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Overview

Some words about the overall approach.

Definition of secure information flow.
also in computational sense.

Ideas behind the analysis.
The domains that the analysis uses.
The abstraction.
Some examples.
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Overall approach

We have a program language containing encryption.

We want to analyse programs for secure information
flow.

Use cryptographic definitions of secure encryption.

Use the same domains in defining program semantics.
Bit-strings as values.
more. . . (the security parameter )

Define secure information flow using cryptographic
machinery.

Devise the analysis.
Its proof of correctness has cryptographic nature.
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Program language

The WHILE-language (simple imperative language).

P ::= x := o(x1, . . . , xk)

| skip

| P1; P2

| if b then P1 else P2

| while b do P
′

b, x, x1, . . . , xk ∈ Var. o ∈ Op. Enc, Gen ∈ Op.

Denotational semantics, defined over program
structure.

Maps initial state to final state.
Program state maps variables to their values.
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Security as independence

Program P

Source

of inputs

inputs

Public outputs

distribution D on inputs

Secret
Inputs (initial state)

defines a probability

values of variables in VarS ⊂ Var

values of variables in VarP ⊂ Var

(final state)
Outputs
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Program P

Source

of inputs

inputs

Public outputs

distribution D on inputs

Secret
Inputs (initial state)

defines a probability

values of variables in VarS ⊂ Var

values of variables in VarP ⊂ Var

(final state)
Outputs

Secure information flow:

independence of and

{|(S|VarS
, [[P]](S)|VarP

) : S ← D|} =

{|(S|VarS
, [[P]](S ′)|VarP

) : S, S ′ ← D|}
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Indistinguishability of distributions

Let D0, D1 be two
distributions over bit-strings.

Let A be a class of algorithms .

Let A ∈ A

Consider the following experiment

Let b
R
∈ {0, 1}. Generate x← Db.

Run A(x). Let b∗ be the output.

Let Adv
D0,D1

A
= Pr[b = b∗]− 1/2.

D0 and D1 are ε- indistinguishable, if Adv
D0,D1

A
≤ ε for

all A ∈ A.

f is negligible def
⇐⇒ 1/f is superpolynomial.
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Indistinguishability of distributions

Let D0 = {D0
n}n∈N, D1 = {D1

n}n∈N be two families of
distributions over bit-strings.

Let A be the class of algorithms running in poly-time .

Let A ∈ A

Consider the following experiment

Let bn

R
∈ {0, 1}. Generate x← Db

n.
Run A(n,x). Let b∗n be the output.

Let Adv
D0,D1

A
(n) = Pr[bn = b∗n]− 1/2.

D0 and D1 are indistinguishable, if Adv
D0,D1

A
is

negligible for all A ∈ A.

f is negligible def
⇐⇒ 1/f is superpolynomial.
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Definition of security

Program P

Source

of inputs

inputs

Public outputs

distributions D on inputs

Secret
Inputs (initial state)

defines a family of probability

values of variables in VarS ⊂ Var

values of variables in VarP ⊂ Var

(final state)
Outputs

Secure information flow:

independence of and

n

n

{|(Sn|VarS
, [[P]]n(S ′

n)|VarP
) :

Sn, S
′

n ← Dn|}

{|(Sn|VarS
, [[P]]n(Sn)|VarP

) : Sn ← Dn|} ≈
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Program analysis’ approach

Analysis

Desc. of inputs

Program text “Secure”

or

“Maybe not secure”

Having secure information flow is uncomputable in
general.

Description of inputs — whatever is known about D.
. . . and expressible in the domain of the analysis.
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Domain of the analysis

Analysis maps the description of the input distribution to
the description of the output distribution.

Description of D = {Dn}n∈N is
(X, K) ∈ P(P(Var)× P(Var))× P(Var).

(X, Y ) ∈ X, if X and Y are independent in D.
k ∈ K, if (the value of) k is distributed like a key.

Assume the program does not change the variables in
VarS.

If (VarS ,VarP ) ∈ Xoutput, then the program has secure
information flow.

The analysis is defined inductively over the program
structure.
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Example: analysing assignments

Consider the program x := o(x1, . . . , xk).

If (X ∪ {x1, . . . , xk}, Y ) ∈ Xinput

then (X ∪ {x1, . . . , xk, x}, Y ) ∈ Xoutput.
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Analysing encryptions — problems

Let k be distributed like a key in Dinput.

Consider the program l := k + 1.
Then {l} is not independent of {k} in Doutput.

Consider the program x := Enc(k, y).
Then {x} is not independent of {k} in Doutput.

To check whether x and k come from the same or
from different samples of Doutput, try to decrypt x
with k.

These two cases should be distinguished as l is usable for

decryption but x is not.
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Encrypting black boxes

Let k ∈ Var. Let S be a program state.

S([k]E) denotes a black box that encrypts with k. I.e.
S([k]E) has an input tape and an output tape;
When a bit-string w is written on the its tape,

[[Enc]](S(k), w)

is invoked and the result written to the output tape.

Indistinguishability can be defined for distributions over
black boxes.

Independence can be defined, too.

Security of ([[Gen]], [[Enc]]) is defined as the
indistinguishability of certain black boxes.
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Modified domain of the analysis

Let Ṽar = Var ] {[x]E : x ∈ Var}.

Description of a distribution D is

(X, K) ∈ P(P(Ṽar)× P(Ṽar))× P(Var) .

(X, Y ) ∈ X if X and Y are independent in D.
k ∈ K, if the distribution of [k]E according to D is
indistinguishable from [[[Gen]]()]E.
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Analysing encryptions

Consider the program x := Enc(k, y).

If (X, Y ) ∈ Xinput

and k ∈ Kinput

and ({[k]E}, X ∪ Y ∪ {y}) ∈ Xinput

then (X ∪ {x}, Y ) ∈ Xoutput.
Generally ({[k]E}, {[k]E}) ∈ Xinput, hence ({x}, {[k]E}) ∈ Xoutput.

If we have a program l := k + 1, then ({l}, {[k]E}) 6∈ Xoutput.

For analysis of other program constructs see the article.
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Concluding remarks

Program analysis for computationally secure
information flow.

Based on abstracting
the families of probability distributions over program
states
by pairs of sets of

variables and
encrypting black boxes

that are independent of one another in it.

No (non-trivial) constraints on program structure.

Can be implemented.

http://www.ut.ee/˜peeter_l/research/csif
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