Object inlining

Peeter Laud

Universitat des Saarlandes

supported by the Esprit LTR project #28198
JAVA and CoSy Technology for Embedded Systems (JOSES)



What is object inlining?

e Uniform representation of data:
= Pointer to the heap, pointing to actual data.
e Aggregated representation gives
— less pointer dereferences;
— less objects;
— keeps (possibly) related objects together in memory.
But has different semantics!

We want: automatically detect aggregation possibilities.

= Must be semantics-preserving!!!



Structure of the talk

e (Informal) semantics for the heap.
e Analysis, based on this semantics.
e Representing the objects in memory.

e Further improvements (if I have time).
— Details of interprocedural analysis.

— Constant objects.

e Conclusions.



Definition: semantics of the memory

e Local and global variables

= contain references to objects.

e An object is just a set of fields.
e A field may be m1

— an atomic value (al, a2, a3)

— a reference (f1, £2, £3)

= contains a reference to an m2

object.
— inlined (i1)

= contains another object.

Inlined objects may not be referenced from reference fields.

The semantics of statements is defined obviously.



Definition: semantics-preserving

e A pointer chain is either

— a reference variable; or

— a pointer chain, followed by a reference or inlined field.

e The heap defines a function £ from pointer chains to objects

C::x

ml

vl |

m2

V2

C::x

ml

vl |

m2

‘MA_O“M

x].£3)

V2

Sl
NG

m27v2])
‘ E([C::x].13)

el

A transformation is semantics preserving, if it does not change Ker £.

= “semantics-preserving” = “does not change sharing patterns”.

5



The analysis should tell us:

e For the reference fields:
= Couldn’t it be an inlined field instead?
result — a set of pairs (creation point, reference field)

e For the creation points of objects (statements x = new C(...)):
= is the created object going to be inlined?

e For field stores (assignments x.f = y):
= can inlining occur at this place?

Assignment can be either reference assignment or deep copy.



An inlined object may be stored only once

x = new C(); (x sﬁszwmgmu

x stored several times \/)*
x1 never stored x]l = x
x stored once

| *\\/ x1 stored once

yl.f = x x1 never stored

if ...
x stored once \/) \\
x1 stored once / b\/ x stored once
Z.g =
X never stored \//

x1 stored once| ¥2-1 = x1

x never stored
x1 never stored




z.g = new C()

y = 2.8
| y loaded

NHHU from a field
! U

x.f = y no inlining

An object cannot exist in several copies (1/2)

yl = new C()

y u*ﬁ
2

'

x.f = y no inlining

vt
P, y has live

* may-aliases
use y1

may-alias analysis for

object variables (only)




An object cannot exist in several copies (2/2)

y = new C()
y = new C(Q) *

| )
— 2 '
* x.f = y can inline
x.f =y transforms to y = x.°
J

=

use y use y

Differences from previous slide:

e may-alias vs. must-alias (of y and y1)

e visibility of y1



An inlined field cannot contain several objects

% Creations(x1) =
/{ ...}

* z loaded from
{...,¢, ... }1f

0T
N
|
P4
p—t
K

Creations(x) =

2 (0.}

i

* J ¢.f is alive
C:FK U

no inlining



Objects are not just sets of fields .

e Object is a sequence of fields.
e Fach field has a size.

e Type inference tells for each field:

— Where are those objects created, that it points to?

predefined, f is atomic or reference
() —
size(f) max size(o), £ is inlined
o€Creations(f)
size(o) = MU size(f) + (overhead)
feFields(o)

Thus it is not allowed to inline an object into its own field.

11



/1: x = new CQO;

U5, L3 € Creations(£y.T)

ly: x.f = new D1(); inlined ({1, £) = compatible ,, ¢(¢2,¢3)

l3: x.f = new D2();

compatible may mean
e frue
e do not need dynamic dispatch to distinguish

e same class

12



A ccessing objects in memory

e At which offset is the field f in expression x.f?
e Is a field store x.f = y a reference assignment or a deep copy?

May be decided at runtime, but this is ineflicient.

We are going to use existing techniques (J. Dolby & A. Chien, PLDI’'97,
OOPSLA’98, PLDI'00).

e A data flow analysis records
— for objects their creation points;

— for object variables, from which fields or object creations they
have been flown.

e The results of this DFA are examined for incompatibilities.

e Incompatibilities are resolved by outlining some fields or by cloning.

13



class C{ ... D f;

x = new C<inl f>(); .” x = new CQ); /

['ype(x) = ﬂ@\@m@v = AQJ ! #
{C<inl £>) P oo retum
p(x)g . p(X)a---"""

-_

_— . "
—_— —_— —_ =

Type(x) = {C<inl £>, C}

14



v — U9
v3 — U3

v3
v2
v1

vl — VU1

proc(...) proc(.. result: v U vo U vg

L L
vLE s s vy — [s](v1)

A

vy — [s](v2)

[s](v1 U we L vg) vs — [s](v3)

result: [s](v1) U [s](ve) U [s](v3)

v3

v = V1

vy H— V9

result: vy Ll v ) v3 — U3

roc(...
prod(-.) proc'(..) result: vg
s vy — [s](v1) s
<~ v2 — [s](v2) v3 — [s](v3)

result: [s](vy) U [s](v2) result: [s](v3)

15



Interprocedural analysis — effect calculation

a.k.a. Functional approach a la Sharir & Pnueli.

Interproc. control flow graph does not reflect that each method returns

to the same point that it was called from.

e Let the analysis assign an element of the (upper) semilattice £ to

each program point.

e Effect calculation analyses the procedure once for each call context.
= Corresponds to replacing £ with £ — L.

e For bit-vector analyses:
— L has a (quite) small set of generators B.

— The result of effect calculation A : £ — L is an upper semi-
lattice homomorphism.

16



Cloning

e Polymorphism / code reuse makes program analysis and transfor-

mation harder.
e Solution — reduce polymorphism.

Let a transformation of a method m be valid for calling context gener-
ators Bgood and invalid for By,q. For cloning

e create a copy of m called m_good;

o if Conterts(call m) C (Bgooa) then replace call mby call m_good,;

e if Conterts(call m) contain both good and bad contexts:

= clone the method containing call m.

17



Constant objects

e A constant object is not changed after it has been stored.

e Constant objects may be inlined, even if this is not semantics-

preserving.
= As they are only read, it does not matter how many copies of

them exist.

l: z.g = new CQ);

X = z2.8;

x.f =vy;

Object created at £ is modified after being loaded

= non-constant

18



Conclusions and open problems

I wanted to convince you, that

e A language with uniform object model is no less efficient than one

with explicit aggregation.
e The cost of object inlining analysis is not prohibitive.
Open questions:
e Arrays.

e Multithreading.

19



Implementation status

Bit-vector analyses yes
Type inference yes
Cloning yes
Constant objects no
Integration of analyses based on set-based semantics no
Representing objects in memory no
Program transformation no

20




