Computational soundness of formal encryption in the presence of key cycles, in the plain model

Peeter Laud

peeter@cyber.ee

http://www.cs.ut.ee/~peeter_l

Cybernetica AS & Tartu University

Reconciling two views of cryptography...

- A paper by Martín Abadi and Phillip Rogaway. Year: 2000.
- Theorem: Let
 - lacktriangle E_1 and E_2 be two formal expressions.
 - $\llbracket E_1 \rrbracket$ and $\llbracket E_2 \rrbracket$ be families of probability distributions over bit-strings associated to them.

If $E_1 \cong E_2$ then $\llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$.

Condition [Abadi and Rogaway, 2000]:

No encryption cycles in E_1 or E_2

Reconciling two views of cryptography...

- A paper by Martín Abadi and Phillip Rogaway. Year: 2000.
- Theorem: Let
 - lacktriangle E_1 and E_2 be two formal expressions.
 - $\llbracket E_1 \rrbracket$ and $\llbracket E_2 \rrbracket$ be families of probability distributions over bit-strings associated to them.

If $E_1 \cong E_2$ then $\llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$.

Condition [Black, Rogaway and Shrimpton, 2002]:

Encryption cycles OK, but need the random oracle

Reconciling two views of cryptography...

- A paper by Martín Abadi and Phillip Rogaway. Year: 2000.
- Theorem: Let
 - lacktriangle E_1 and E_2 be two formal expressions.
 - $\llbracket E_1 \rrbracket$ and $\llbracket E_2 \rrbracket$ be families of probability distributions over bit-strings associated to them.

If $E_1 \cong E_2$ then $\llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$.

Condition inspired from [Boneh, Halevi, Hamburg, Ostrovsky, 2008]:

no condition

Formal expressions

R — formal randomness to distinguish

$$(\{E\}_{K^+}^R, \{E\}_{K^+}^R)$$
 and $(\{E\}_{K^+}^R, \{E\}_{K^+}^{R'})$

Formal expressions

No inherent representation as bit-strings

There's only syntax

Computational interpretation

 $\llbracket E \rrbracket$ — a family (indexed by the security parameter η) of probability distributions over sequences of elements in \mathbb{G} .

Use an ElGamal-like PK encryption scheme $(\mathfrak{G}, \mathcal{E}, \mathfrak{D})$ over \mathbb{G} .

Initialize:
$$(\tau_{\eta}(K_j^-), \tau_{\eta}(K_j^+)) \leftarrow \mathcal{G}(1^{\eta})$$
 for each j

 $\mathcal{E}(b_1 \| \cdots \| b_k) \stackrel{\triangle}{=} \mathcal{E}(b_1) \| \cdots \| \mathcal{E}(b_k)$. For each E, compute $[E]_{\eta}$ at most

once.

Patterns of expressions

Analyze the formal expression E:

- Given (E_1, E_2) , can obtain E_1 and E_2 .
- Given $\{E\}_{K_i^+}^R$ and K_j^- , can obtain E.

Let Keys(E) be the set of secret keys that can be obtained from E.

Example: Let E be

$$K_1^-, \{K_2^-, C_1\}_{K_1^+}^{R_1}, \{C_3, K_1^-, K_2^+\}_{K_3^+}^{R_2}, \{C_2, K_3^+, \{C_4\}_{K_4^+}^{R_4}\}_{K_2^+}^{R_3}$$

Replace submessages $\{E'\}_{K_j^+}^R$, where $K_j^- \notin Keys(E)$, with undecryptables ${}_l\Box_j^R$, where l=|E'|:

$$K_1^-, \{K_2^-, C_1\}_{K_1^+}^{R_1}, \qquad l_1 \square_{K_3^+}^{R_2}, \qquad \{C_2, K_3^+, l_2 \square_{K_4^+}^{R_4}\}_{K_2^+}^{R_3}$$

Theorem [Abadi&Rogaway, 2000]

If patterns of E_1 and E_2 are equal modulo renaming of formal keys and randomnesses, then $\llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$.

Caveat: E_1 and E_2 may not contain encryption cycles.

Proof sketch: Define also $\llbracket _l \square_K^R \rrbracket$ as the encryption of a constant string. Show that $\llbracket E \rrbracket \approx \llbracket pattern(E) \rrbracket$.

Boneh-Halevi-Hamburg-Ostrovsky cryptosystem

Secret key $(a_1, \ldots, a_{\ell}) \in \mathbb{G}^{\ell}$, public key $(g_1, \ldots, g_{\ell}, h) \in \mathbb{G}^{\ell+1}$ Satisfy certain properties.

To encrypt $m \in \mathbb{G}$, generate random $r \in \mathbb{Z}_{|\mathbb{G}|}$. Ciphertext is $(g_1^r, \dots, g_\ell^r, h^r m)$.

Secure wrt. the following experiment (adversary guesses the bit b):

- Generate pairs (sk_i, pk_i) where $1 \le i \le n$, $sk_i = (a_{i1}, \ldots, a_{i\ell})$, $pk_i = (g_{i1}, \ldots, g_{i\ell}, h_i)$. Give pk_1, \ldots, pk_n to the adversary.
- Repeat: the adversary submits $j \in \{1, \ldots, n\}$ and $u_{11}, \ldots, u_{n\ell}, v \in \mathbb{G}$. Let $y = a_{11}^{u_{11}} \cdots a_{n\ell}^{u_{n\ell}} \cdot v$. If b = 0 return $\mathcal{E}(pk_j, y)$. If b = 1 return $\mathcal{E}(pk_j, 1_{\mathbb{G}})$.

IND-CPA even in the presence of a limited form of key-dependent messages. (affine dependencies from secret keys)

AR, BHHO, and encryption cycles

- BHHO cryptosystem does not provide general KDM-security.
- AR-interpretation does not use arbitrary functions on secret keys.

$$\begin{split} & [\![C]\!]_{\eta} = \text{``const''} \, |\![C] \\ & [\![K_j^+]\!]_{\eta} = \text{``pk''} \, |\![\tau_{\eta}(K_j^+)] \\ & [\![K_j^-]\!]_{\eta} = \text{``sk''} \, |\![\tau_{\eta}(K_j^-)] \\ & [\![(E_1, E_2)]\!]_{\eta} = \text{``pair''} \, |\![|E_1|]\!]_{\eta} |\![\![E_2]\!]_{\eta} \\ & [\![\{E\}_{K_j^+}^R]\!]_{\eta} = \text{``ct''} \, |\![\mathcal{E}(1^{\eta}, \tau_{\eta}(K_j^+), [\![E]\!]_{\eta}) \\ & [\![l\Box_{K_j^+}^R]\!]_{\eta} = \text{``ct''} \, |\![\mathcal{E}(1^{\eta}, \tau_{\eta}(K_j^+), 1_{\mathbb{G}})^{l \text{ times}} \end{split}$$

All blocks are affinely computed from secret keys.

AR, BHHO, and encryption cycles

- BHHO cryptosystem does not provide general KDM-security.
- AR-interpretation does not use arbitrary functions on secret keys.

AR, BHHO, and encryption cycles

- BHHO cryptosystem does not provide general KDM-security.
- AR-interpretation does not use arbitrary functions on secret keys.

constants induction base induction step

Multiplication preserves affineness

Conclusions

- Issue with encryption cycles not yet solved in the plain model.
 - One can consider more general functions applied to the secret keys.
- In modeling cryptographic protocols, more general functions are often not considered.