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Background
Cafeteria computes average eating time of math students.
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Privacy question

Cafeteria computes a table t .
student name faculty time (min)
Alice math 20
Bob math 15
Eve computer science 25
. . . . . . . . .

. . . . . . . . .

The analyst will see only the average.
SELECT AVG(time) FROM t WHERE faculty = math;
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Privacy issue

Table t

student name faculty time (min)
Alice math 20
Bob math 15
Chris math 10

SELECT AVG(time)
FROM t
WHERE faculty = math;
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Privacy issue

Table t

student name faculty time (min)
Alice math 20
Bob math 15
Chris math 10

SELECT AVG(time)
FROM t + noise
WHERE faculty = math;
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ε-differential privacy for particular attributes
t t’

name faculty time (min)
Alice math 20
Bob math 15
Chris math 10

name faculty time (min)
Alice math 25
Bob math 15
Chris math 10

Define distance d(·, ·) between two tables as the distance in some attribute of
some row. We have d(t , t ′) = 5.

Let f : X → Y be a query.

Differential privacy: For all Y ′ ⊆ Y , for all tables t ′ ∈ X :
Pr (f (t) ∈ Y ′)
Pr (f (t ′) ∈ Y ′)

≤ eε·d(t ,t ′)
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Which ε is good enough?

Pr (f (t) ∈ Y ′)
Pr (f (t ′) ∈ Y ′)

≤ eε·d(t ,t ′) ⇐⇒ Pr (f (t) ∈ Y ′) ≤ eε·d(t ,t ′) · Pr (f (t ′) ∈ Y ′) .

The “goodness” of ε is linked to the distance d(·, ·).
Pr (f (t) ∈ Y ′) ≤ eε·d(t,t′) · Pr (f (t ′) ∈ Y ′);
Pr (f (t) ∈ Y ′) ≤ eαε·

d(t,t′ )
α · Pr (f (t ′) ∈ Y ′) for any α ∈ R+.

Hence, there is no “universally good” ε

d-privacy: treat ε · d(t , t ′) as a new distance d ′(t , t ′).
How exactly should ε (or the distance d ′) be defined?
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Guessing advantage of numerical attributes
Attacker’s question: how long has Alice been eating?

How likely the attacker says that it was exactly 20 minutes?
What if the attacker says that it was 20.001 minutes?

Guessing advantage: |Prpost − Prpre|.
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Defining guessing advantage

Set X of values
actual value x ∈ X
Probability distribution π over it (the prior)

Data release mechanismM : X $→ Z

Attacker’s goal: g : X → P(X )
Attacker’s prior knowledge:
k ∈ Eqv(X )

Consider X := x/k

η := sup
Y⊆Z

(
Pr

X∼π
[X ∈ g(x)|M(X) ∈ Y ]− Pr

X∼π
[X ∈ g(x)]

)
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Prior and posterior probability of a
"correct"guess

Prpre is the prior probability of X that is known in advance.

Let fX be the probability density function of the prior distribution of X .
Let g(x) be the set of guesses considered "correct".
Applying Bayesian inference, we get

Prpost (g(x)) = Prpre(g(x)|M(x)) =
∫

g(x)
fX (x |M(x))dx

=

∫
g(x) fX (x |M(x))dx∫
X fX (x |M(x))dx

=
1

1 +
∫

X\g(x)
fX (x |M(x))dx∫

g(x)
fX (x ′|M(x))dx ′

We want to bound the ratio fX (x |M(x))
fX (x ′|M(x)) for x ∈ X \ g(x), x ′ ∈ g(x).
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Intuition

X
x x0 x1

fX (X|M(x))

g(x) X \ g(x)

use d-privacy guarantees to ensure that the
attacker would not prefer “correct” guesses in
g(x) to “wrong” guesses in X \ g(x)
i.e look for a mechanismM such that
fX (x0|M(x)) is sufficiently close to fX (x1|M(x))
for all x0 ∈ g(x), x1 ∈ X \ g(x).

Goal of our research
Find a d.p. mechanism that achieves a given bound on guessing advantage
i.e. from g and η, findM and ε

Perhaps fixing d in the process
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Main theorem
Let fY be the probability density function of the distribution ofM(x).
We have

Prpost (g(x)) =
1

1 +
∫

X\g(x)
fX (x |M(x))dx∫

g(x)
fX (x ′|M(x))dx ′

=
1

1 +
∫

X\g(x)
fY (y |x)fX (x)dx∫

g(x)
fY (y |x ′)fX (x ′)dx ′

≤ 1

1 +
∫

X\g(x)
fX (x)∫

g(x)
eε·d(x,x′)fX (x ′)dx ′

dx

The ratio fY (y |x)
fY (y |x ′) can be bounded using d-privacy guarantees.

This is precise
Cannot derive better bounds
from only the d-privacy ofM
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Simplification

Prpost (g(x)) = . . .

≤ 1

1 +
∫

X\g(x)
fX (x)∫

g(x)
eε·d(x,x′)fX (x ′)dx ′

dx

≤ 1

1 + e−ε·supx,x′∈X d(x ,x ′) Prpre(X\g(x))
Prpre(g(x))

.

Caveat: the quantity R := supx ,x ′∈X d(x , x ′) does not necessarily exist.
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Less of a simplification
Apply the definition of ε · d-privacy to elements at distance a ∈ R+ from g(x):

Let B(x , r ) = {x ′ ∈ X |d(x , x ′) ≤ r} and A(x , r ) = {x ′ ∈ X |d(x , x ′) = r}
Generalize to sets in B(·, r ) and A(·, r )

Prpost (g(x)) = . . . =
1

1 +
∫

X\g(x)
fY (y |x)fX (x)dx∫

g(x)
fY (y |x ′)fX (x ′)dx ′

=
1

1 +

∫
R+

(∫
X\g(x)∩A(g(x),a)

fY (y |x)fX (x)dx
)

da∫
g(x)

fY (y |x ′)fX (x ′)dx ′

≤ 1

1 +
∫
R+ e−ε·aPrpre(X\g(x)∩A(g(x),a))da

Prpre(g(x))

Integration over R+ may be simpler than integration over X
13 / 22



Application to databases

The attacker wants to guess certain attribute(s) of a certain victim.
E.g. what Alice ate and how much salt she used.

It is easier to assume that the attacker already knows all the oher records
except the victim’s one:

The input space X has only as many dimensions as there are attributes.

Intuitively, for a stronger attacker, the posterior guessing probability is larger.
However, the advantage can be larger for a less knowledgeable attacker.

The knowledge gain is 0 for someone who already knows everything.
Generalization to weaker attackers is possible assuming that the records are
independent.

Differential privacy (and d-privacy) mechanisms do not help much (in terms of protecting
against attribute guessing) if they are not.
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Guessing a single attribute
Assume the attacker wants to guess the attribute X with precision r .
We need to define the distance in the space X .

Take d(x , x ′) := 1
r |x − x ′|.

We have g(x) = {x ′ : d(x , x ′) ≤ 1}.

Integration over a can be approximated with a sum over a ∈ N.

Prpost (g(x)) = . . . ≤ 1

1 +
∫

a∈R+ e−εaPrpre(X\g(x)∩A(g(x),a))da
Prpre(g(x))

≤ 1

1 +
∑∞

a=0 e−εaPrpre(X\g(x)∩(B(g(x),a+1)\B(g(x),a)))
Prpre(g(x))

=
1

1 +
∑∞

a=1 e−εaPrpre(B(g(x),a+1)\B(g(x),a))
Prpre(B(x ,1))

.
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Guessing AND of attributes
Assume the attacker wants to guess:

The attribute X1 with precision r1;
The attribute X2 with precision r2;

We need to define the distance in the space X = X1 × X2.
Take d(x , x ′) := max( 1

r1
|x1 − x ′1|,

1
r2
|x2 − x ′2|).

We have g(x) = {x ′ : d(x , x ′) ≤ 1}.
We can now treat X similarly to a single attribute, getting

Prpost (g(x)) ≤ 1

1 +
∑∞

a=1 e−εaPrpre(B(x ,a+1)\B(x ,a))
Prpre(B(x ,1))

Compute the probabilities of getting X ∈ B(x ,a + 1)\B(x ,a)
for different a ∈ N.

For X1 and X2 it can be computed if we know the CDF of the distributions.
If X1 and X2 are independent, they can be easily combined into probabilities for X .
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Where to get such mechanismM?

We fixed a distance d
We want a mechanismM that

is parametrized by ε
releases data with ε-d.p. with respect to the distance d

Where to get suchM?
[Laud, Pankova, Pettai. A Framework of Metrics for Differential Privacy from Local
Sensitivity. PET Symposium 2020] is a possible source

17 / 22



Guessing OR of attributes
Assume the attacker wants to guess either:

The attribute X1 with precision r1; or
The attribute X2 with precision r2;

We need to define the distance in the space X = X1 × X2.
The problem is that some elements of g(x) may already be at distance R.

x = (x1, x2)

X1 − x1 ≤ r1

X2 − x2 ≤ r2
r1

r2

We can compute a bound that depends on the single attributes.
Cannot get a significantly better bound. Only simplified bound for Prpost is usable

Prpost (g(x)|k (x)) ≤ Prpost (g1(x)|k (x)) + Prpost (g2(x)|k (x))
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Computing ε for a fixed guessing advantage η

We want: Prpost (g(x))− Prpre(g(x)) ≤ η.
For simplified bound on Prpost , we can invert the formula, getting

ε ≤
ln( Prpre(X\g(x))

Prpre(g(x)) ·
1

(Prpre(g(x))+η)−1−1 )

supx,x ′∈X d(x , x ′)
.

For precise bound on Prpost , we can numerically approximate ε using e.g. window
binary search over ε > 0.

Analogously for Prpre(g(x))− Prpost (g(x)) ≤ η.
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Guessing advantage vs epsilon for different
prior distributions

For the simplified bound

Prpost (g(x)) ≤ 1

1 + e−ε·R Prpre(X\g(x))
Prpre(g(x))

,

we can plot the desired
bound on advantage vs
the largest suitable
epsilon for different
values of Prpre(g(x)).
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Worst-case prior distribution

Using the simplified bound

Prpost (g(x)) ≤ 1

1 + e−ε·R Prpre(X\g(x))
Prpre(g(x))

,

we can analytically find the value p of Prpre(g(x)) that maximizes the guessing
advantage η (if ε is given in advance) or minimizes the ε (if η is given in
advance).

p =
1− η

2
for a fixed η p =

1
1 + eR·ε/2 for a fixed ε.

The precise bound does not provide a better bound if the prior distribution is
unknown.
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Conclusion — taming the ε

Differential privacy is a nice composable notion, whose
interpretation is unfortunately ambiguous without
additional context.
We can convert ε of differential privacy to more
intuitive notions like guessing advantage.
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