Handling Encryption in an Analysis for Secure Information Flow

Peeter Laud

peeter_l@ut.ee

Tartu Ülikool

Cybernetica AS

Overview

- Some words about the overall approach.
- Definition of secure information flow.
 - also in computational sense.
- Ideas behind the analysis.
 - The domains that the analysis uses.
 - The abstraction.
 - Some examples.

Overall approach

- We have a program language containing encryption.
- We want to analyse programs for secure information flow.

Overall approach

- We have a program language containing encryption.
- We want to analyse programs for secure information flow.
- Use cryptographic definitions of secure encryption.
- Use the same domains in defining program semantics.
 - Bit-strings as values.
 - more...(the security parameter)
- Define secure information flow using cryptographic machinery.

Overall approach

- We have a program language containing encryption.
- We want to analyse programs for secure information flow.
- Use cryptographic definitions of secure encryption.
- Use the same domains in defining program semantics.
 - Bit-strings as values.
 - more...(the security parameter)
- Define secure information flow using cryptographic machinery.
- Devise the analysis.
 - Its proof of correctness has cryptographic nature.

Program language

The WHILE-language (simple imperative language).

$$P ::= x := o(x_1, \dots, x_k)$$

$$| skip$$

$$| P_1; P_2$$

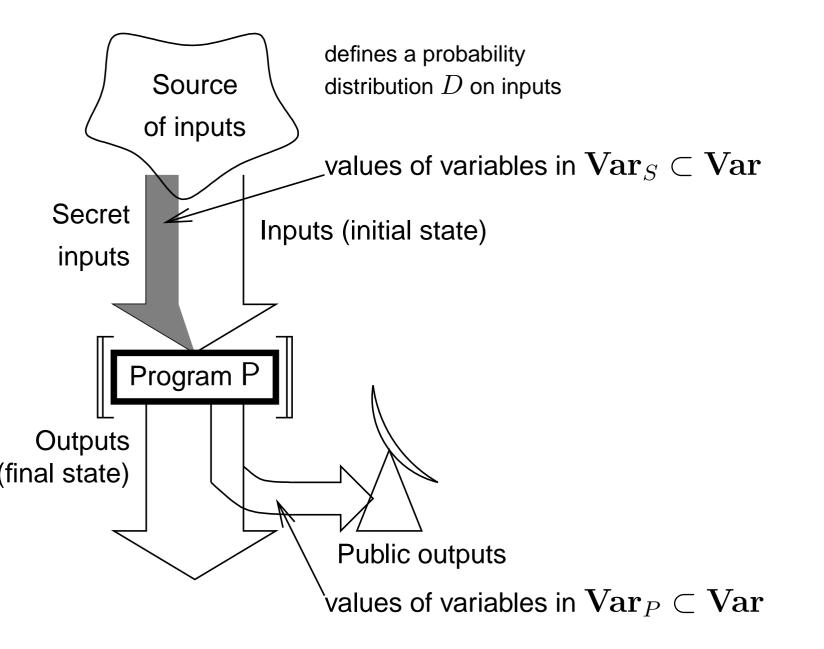
$$| if b then P_1 else P_2$$

$$| while b do P'$$

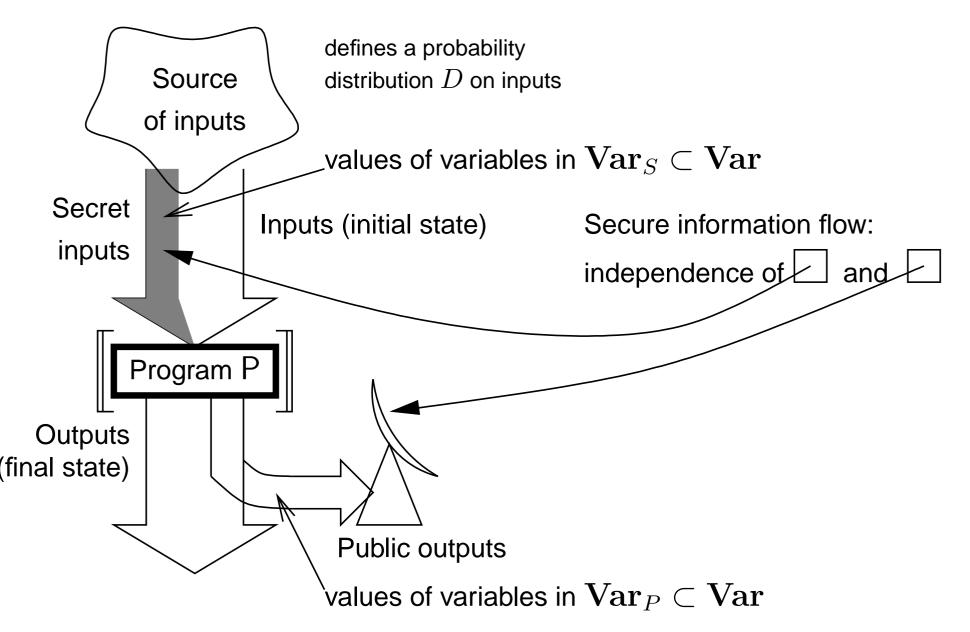
 $b, x, x_1, \ldots, x_k \in$ Var. $o \in$ Op. $\mathcal{E}nc, \mathcal{G}en \in$ Op.

- Denotational semantics, defined over program structure.
 - Maps initial state to final state.
 - Program state maps variables to their values.

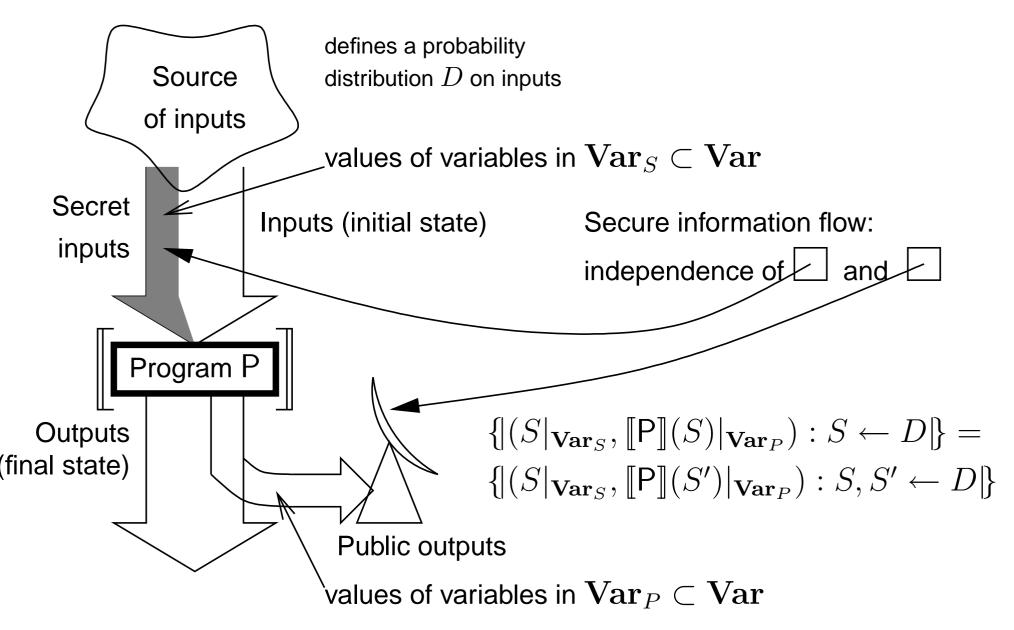
Security as independence



Security as independence



Security as independence



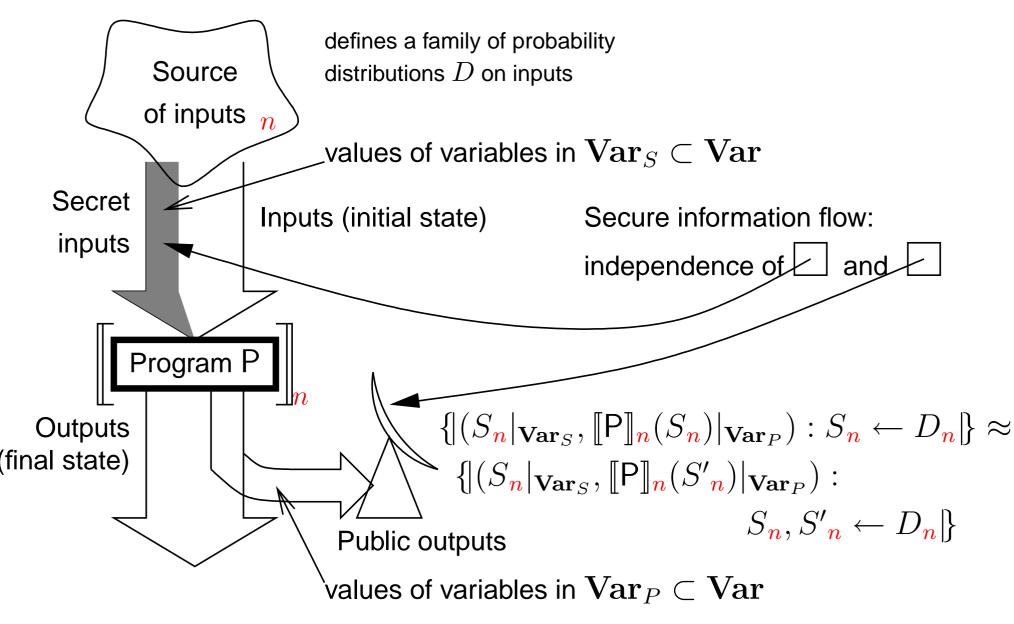
Indistinguishability of distributions

- Let D⁰, D¹ be two distributions over bit-strings.
- \checkmark Let \mathfrak{A} be a class of algorithms .
- Let $\mathcal{A} \in \mathfrak{A}$
- Consider the following experiment
 - Let $b \stackrel{R}{\in} \{0, 1\}$. Generate $x \leftarrow D^b$.
 - Run $\mathcal{A}(x)$. Let b^* be the output. Let $\operatorname{Adv}_{\mathcal{A}}^{D^0,D^1} = \Pr[b = b^*] - 1/2$.
- D^0 and D^1 are ε *indistinguishable*, if $Adv_A^{D^0,D^1} \le \varepsilon$ for all $A \in \mathfrak{A}$.

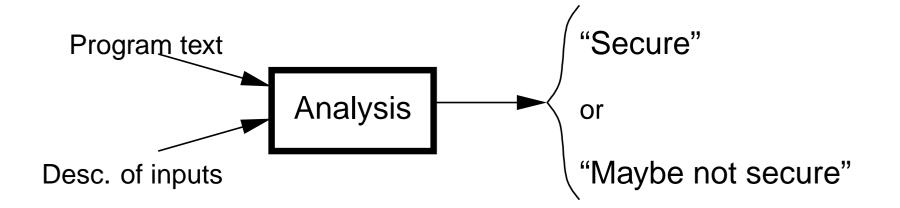
Indistinguishability of distributions

- Let $D^0 = \{D_n^0\}_{n \in \mathbb{N}}$, $D^1 = \{D_n^1\}_{n \in \mathbb{N}}$ be two families of distributions over bit-strings.
- Let \mathfrak{A} be the class of algorithms running in poly-time .
- Let $\mathcal{A} \in \mathfrak{A}$
- Consider the following experiment
 - Let $b_n \stackrel{R}{\in} \{0, 1\}$. Generate $x \leftarrow D_n^b$.
 - Run $\mathcal{A}(n,x)$. Let b_n^* be the output. Let $\operatorname{Adv}_{\mathcal{A}}^{D^0,D^1}(n) = \Pr[b_n = b_n^*] - 1/2$.
- D^0 and D^1 are *indistinguishable*, if $Adv_A^{D^0,D^1}$ is negligible for all $A \in \mathfrak{A}$.
- f is negligible $\stackrel{\text{def}}{\iff} 1/f$ is superpolynomial.

Definition of security



Program analysis' approach



- Having secure information flow is uncomputable in general.
- Description of inputs whatever is known about D.
 ...and expressible in the domain of the analysis.

Domain of the analysis

- Analysis maps the description of the input distribution to the description of the output distribution.
- Description of $D = \{D_n\}_{n \in \mathbb{N}}$ is $(\mathfrak{X}, \mathfrak{K}) \in \mathcal{P}(\mathcal{P}(\mathbf{Var}) \times \mathcal{P}(\mathbf{Var})) \times \mathcal{P}(\mathbf{Var}).$
 - $(X, Y) \in \mathfrak{X}$, if X and Y are independent in D.
 - $k \in \mathcal{K}$, if (the value of) k is distributed like a key.
- Assume the program does not change the variables in Var_S.
- If $(Var_S, Var_P) \in X_{output}$, then the program has secure information flow.
- The analysis is defined inductively over the program structure.

Example: analysing assignments

Consider the program $x := o(x_1, \ldots, x_k)$. If $(X \cup \{x_1, \ldots, x_k\}, Y) \in \mathfrak{X}_{input}$ then $(X \cup \{x_1, \ldots, x_k, x\}, Y) \in \mathfrak{X}_{output}$.

Analysing encryptions — problems

Let k be distributed like a key in D_{input} .

- Consider the program l := k + 1.
 Then {l} is not independent of {k} in D_{output}.
- Consider the program x := &nc(k, y).
 Then {x} is not independent of {k} in D_{output}.
 - To check whether x and k come from the same or from different samples of D_{output}, try to decrypt x with k.

These two cases should be distinguished as l is usable for decryption but x is not.

Encrypting black boxes

- Let $k \in Var$. Let S be a program state.
- $S([k]_{\mathcal{E}})$ denotes a black box that encrypts with k. I.e.
 - $S([k]_{\mathcal{E}})$ has an input tape and an output tape;
 - When a bit-string w is written on the its tape,

 $[\![\mathcal{E}nc]\!](S(k),w)$

is invoked and the result written to the output tape.

- Indistinguishability can be defined for distributions over black boxes.
 - Independence can be defined, too.
- Security of ([[Gen]], [[Enc]]) is defined as the indistinguishability of certain black boxes.

Modified domain of the analysis

- Let $\widetilde{\operatorname{Var}} = \operatorname{Var} \uplus \{ [x]_{\mathcal{E}} : x \in \operatorname{Var} \}.$
- Description of a distribution D is

 $(\mathfrak{X}, \mathfrak{K}) \in \mathfrak{P}(\widetilde{\mathbf{Var}}) \times \mathfrak{P}(\widetilde{\mathbf{Var}})) \times \mathfrak{P}(\mathbf{Var}) \ .$

- $(X,Y) \in \mathfrak{X}$ if X and Y are independent in D.
- $k \in \mathcal{K}$, if the distribution of $[k]_{\mathcal{E}}$ according to D is indistinguishable from $[\llbracket \mathfrak{G}en \rrbracket()]_{\mathcal{E}}$.

Analysing encryptions

Consider the program $x := \mathcal{E}nc(k, y)$. If $(X, Y) \in \mathcal{X}_{input}$ and $k \in \mathcal{K}_{input}$ and $(\{[k]_{\mathcal{E}}\}, X \cup Y \cup \{y\}) \in \mathcal{X}_{input}$ then $(X \cup \{x\}, Y) \in \mathcal{X}_{output}$. Generally $(\{[k]_{\mathcal{E}}\}, \{[k]_{\mathcal{E}}\}) \in \mathcal{X}_{input}$, hence $(\{x\}, \{[k]_{\mathcal{E}}\}) \in \mathcal{X}_{output}$.

If we have a program l := k + 1, then $(\{l\}, \{[k]_{\mathcal{E}}\}) \not\in \mathfrak{X}_{\text{output}}$.

For analysis of other program constructs see the article.

Concluding remarks

- Program analysis for computationally secure information flow.
- Based on abstracting
 - the families of probability distributions over program states
 - by pairs of sets of
 - variables and
 - encrypting black boxes that are independent of one another in it.
- No (non-trivial) constraints on program structure.
- Can be implemented.

http://www.ut.ee/~peeter_l/research/csif