of Zpq divisible by p that
have order less than s. The same can be said about the elements divisible by q.
Hence, together with 0 there are at most 4`+ 1 elements in Zpq\Z∗pq with order
less than s. ut

5.4 Security against Memory Read

If the adversary A has accessed the memory of the device either during signing or
key generation, then it may have obtained the client’s share d′1 of client’s private
exponent d1 (either directly or by computing it from (u, pwd)). Possibly it has
also learned server’s share d′′1 . Additionally, A has learned the one-time password
r. The knowledge of (d′1, r) is sufficient for A to masquerade the legitimate client.
This is possible until the next query by the client. There are two possibilities.

1. A has changed the one-time password in the meantime. As the client presents
an old one-time password, the server deactivates the client.

2. The one-time password is still valid. In this case, the client is served, and
the one-time password is changed to a uniformly randomly distributed value
which A does not know and can guess it with success probability of only
2−η. Hence with probability (1 − 2−η), the next adversarial query will be
ignored and the client will be deactivated.

6 An Instantiation of Security Parameters

Let us have a system with the following parameters:

– We use RSA-2048 with (216, 2200)-safe primes (` = 216, s = 2200) and assume
it to have 112 bits of security, i.e. S = 2112tbl

– We use AES-128 as the building block F in the PRF (m = 128, q= 2048
128 = 16)

and assume AES-128 to have 128 security bits as a PRF. Then S′ ≈ 2124.
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– The time for a public exponentiation is tpe ≈ 29 · tbl.
– The time for a private exponentiation is tex ≈ 213 · tbl.
– There are K = 230 passwords, and we accept T0 = 8 = 23 wrong trials.
– We use a 256-bit hash function (h = 256).

Thus, T0

K ≈ 2−27 and πPp,q(s) ≈ 2−188, K2

2s ≈ 2−141, K
S′ (tex + log2K) ≈ 2−81,

tex
S ≈ 2−99, i.e. we have 99 bits of security and 98 bits against malicious servers.

If a Device Read occurs, the adversary has to spend 254 time units for dou-
bling its guessing chances (compared to T0

K ≈ 2−27). By using AES-256, the
necessary time for an adversary to double the guessing chances will be 2183.

7 Practical Implementation

Generating safe primes p (where p−1
2 is also prime) is time-consuming, especially

in low-power mobile devices. Hence we have settled with (`, s)-safe primes, with
slight loss in security reductions (Sec. 6), but with much faster generation. For
example, for a 1024-bit p = 2ap′ + 1, by using 15-bit a (with 214 ≤ a < 215),
we need a 1008-bit p′. Complete signing uses three RSA operations, one in the
client’s device and two in the server. Additionally, the server needs to perform
at least one RSA verification. RSA signing operations in the app take tens of
milliseconds (for example, on the Nexus 5X, about 30 milliseconds). However,
more significant is the network delay to transmit the signature share from the
app to the server, which may take up to 100 or 1000 ms. All together, the
performance of the complete signing operation for the authentication and digital
signatures, is still reasonable and sufficiently user friendly. RSA key generation
takes seconds for 2048-bit client’s modulus (n1) and tens of seconds for 3072-bit
modulus. For example, on the Nexus 5X, it takes about 3 seconds to generate
the key for 2048-bit modulus and about 17 seconds for 3072-bit modulus. The
practicality of Smart-ID scheme has been demonstrated by its deployment. It
became publicly available in Estonia, Latvia, and Lithuania in early November
20163. By June 2017, Smart-ID had more than 200,000 registered users across
the three states4.
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