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Abstract. In this paper, we present a secure multiparty computation
(SMC) protocol for single-source shortest distances (SSSD) in undirected
graphs, where the location of edges is public, but their length is private.
The protocol works in the Arithmetic Black Box (ABB) model on top
of the separator tree of the graph, achieving good time complexity if
the subgraphs of the graph have small separators (which is the case for
e.g. planar graphs); the achievable parallelism is signi�cantly higher than
that of classical SSSD algorithms implemented on top of an ABB.
We implement our protocol on top of the Sharemind MPC platform, and
perform extensive benchmarking over di�erent network environments.
We compare our algorithm against the baseline picked from classical
algorithms � privacy-preserving Bellman-Ford algorithm (with public
edges).
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1 Introduction

Graph algorithms are the foundation of many computer science applications
such as navigation systems, community detection, supply chain networks [32,
38,39], hyperspectral imaging [35], and sparse linear solvers. Privacy-preserving
parallel algorithms are needed to expedite the processing of large private data
sets for graph algorithms and meet high-end computational demands. Construct-
ing real-world privacy applications based on secure multiparty computation is
challenging due to the round complexity of the computation parties of SMC pro-
tocol [11,23,24]. The round complexity problem of SMC protocol can be solved
using parallel computing [10,14].

Single-Instruction-Multiple-Data (SIMD) a principle for parallel computa-
tions [19]. Recently, SIMD principles have been used to reduce the round com-
plexities in many privacy-preserving graph algorithms, including minimum span-
ning tree [4, 25] and shortest path [2, 3, 5]. These privacy-preserving graph pro-
tocols are constructed on top of SMC protocols, and they are capable to pro-
cess sizeable private data sets, where both the location and length of edges are



private. The construction of these protocols follows the classical graph algo-
rithms [15], storing the intermediate values privately, invoking SMC protocols
for the computational steps in these algorithms, and attempting to parallelize
the computations as much as possible.

In this paper we show that certain other SSSD algorithms may be even
more suitable for conversion into SMC protocols. Considering the Parallel RAM
(PRAM) model of execution, Pan and Reif [29,31] proposed a parallel algorithm
for the Algebraic Path Computation (APC). Their algorithm assumes the avail-
ability of the separator tree of the graph and computes a recursive factorization
of the graph's adjacency matrix on its basis [31], with the number of steps and
the parallel complexity depending on the height of the tree and the size of sep-
arators. We also assume that the separator tree is among the public inputs for
the SMC protocol, and show how to privately execute Pan and Reif's algorithm.
Our empirical evaluation shows that for graphs with �good� separator trees, in-
cluding planar graphs, our protocol may be up to two orders of magnitude faster
than protocols based on classical SSSD algorithms.

The availability of the separator tree implies that the locations of the edges of
the graph have to be public (this is accounted for in our empirical comparisons),
only their lengths are private. Privately computing SSSD in this setting can still
be relevant for a number of applications. E.g. private SSSD in city streets with
public layouts has been tackled using either SMC [37] or di�erential privacy [34].
However, SMC protocols based on classical SSSD algorithms either do not bene�t
from the public end-points of edges at all [17], or bene�t only slightly [6].
Our contributions. In this paper, we present the following:

� The �rst privacy-preserving parallel computation protocol of algebraic short-
est path. The protocol uses the sparse representation of an (adjacency) ma-
trix, where the locations of edges are public, while their lengths are private.
We propose suitable data structures and normalizations for this task.

� Implementations (on top of the Sharemind MPC platform [7,8]) of the alge-
braic shortest path protocol, and an optimized privacy-preserving Bellman-
Ford protocol, with public locations and private lengths of edges. Bench-
marking results for both implementations for various sizes of graphs, and
di�erent network environments.

2 Preliminaries

2.1 Secure Multiparty Computation

Secure multiparty computation (SMC) is a cryptographic technique, allowing
a number of parties each give input to a pre-agreed functionality F , and learn
the input meant for this party, such that each party (or a tolerable coalition of
parties) will learn nothing besides their own input and output. There exist a
number of di�erent approaches for constructing SMC protocols, including gar-
bled circuits [40], homomorphic encryption [16,21], or secret sharing [12,20], and
o�ering security either against passive or active adversaries. These approaches



typically include steps for entering a value into the computation in a privacy-
preserving manner, for performing simple arithmetic operations (e.g. addition
and multiplication in a �nite �eld or ring) with private values present in the
computation, and for opening a private value to a party upon the agreement of
su�ciently many other parties. These steps, that constitute protocols by them-
selves, can be combined relatively freely. Hence, if the functionality F has been
presented as an arithmetic circuit, then these protocols for input/output and
arithmetic operations can be combined to yield a protocol for F .

Availability of such compositions leads to the typical abstraction of SMC in
privacy-preserving applications � the Arithmetic Black Box (ABB) [16,26]. An
ABB is an ideal functionality in the Universal Composability [13] framework.
This framework considers a set T of interacting Turing machines [22], executing
a protocol Π. Beside the set of machines T , there is also another Turing machine
� the adversary that can interfere with Π by sending to machines in T certain
commands that have been de�ned in the adversarial API's of these machines. The
set of the machines also includes the environment that interacts with machines
in T and the adversary over a well-de�ned API. Given two sets of machines
T and T ′ implementing the same API towards the environment, we say that
T is at least as secure as T ′, if for any possible adversary A targeting T (i.e.
its adversarial API), there exists an adversary S targeting T ′, such that the
environment cannot distinguish whether it is executing with T and A, or with
T ′ and S. This notion is composable: if additionally T = T0 ∪ {Ξ} for a Turing
machine Ξ, and a set of machines U is at last as secure as {Ξ}, then T0 ∪ U is
at least as secure as T ′. Often, we say that Ξ is the ideal functionality for the
corresponding real functionality U that implements it.

The ABB functionality is represented by a Turing machine FABB that allows
the environment representing all parties of a multiparty application to perform
private computations. If one of the parties sends the command (store, v) to the
ABB, where v is a value from one of the rings that the ABB supports, then it
creates a new handle h, stores the pair (h, v), and sends h back to all parties. If
all (or su�ciently many) parties send the command (perform, op, h1, . . . , hk) to
the ABB, where op is one of the supported operations and h1, . . . , hk are existing
handles, then the ABB looks up the stored pairs (h1, v1), . . . , (hk, vk), computes
v = op(v1, . . . , vk), creates a new handle h, stores (h, v), and sends h back to
all parties. If all (or su�ciently many) parties send the command (declassify, h),
then ABB looks up (h, v) and sends v back to all parties. A secure application
that makes use of the ABB remains secure if FABB is replaced with a set of
Turing machines that securely implement the ABB, i.e. run secure multiparty
computation protocols. Note that if we want to compute a function F with the
help of an ABB, and if the ABB only declassi�es the end result of F , then the
resulting protocol is trivially private [26].

In the following, a value v stored in the ABB and accessed through a handle
is denoted by JvK. Similarly, Jv⃗K denotes a vector of values, and JVK a matrix
of values stored in the ABB. We use the notation JuK + JvK [resp. min(JuK, JvK)]
to denote that the addition [resp. minimum] operation is being invoked on the



values JuK and JvK; the result of this operation is again stored in the ABB. We
extend this notation pointwise to vectors and matrices.

The cost of the operations of the ABB depends on the implementation of
FABB. If Sharemind has been used as the implementation, then the addition is a
free operation (i.e. it requires no communication between parties), and minimum
requires a constant amount of bits to be exchanged in a constant number of
rounds. Hence the bandwidth cost of min(JuK, Jv⃗K) is linear in the length of u⃗
and v⃗, while the round complexity is logarithmic in their length. In the following
descriptions of algorithms built on top of the ABB, we have to be explicit in
stating, which operations can or cannot be performed in parallel. For loops, we
write forall to denote that all iterations take place in parallel; we write for to
state that the loop is sequential.

2.2 Graphs, separators, semirings, and algebra path problem

A graph G = (V,E) is a mathematical structure consisting of a set V of
vertices that are connected by edges from a set E ⊆ V × V . The edges between
vertices may have lengths assigned to them; these are given by a function w : E →
Z. A graph may be directed or undirected; in the latter case, E is symmetric. If
V ′ ⊆ V , then we let G[V ′] denote the induced subgraph (V ′, E ∩ V ′ × V ′).

A graph G = (V,E) can be represented in computer memory in di�erent
ways. The dense representation of G is the adjacency matrix � a |V |×|V |matrix
over Z ∪ {∞}, where the entry at u-th row and v-th column is w(u, v). On the
other hand, the adjacency list representation gives for each vertex u ∈ V the list
of pairs (v1, w1), . . . , (vk, wk), where (u, v1), . . . , (u, vk) are all edges in G that
start in u, and wi = w(u, vi); we call such representations sparse. If |E| ≪ |V |2,
then sparse representation takes up less space than dense representation and the
algorithms working on sparse representation may be faster [9].

We call a graph (actually, an in�nite family of graphs) sparse if its number
of edges is proportional to its number of vertices, |E| = O(|V |); otherwise we
call it dense. A graph is planar if it can be drawn a plane without crossing the
edges outside vertices. If G is planar, then |E| ≤ 3|V | − 6 according to Euler's
formula for the number of vertices, edges and faces of its drawing [36].

A separation of the graph G = (V,E) is a partition of its vertices V =
V1 ∪̇ S ∪̇ V2, such that any path from a vertex in V1 to a vertex in V2 must pass
through a vertex in S (called a separator). It is known [27] that planar graphs
have separations where |S| = O(

√
|V |) and |V1|, |V2| ≤ 2|V |/3. A separator tree

of G is either a single node containing (∅, V, ∅); or the root node (V1, S, V2) for
some separation of G, and its two subtrees � separator trees for G[V1 ∪ S] and
G[V2 ∪ S]. Planar graphs thus have separator trees of height O(log |V |).

A (commutative) semiring is an algebraic structure S with two binary opera-
tions ⊕ and ⊗, where both are associative and commutative, have unit elements
0O and 1O, where ⊗ distributes over ⊕, and where a⊗ 0O = 0O for all a ∈ S. We
overload ⊕ and ⊗ to also denote addition and multiplication of matrices with
elements from S; the multiplication may also be denoted by juxtaposition. Given
matrices A ∈ Sn×n and X ∈ Sm×n, the algebra path problem is to �nd a matrix



Y ∈ Sm×n, such thatY = X⊕YA. Let I ∈ Sn×n be the identity matrix. IfA has
a quasi-inverse, i.e. a matrix A∗ ∈ Sn×n, such that I⊕AA∗ = I⊕A∗A = A∗,
then Y = XA∗ is a possible solution to the algebra path problem.

Algebra path problem generalizes a number of graph-theoretic tasks. Let
G = (V,E) be a graph and let t ∈ V , and let S = N∪ {∞}, ⊕ be the minimum,
⊗ be the addition, 0O = ∞, 1O = 0, n = |V |, m = 1, A be the adjacency
matrix of G, and x⃗ = X ∈ S1×n be the t-th unit vector (i.e. vt = 1O = 0 and
vj = 0O = ∞ for j ̸= t). Then y⃗ = Y is the vector of shortest distances from
the t-th vertex [28]. Other instantiations of the semiring and X give solutions to
other problems [30].

Having the semiring instantiated as in the previous paragraph, the quasi-
inverse of A ∈ Sn×n is de�ned; it is equal to (I ⊕ A)n. If A is the adjacency
matrix of some graph, then A∗ is the matrix of shortest distances between the
vertices of the same graph. Hence any all-pairs shortest distance (APSD) algo-
rithm is suitable for computing A∗; but it would be ine�cient to use for the
SSSD problem, particularly when A is a sparse(ly represented) matrix.

Given x⃗ and symmetric A, Pan and Reif [30], proposed the following algo-
rithm for computing x⃗⊗A∗ without ever materializing A∗. Let d ∈ N and pick
numbers n = n0 > n1 > · · · > nd > 0. Let P ∈ Sn×n be a permutation matrix.
De�ne matrix A0 = PAPT (i.e. we permute the rows and columns of A in the
same manner; this corresponds to reordering the vertices of G) and de�ne the
matrices Xh,Yh,Zh,Ah+1 (for h ∈ {0, . . . , d− 1}) by[

Xh YT
h

Yh Zh

]
:= Ah Ah+1 := Zh ⊕YhX

∗
hY

T
h (1)

where Zh,Ah+1 ∈ Snh+1×nh+1 ; this also de�nes the sizes of Xh and Yh. Letting
I and O denote identity and zero matrices of appropriate sizes, one can verify
that the following identity holds:

A∗
h =

[
I X∗

h ⊗YT
h

O I

]
⊗

[
X∗

h O
O A∗

h+1

]
⊗

[
I O

Yh ⊗X∗
h I

]
. (2)

We thus have an algorithm to compute y⃗ = x⃗ ⊗ A∗. Let x⃗P = x⃗ ⊗ PT . Let
h = 0. Extract Xh,Yh,Zh from Ah and compute X∗

h (using any APSD algo-
rithm), Qh = Yh ⊗ X∗

h and Ah+1. Note that X∗
h ⊗ YT

h = QT
h . Multiply x⃗P

with the �rst matrix in (2), then the result with the second matrix, and then
the result with the third matrix, thus de�ning y⃗P = x⃗P ⊗ A∗

0. Finally remove
the permutation, computing y⃗ = y⃗P ⊗ (PT )−1. All computations are done with
sparse matrices. Importantly, multiplication with the second matrix in (2) splits
the current vector into two parts, where the left part is multiplied with X∗

h,
and the right part with A∗

h+1 through a recursive call. The recursion stops by
computing A∗

d directly (using any APSD algorithm).
Pan and Reif [30] show that if the choice of P and n0, . . . , nd is informed by

a separator tree T of G with height d = O(log n) and separators of size O(
√
n),

then, depending on how X∗
h and A∗

d are computed, the described algorithm
requires either O(log3 n) parallel time and O(n3/2 log n) work, or O(

√
n log n)



parallel time and O(n3/2) work. The time estimate follows directly from the
parallel time complexity of the matrix operations, multiplied by the depth of
the recursion. The work estimate follows from careful counting of elements in
the sparse representations of matrices [31].

Pan and Reif [31, Sec. 7] describe, what kind of information is extracted
from the separator tree T. We refer to them for details, but let us describe the
result. The main outcome is a list L⃗ = (L0, . . . ,Ld) of lists of lists of vertices of

G, such that each i ∈ V occurs in L⃗ exactly once. The permutation matrix P
must reorder the vertices so, that they appear in the same order as in �attened
L⃗. For h ∈ {0, . . . , d}, the number nh is equal to the number of vertices in

(Lh,Lh+1, . . . ,Ld). Let L⃗ = (L0, . . . , Ld), where each Lh is the list of lengths
of elements of Lh (note that elements of Lh are lists of vertices). In (1), Xh is
going to be a block-diagonal matrix with the block sizes listed in Lh; this is used
in the computation of X∗

h.

3 Privacy-Preserving Algebraic Shortest Path Protocol

This section presents the privacy-preserving version of the algorithm dec-
sribed above. We present the used data structures, the auxiliary functionalities,
and the main computation.

Data structures. We mostly use the sparse representation of matrices. The rep-
resentation ⟨⟨A⟩⟩ for a matrix A ∈ Sm×n where we do not hide the position of
non- 0O cells, but we hide the contents of these cells, is a triple ⟨⟨A⟩⟩ = ⟨m,n, C⟩,
where C is the list of cells of the matrix that may contain an element di�er-
ent from 0O. Each cell is again a triple (i, j, JvK), where i ∈ {0, . . . ,m − 1} and
j ∈ {0, . . . , n− 1} are the coordinates of that cell, and v ∈ S = N ∪ {∞} is the
value in it. The value v is stored privately in the ABB. In our implementation
on top of Sharemind, we represent elements of S as 64-bit integers (representing
∞ as a large number). In the following, we use the standard list constructors,
destructors, and combinators � NIL, cons, length, head, tail,++ (concatenation)
� to express algorithms working with lists. We write C[k] for the k-th element
of the list (starting with 0).

We allow the same coordinates (i, j) to occur several times in C. We de�ne
that the triple ⟨m,n, C⟩ represents a m×n matrix, where the cell at coordinates
(i, j) contains the value min{v | (i, j, JvK) ∈ C}.

We also make use of the dense representation JVK of (small) matrices. It is
simply a matrix of elements of S stored in the ABB.

Auxiliary functions. We have a relatively large set of helper functions for decom-
posing and combining matrices, as well as normalizing and converting between
di�erent representations. We list them below and shortly describe how they work.

getMin(Jv⃗K, ı⃗) takes a private vector of values, and an equal-length public vector
of indicators. The indicator vector consists of segments of equal values. If



there are k such segments of length l1, . . . , lk (with |v⃗| =
∑

j lj), then the
output of getMin is a private vector of k values, where the j-th element
is the minimum among the elements of v⃗ at the positions corresponding
to the j-th segment of equal values in ı⃗. The implementation of getMin is
straightforward, we can divide Jv⃗K into k segments according to the values
in ı⃗, and then call min from the ABB for all segments in parallel. Sharemind
does not directly support such parallel invocation for segments of di�erent
length, but it is still possible to design getMin to run in SIMD fashion, doing
O(|v⃗|) work and requiring O(logmaxj lj) rounds.

norm1(⟨m,n, C⟩) takes a sparsely represented matrix. It returns the same matrix,
having sorted elements (i, j, JvK) of C by (i, j). It does not invoke any MPC
protocols.

norm2(⟨m,n, C⟩) �rst invokes norm1 on its input, and then removes the duplicate
occurrences of the same cell from C. It does the latter by invoking getMin.

getSlice(⟨m,n, C⟩, u, l,m′, n′) returns the m′ × n′-sized submatrix of ⟨m,n, C⟩,
whose upper corner is in the cell (u, l) of the input matrix. Its output is
⟨m′, n′, C′⟩, where C′ is the list of elements (i−u, j−l, JvK), where (i, j, JvK) ∈
C, u ≤ i < u+m′, and l ≤ j < l + n′.

overlay(⟨m,n, C⟩, u, l,m′, n′), wherem′ ≥ m+u and n′ ≥ n+l, outputs ⟨m′, n′, C′⟩,
where C′ is the list of elements (i + u, j + l, JvK), where (i, j, JvK) ∈ C. I.e.
overlay creates a m′ ×n′-sized supermatrix of the original matrix, where the
upper left corner of the original matrix is at position (u, l), and the rest of
the matrix is �lled with 0O = ∞.

overlap(⟨m,n, C1⟩, . . . , ⟨m,n, Ck⟩) returns ⟨m,n, C1 ++ · · ·++ Ck⟩.
transpose(⟨m,n, C⟩) returns ⟨n,m, C′⟩, where the elements of C′ are the elements

of C with their �rst two components swapped.

identity(n) returns the n× n identity matrix, represented sparsely.

sparse-to-dense(⟨m,n, C⟩) returns the dense representation of its argument (which
has to be normalized). It initializes a m× n array of values J∞K, and copies
the elements of C to their places.

dense-to-sparse(JVK) returns the sparse representation of its argument. It returns
⟨m,n, C⟩, where m and n are dimensions of V, and C is a list of length mn,
containing one element for each cell of JVK.

Major functions. These include the addition and multiplication of matrices, and
the computation of quasi-inverses of block-diagonal matrices. The �rst of them
� pointwise minimum � is simple: if ⟨⟨M⟩⟩ and ⟨⟨N⟩⟩ have the same dimensions,
then ⟨⟨M⟩⟩ ⊕ ⟨⟨N⟩⟩ = norm2(overlap(⟨⟨M⟩⟩, ⟨⟨N⟩⟩)).

The multiplication protocol for sparse matrices, given in Alg. 1, is also un-
surprising. An interesting detail is the transposition (and normalization) of the
�rst matrix before the actual multiplication. In this way, the values of both x1

and x2 are non-decreasing during the loop. In our implementation we optimize
the inner loop by running only through the segment of D, where x2 = x1.

The only non-local operation in Alg. 1 is the �nal norm2. The addition in
line 8 is performed locally by the parties running the protocols implementing



Algorithm 1: Matrix multiplication over the semiring N ∪ {∞}
Data: Matrices ⟨⟨M⟩⟩ = ⟨m,n, C⟩ and ⟨⟨N⟩⟩ = ⟨n, k,D⟩
Result: Matrix ⟨⟨M⟩⟩ ⊗ ⟨⟨N⟩⟩

1 begin
2 ⟨n,m, C′⟩ ← norm1(transpose(⟨⟨M⟩⟩))
3 E ← NIL
4 for i← 0 to length(C′)− 1 do
5 (x1, y1, Jv1K)← C′[i]
6 for j ← 0 to length(D)− 1 do
7 (x2, y2, Jv2K)← D[j]
8 if x1 = x2 then E ← cons((y1, y2, Jv1K + Jv2K), E)

9 return norm2(⟨m, k, E⟩)

Algorithm 2: Quasi-inverse of a block-diagonal matrix

Data: Matrix ⟨⟨M⟩⟩ = ⟨n, n, C⟩, list of block-sizes B⃗
Requires: C contains no cells outside the blocks de�ned by B⃗
Result: Matrix ⟨⟨M⟩⟩∗

1 begin

2 forall i ∈ {0, ..., length(B⃗)− 1} do
3 ⟨⟨Ai⟩⟩ ← getSlice(⟨⟨M⟩⟩,

∑i−1
j=0 B[j],

∑i−1
j=0 B[j], B[i], B[i])

4 ⟨⟨Bi⟩⟩ ← dense-to-sparse(FloydWarshall(sparse-to-dense(⟨⟨Ai⟩⟩)))
5 ⟨⟨Ci⟩⟩ ← overlay(⟨⟨Bi⟩⟩,

∑i−1
j=0 B[j],

∑i−1
j=0 B[j], n, n)

6 return overlap(⟨⟨C0⟩⟩, ..., ⟨⟨Clength(B⃗)−1⟩⟩))

the ABB. Both the round complexity and the number of non-free operations of
Alg. 1 depend on the cells included in C and D.

Alg. 2 for quasi-inverse of ⟨⟨M⟩⟩ �nds the quasi-inverse of each block of M,
and then combines the blocks. The input to Alg. 2 is a list of sizes of the blocks
on the main diagonal of M; the sum of elements of B⃗ has to be n. We use
the Floyd-Warshall APSD algorithm [18] for computing the quasi-inverse of a
single block. We have adapted our privacy-preserving implementation [2, Alg. 8]
to compute the APSD for several (adjacency) matrices at the same time, such

that the round complexity of Alg. 2 is O(max B⃗), while the number of non-free
operations is O(

∑
i(B[i])3). Our experiments [2] show that despite greater round

complexity, Floyd-Warshall is faster than repeated squaring.

Main computation. The computation corresponding to the multiplication x⃗ ⊗
A∗ according to (2) is given in Alg. 3. It takes as inputs the sparse matrix
representations of both A and x⃗, where we think of the latter as a matrix with
a single row. The multiplication operation also takes as input a list L⃗ of lists of
block-sizes; it is formed on the basis of the separator tree of the graph having
the adjacency matrix A (described at the end of Sec. 2.2), its length is d+ 1.



Algorithm 3: Main loop of the algebra path computation

Data: Symmetric matrix ⟨⟨A⟩⟩ of size n× n, non-empty list of lists of lengths
L⃗, vector ⟨⟨x⃗⟩⟩ of length n

Result: Vector ⟨⟨y⃗⟩⟩ = ⟨⟨x⃗⟩⟩ ⊗ ⟨⟨A⟩⟩∗
1 Function Algebraic-paths(n, ⟨⟨A⟩⟩, L⃗, ⟨⟨x⃗⟩⟩) is
2 B⃗ ← head(L⃗); L⃗′ ← tail(L⃗); s←

∑
B⃗

3 if L⃗′ = NIL then

4 return ⟨⟨x⃗⟩⟩ ⊗ quasi-inverse(⟨⟨A⟩⟩, B⃗)

5 ⟨⟨Xast⟩⟩ ← quasi-inverse(getSlice(⟨⟨A⟩⟩, 0, 0, s, s), B⃗)
6 ⟨⟨Y⟩⟩ ← getSlice(⟨⟨A⟩⟩, s, 0, n− s, s)
7 ⟨⟨Z⟩⟩ ← getSlice(⟨⟨A⟩⟩, s, s, n− s, n− s)
8 ⟨⟨Q⟩⟩ ← ⟨⟨Y⟩⟩ ⊗ ⟨⟨Xast⟩⟩
9 ⟨⟨A′⟩⟩ ← ⟨⟨Z⟩⟩ ⊕ ⟨⟨Q⟩⟩ ⊗ transpose(⟨⟨Y⟩⟩)
10 ⟨⟨z⃗⟩⟩ ← ⟨⟨x⃗⟩⟩ ⊗ overlap(identity(n), overlay(transpose(⟨⟨Q⟩⟩), 0, s, n, n))
11 ⟨⟨z⃗L⟩⟩ ← getSlice(⟨⟨z⃗⟩⟩, 0, 0, 1, s)
12 ⟨⟨z⃗R⟩⟩ ← getSlice(⟨⟨z⃗⟩⟩, 0, s, 1, n− s)
13 ⟨⟨w⃗L⟩⟩ ← ⟨⟨z⃗L⟩⟩ ⊗ ⟨⟨Xast⟩⟩
14 ⟨⟨w⃗R⟩⟩ ← Algebraic-paths(n− s, ⟨⟨A′⟩⟩, L⃗′, ⟨⟨z⃗R⟩⟩)
15 ⟨⟨w⃗⟩⟩ ← overlap(overlay(⟨⟨w⃗L⟩⟩, 0, 0, 1, n), overlay(⟨⟨w⃗R⟩⟩, 0, s, 1, n))
16 return ⟨⟨w⃗⟩⟩ ⊗ overlap(identity(n), overlay(⟨⟨Q⟩⟩, s, 0, n, n))

Alg. 3 closely follows (1)�(2). The current length of L⃗ describes the current
depth of the recursion; length 1 (checked in line 3) indicates the base. Otherwise,
⟨⟨A⟩⟩ is the reprensetation of one of the matrices Ah. We start by decomposing
Ah intoXh (and �nd its quasi-inverse, using the list of lengths in the �rst element

of L⃗), Yh and Zh, compute Qh and Ah+1, multiply ⟨⟨x⃗⟩⟩ with the �rst matrix in
(2). We will then split the resulting vector z⃗ into two parts of lengths s and n−s,
and multiply the left half with X∗

h. We now recursively call Alg. 3 with the right
half of z⃗, withAh+1, and with the list of lists of lengths missing the �rst element.
We complete the computation by concatenating the two vectors, and multiplying
it with the third matrix in (2). The round complexity, and the number of invoked
ABB operations follow directly from Pan and Reif's analysis [31].

In order to compute the distances from a vertex t of an undirected graph
G = (V,E) with public locations, but private lengths of edges, we have to per-
form more steps before and after invoking Alg. 3, but all these steps are public.
Starting from the sparsely represented adjacency matrix ⟨⟨A⟩⟩ of G, we have to
�nd the separator tree of G, permute the vertices of G (giving us the matrix

⟨⟨A0⟩⟩), and create the list L⃗. We have to create the vector ⟨⟨x⃗⟩⟩ as a unit vector,
where we have the value 1O = 0 only at the position corresponding to the lo-
cation of vertex t after the permutation. After calling Alg. 3 with ⟨⟨A0⟩⟩, L⃗ and
⟨⟨x⃗⟩⟩, we have to apply the inverse permutation to the resulting vector ⟨⟨y⃗⟩⟩.



4 Security and privacy of protocols

The privacy-preserving APC protocol is built on top of a universally com-
posable ABB. It receives its private inputs through the handles to values stored
in the ABB, and returns its private outputs in the same fashion. The proto-
col contains no declassify-operations. Hence, as discussed in Sec. 2.1, it inherits
the same security properties against various adversaries as the underlying secure
computation protocol set. In particular, if the ABB is implemented by the Share-
mind MPC platform, then the resulting APC protocol is a three-party protocol,
working with public locations but secret-shared lengths of edges, and provides
information-theoretic security against an adversary passively corrupting at most
one of the parties.

5 Empirical evaluation

5.1 Privacy-preserving Bellman-Ford with public edges

We want to compare the APC protocol with protocols based on classical
SSSD algorithms, where the locations of edges are public, but their lengths are
private. We see that Dijkstra's algorithm cannot bene�t from public location of
edges, because the order in which it relaxes the vertices depends on the lengths of
the edges, thus the random permutation of vertices that could hide that order [1]
would make the locations of edges private again. Hence we think that it is fair to
compare the new protocol against a protocol based on the Bellman-Ford (BF)
algorithm.

Such privacy-preserving algorithm is given in Alg. 4. We see that at each
iteration of the main loop, it de�nes J⃗aK as the current distance of the start

vertex of each edge from s. Vector J⃗bK will then record the current distance of
the end vertex of each edge, when the last step is made over this edge. The
same getMin operation as in Sec. 3 is used to �nd the minimum distance for
each vertex. We see that the number of non-free operations executed by Alg. 4
is O(mn), while its round complexity is O(n logD), where D is the maximum
in-degree of a vertex.

5.2 Setup of benchmarking

We have implemented the APC and BF algorithm on the Sharemind MPC
platform, using the SecreC language [33] o�ered by this platform. The bench-
marking took place on three servers with 12-core 3 GHz CPUs with Hyper-
Threading running Linux, and 48 GB of RAM, connected by an Ethernet 1 Gbps
LAN. The local computations in Sharemind MPC are single-threaded, and there
is no support for performing computations and network operations at the same
time.

We want to measure the performance in di�erent network environments, cor-
responding to LAN and WAN deployments. We throttle the connections between



Algorithm 4: Bellman-Ford based SSSD algorithm with public edge
locations
Data: Number of vertices and edges n and m
Data: Vectors (of length m) of starting and ending vertices, and lengths of

edges: S⃗, T⃗ , and JW⃗ K
Data: starting vertex s ∈ {0, . . . , n− 1}
Requires: T⃗ is sorted
Requires: There is a loop edge with length 0 at each vertex
Result: Vector of distances JD⃗K from vertex s

1 begin

2 JD⃗K←∞; JD[s]K← 0
3 for i← 0 to n− 1 do
4 forall j ∈ {0, . . . ,m− 1} do Ja[j]K← JD[S[j]]K;
5 J⃗bK← Ja⃗K + JW⃗ K
6 JD⃗K← getMin(J⃗bK, T⃗ )

7 return JD⃗K

the servers in order to simulate these environments. In our experiments, we con-
sider �HBLL�, �HBHL� and �LBHL� settings. Here HB (high-bandwidth) means
1 Gbps and LB (low-bandwidth) 100 Mbps link speed between servers. Also, LL
(low-latency) means no added delay for the messages sent between the servers,
while HL (high-latency) means additional 40 ms delay.

The performance of the APC algorithm is highly dependent on the locations
of edges. As we are most interested in the performance of the algorithms on
planar graphs, and as we want to focus on optimizing the privacy-preserving
computations, not the computation of the separator tree, we have selected grid
graphs as the family of graphs on which we have performed benchmarking. The
R×C grid graph has RC vertices that can be thought as being placed in a R×C
grid. Each vertex is connected with 4 of its closest neighbours (less for vertices
at the edges of the grid); the number of (undirected) edges is (2RC − R − C).
Grid graphs have easy-to-compute separators of size min(R,C) that split their
set of vertices into two roughly equal parts; the height of the resulting separator
tree is ≈ logR + logC. In the following we let G(N) denote the N × N grid
graph.

5.3 Measuring the performance of algebraic path computation

We report the running times and the bandwidth consumption (per computing
server) for grid graphs G(N) for di�erent values of N , on Sharemind cluster
for the HBLL network environment in Table 1. The times correspond to the
execution of Alg. 3; we have not measured the time it takes to construct the
separator tree, the lists L⃗ and L⃗, or to permute the matrices and vectors.

The largest grid graph that we ran our implementation on, was G(600). This
graph has 360k vertices and ≈ 1.4M (directed) edges. We are not aware of any



Table 1. Running time (in seconds) and bandwidth consumption of privacy-preserving
algebraic path computation protocol for graphs G(N)

N Bandwidth Time

5 0.16 MB 0.1

9 0.30 MB 0.3

17 2.31 MB 1.2

33 27.3 MB 8.2

50 90.3 MB 30.1

N Bandwidth Time

65 366 MB 66.4

100 874 MB 244

129 1972 MB 522

150 3136 MB 838

N Bandwidth Time

200 7792 MB 2029

257 16.4 GB 4280

513 138.3 GB 35341

600 224.6 GB 58082

5 9 17 33 65 129 257 513
Size N of the graphs G(N)
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Fig. 1. Performance of algebraic path computation protocol on graphs with given num-
bers of vertices in di�erent network environments

previous executions of privacy-preserving SSSD on graphs of similar size, no
matter if the locations of edges are private or not, or what the actual shape of
the graph is. We see that the running time for such a graph was a bit over 16
hours, which may be practical for certain settings.

In Figure 1, we compare the running time of privacy-preserving Algebraic
path computation protocol on graphs of di�erent sizes in di�erent network en-
vironments. We see that for small graphs, the performance only depends on the
latency of the network. Only for graphs with 1000 or more vertices (N = 33)
does the available bandwidth start having an e�ect.

5.4 Comparison of APC and BF protocols

The running times of both privacy-preserving SSSD protocols that use public
edges � Bellman-Ford and Algebraic path computation � for the sparse rep-
resentation of the graphs are illustrated in Table 2. The experiments also show
average bandwidths in di�erent network environments. The running times of all
graphs in di�erent network environments for Algebraic path computation are



Table 2. Benchmarking results (bandwidth for a single computing server) for Bellman-
Ford and Algebraic path protocol in di�erent network environments, for grid graphs
G(N)

Bellman-Ford Algebraic Path Computation Speed-up
Band- Running time (s) Band- Running time (s) BF vs. APC

N width HBLL HBHL LBHL width HBLL HBHL LBHL HBLL HBHL LBHL

5 0.4 MB 0.33 33.3 33.3 0.09 MB 0.1 18.2 18.2 3.3x 1.8x 1.8X

9 2.64 MB 2.74 108 108 0.28 MB 0.3 38.0 38.0 9.1x 2.8x 2.8x

17 22.3 MB 18.4 388 399 2.33 MB 1.2 69.4 71.4 15.3x 5.6x 5.6x

33 324 MB 214 1509 1684 24.1 MB 8.2 146 165 26.1x 10.3x 10.2

65 4.4 GB 819 6542 9205 273 MB 66.4 522 670 12.3x 12.5x 13.7x

129 173 GB 13395 36835 81346 2005 MB 522 1355 2669 25.6x 27.1x 30.5x

257 2.86 TB 203428 521491 1154261 17.2 GB 4280 9182 20276 47.5x 56.8x 56.9x

513 37.3 TB 3092314 7147049 17883699 144 GB 35341 73215 166643 87.4x 97.6x 107.3x

5 9 17 33 65 129 257 513
Size N of the graphs G(N)
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Fig. 2. Performance (time in seconds) of Bellman-Ford Version 3 and Algebraic path
computation protocols on graphs of di�erent sizes in di�erent network environments
(red: HBLL, green: HBHL, blue: LBHL, light: Bellman-Ford, dark: Algebraic path
computation)

lower than the running times of the Bellman-Ford protocol. Similarly, the band-
width consumption in Algebraic path computation is smaller than bandwidth in
Bellman-Ford protocol.

In Table 2, the execution times of the Bellman-Ford protocol on larger graphs
have been estimated: we benchmarked the larger examples by running only a
few iterations of the main loop in Alg. 4, measured the running time of a single
iteration, and then multiplied with the total number of iterations.

We depict the running times also in Fig. 2, presenting the comparison of
Algebraic path computation and Bellman-Ford protocol for di�erent network
environments. We see that despite the simple structure of Bellman-Ford, Alge-
braic path computation is still faster also in high-latency environments.



6 Conclusion and future work

We have shown that designers of privacy-preserving applications working
with data in graph form and needing to �nd the distances between vertices
should look beyond the classical SSSD algorithms when selecting the protocol
for shortest paths' computation on top of a SMC framework. Even though many
of the Parallel RAM algorithms proposed for SSSD have components that are
not easily converted into parallel privacy-preserving protocols (e.g. the spawning
and scheduling of tasks based on private data), there may be algorithms that
process data su�ciently uniformly in order to serve as basis of SMC protocols.

We have shown how APCmay be used to compute SSSD in privacy-preserving
manner. It gives us e�cient protocols, compared to classical SSSD algorithms.
The same semiring framework may be instantiated in di�erent ways, and be
used for solving other graph problems, e.g. �nding the minimum spanning trees
or solving the all-pairs shortest distance problem. These algorithms may be con-
verted into SMC protocols exactly as we have done here, with the only possible
slight di�erence arising from the scalar ⊗-operation no longer being free.

In this paper, we have presented a protocol for undirected graphs. The APC
algorithm is equally well applicable to directed graphs [31, Remark 6.1], and this
change can also be implemented on top of an ABB.

In this paper, we have required the locations of edges to be public. We believe
that a protocol with private locations is possible. This would not signi�cantly
change the subroutines. Still the matrix multiplication may become more expen-
sive due to the need to run through both loops in Alg. 1, and quasi-inverse will
become more expensive due to the need to consider a central stripe of diagonals,
instead of just the blocks on the main diagonal. There may be more changes to
the main computation, as we no longer know the sizes of matrices; hence padding
may be necessary. Also, the main computation would receive the list of lists of
block-sizes as a private parameter, too.

Computing that list of lists of block-sizes privately is likely an even more
complex problem. We are not aware of e�cient parallel RAM algorithms for
computing the separator tree, that could be easily converted to run on top of a
SMC framework.
Acknowledgements. This research received funding from the European Re-
gional Development Fund through the Estonian Centre of Excellence in ICT
Research�EXCITE.
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