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What is object inlining?

e Uniform representation of data:
= Pointer to the heap, pointing to actual data.
e Aggregated representation gives
— less pointer dereferences;
— less objects;
— keeps (possibly) related objects together in memory.
But has different semantics!

We want: automatically detect aggregation possibilities.

= Must be semantics-preserving!!!



Structure of the talk

e (Informal) semantics for the heap.
e Analysis, based on this semantics.
e Representing the objects in memory.

e Further improvements (if I have time).
— Details of interprocedural analysis.

— Constant objects.

e Conclusions.



Definition: semantics of the memory

e Local and global variables

= contain references to objects.

e An object is just a set of fields.
e A field may be m1

— an atomic value (al, a2, a3)

— a reference (f1, £2, £3)

= contains a reference to an m2

object.
— inlined (i1)

= contains another object.

Inlined objects may not be referenced from reference fields.

The semantics of statements is defined obviously.



Definition: semantics-preserving

e A pointer chain is either

— a reference variable; or

— a pointer chain, followed by a reference or inlined field.

e The heap defines a function £ from pointer chains to objects
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A transformation is semantics preserving, if it does not change Ker £.

= “semantics-preserving” = “does not change sharing patterns”.
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The analysis should tell us:

e For the reference fields:
= Couldn’t it be an inlined field instead?
result — a set of pairs (creation point, reference field)

e For the creation points of objects (statements x = new C(...)):
= is the created object going to be inlined?

e For field stores (assignments x.f = y):
= can inlining occur at this place?

Assignment can be either reference assignment or deep copy.



An inlined object may be stored only once
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An object cannot exist in several copies (1/2)
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An object cannot exist in several copies (2/2)

y = new C()
y = new C(Q) *
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Differences from previous slide:

e may-alias vs. must-alias (of y and y1)

e visibility of y1



An inlined field cannot contain several objects
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Objects are not just sets of fields .

e Object is a sequence of fields.
e Fach field has a size.

e Type inference tells for each field:

— Where are those objects created, that it points to?

predefined, f is atomic or reference
() —
size(f) max size(o), £ is inlined
o€Creations(f)
size(o) = MU size(f) + (overhead)
feFields(o)

Thus it is not allowed to inline an object into its own field.
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/1: x = new CQO;

U5, L3 € Creations(£y.T)

ly: x.f = new D1(); inlined ({1, £) = compatible ,, ¢(¢2,¢3)

l3: x.f = new D2();

compatible may mean
e frue
e do not need dynamic dispatch to distinguish

e same class
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A ccessing objects in memory

e At which offset is the field f in expression x.f?
e Is a field store x.f = y a reference assignment or a deep copy?

May be decided at runtime, but this is ineflicient.

We are going to use existing techniques (J. Dolby & A. Chien, PLDI’'97,
OOPSLA’98, PLDI'00).

e A data flow analysis records
— for objects their creation points;

— for object variables, from which fields or object creations they
have been flown.

e The results of this DFA are examined for incompatibilities.

e Incompatibilities are resolved by outlining some fields or by cloning.
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Interprocedural analysis — effect calculation

a.k.a. Functional approach a la Sharir & Pnueli.

Interproc. control flow graph does not reflect that each method returns

to the same point that it was called from.

e Let the analysis assign an element of the (upper) semilattice £ to

each program point.

e Effect calculation analyses the procedure once for each call context.
= Corresponds to replacing £ with £ — L.

e For bit-vector analyses:
— L has a (quite) small set of generators B.

— The result of effect calculation A : £ — L is an upper semi-
lattice homomorphism.
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Cloning

e Polymorphism / code reuse makes program analysis and transfor-

mation harder.
e Solution — reduce polymorphism.

Let a transformation of a method m be valid for calling context gener-
ators Bgood and invalid for By,q. For cloning

e create a copy of m called m_good;

o if Conterts(call m) C (Bgooa) then replace call mby call m_good,;

e if Conterts(call m) contain both good and bad contexts:

= clone the method containing call m.
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Constant objects

e A constant object is not changed after it has been stored.

e Constant objects may be inlined, even if this is not semantics-

preserving.
= As they are only read, it does not matter how many copies of

them exist.

l: z.g = new CQ);

X = z2.8;

x.f =vy;

Object created at £ is modified after being loaded

= non-constant
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Conclusions and open problems

I wanted to convince you, that

e A language with uniform object model is no less efficient than one

with explicit aggregation.
e The cost of object inlining analysis is not prohibitive.
Open questions:
e Arrays.

e Multithreading.

19



Implementation status

Bit-vector analyses yes
Type inference yes
Cloning yes
Constant objects no
Integration of analyses based on set-based semantics no
Representing objects in memory no
Program transformation no
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