On the computational soundness of cryptographically masked flows

Peeter Laud

peeter.laud@ut.ee

http://www.ut.ee/~peeter_l

Tartu University & Cybernetica AS & Institute of Cybernetics
Motivation

- Usual non-interference too strong for programs with encryption.
- Cryptographic security definitions
 - use complex domains,
 - are notationally heavy.
- The definitions for computational non-interference suffer from the same problems.
- Could we abstract from these definitions? Is there some formalism, where
 - the domain and the definition of non-interference were more “traditional”,
 - NI for a program in this domain would mean computational NI for the “same” program in the real-world semantics?
Cryptographically masked flows

A proposal for the formalism that abstracts away complexity-theoretic details, but leaves (most of) everything else intact.

Encryption is modeled non-deterministically.

Possibilistic non-interference with extra leniency for encrypted values.

Does NI in this model imply computational NI? Are cryptographically masked flows computationally sound?

Acknowledgement: the above question was asked by David Sands during our Dagstuhl-event.
The programming language

In this talk: The WHILE-language with extra operations:
- key generation, encryption, decryption
- pairing, projection

In the [AHS06]-paper: more . . .
- Parallel processes with global variables and message channels
- Two encryption schemes (one for public values only)
Semantics

- Big-step SOS from a configuration to a set of final states.
- The state consists of
 - The memory — mapping from variables to values;
 - The “key-stream” — the values of keys generated in the future.
- All operations, except encryption, are deterministic.
Encryption Systems

Three algorithms:
- \mathcal{K} — key generation, zero arguments, probabilistic;
- \mathcal{E} — encryption, two arguments, probabilistic;
- \mathcal{D} — decryption, two arguments, deterministic.

Correctness: $\mathcal{D}(k, \mathcal{E}(r; k, x)) = x$ for all
 - keys k that can be output by \mathcal{K};
 - possible random coins r used by \mathcal{E}.

The random coins used by \mathcal{E} are called the *initial vector*.

\mathcal{D} may produce an error.
Semantics

- Big-step SOS from a configuration to a set of final states.
- The state consists of
 - The memory — mapping from variables to values;
 - The “key-stream” — the values of keys generated (by \mathcal{K}) in the future.
- All operations, except encryption, are deterministic.
- Encryption models the randomized encryption algorithms of the real world:
 - To encrypt x with the key k, choose an initial vector r and compute $E(r; k, x)$.
 - In reality, r is chosen probabilistically, here it is modeled by non-deterministic choice.
Low-equivalence of memories

- Let the variables be partitioned to Var_H and Var_L.
- Let the values be tagged with their types — key, encryption, pair, other (integer).
- $n \sim_L n$;
- $k \sim_L k$;
- $x_1 \sim_L y_1 \land x_2 \sim_L y_2 \Rightarrow (x_1, x_2) \sim_L (y_1, y_2)$;
- $E(r; k_1, x_1) \sim_L E(r; k_2, x_2)$ for all x_1, x_2, k_1, k_2.
- $S_1 \sim_L S_2$ if $S_1(x) \sim_L S_2(x)$ for all $x \in \text{Var}_L$.
Possibilistic non-interference

Program P is non-interfering if

- for all states S_1, S_2 and keystreams G_1, G_2, such that $S_1 \sim_L S_2$
- let $S_i = \{ S' \mid (S_i, G_i) \rightarrow (S', G') \}$ for $i \in \{1, 2\}$, then
- for all $S'_1 \in S_1$
- there must exist $S'_2 \in S_2$
- such that $S'_1 \sim_L S'_2$.

(and vice versa)
“Real-world” semantics

- Big step SOS — maps an initial configuration to a probability distribution over final states.
- Let us not consider non-termination.
- And assume that the program terminates in a reasonable number of steps.
- Initial state is distributed according to some D.
- The program P is non-interferent if no algorithm A using a reasonable amount of resources can guess b from

\[
b \leftarrow_R \{0, 1\}, \quad S_0, S_1 \leftarrow D
\]

\[
S' \leftarrow \llbracket P \rrbracket (S_b)
\]

give $(S_0|\text{var}_H, S'|\text{var}_L)$ to A
Soundness theorem

If the program P satisfies the following conditions:

- \ldots

and the encryption system satisfies the following conditions

- IND-KDM-CPA- and INT-PTXT-security

and P satisfies possibilistic non-interference

then P satisfies computational non-interference.

The conditions put on P should be verifiable in the possibilistic model.

Otherwise we lose the modularity of the approach.
Condition: ciphertexts only from \mathcal{E}

- \sim_L’s relaxed treatment of ciphertexts must be restricted to values produced by the encryption operation.

- Otherwise, consider the following program:

$$
k := \text{newkey}; \quad p_1 := \text{enc}(k, s)$$

$$
r := \text{getIV}(p_1); \quad p_2 := \widetilde{\text{enc}}(r + 1; k, s)$$

- Initial state ($\{s \mapsto v_s\}, v_k :: G$) is mapped to

$$
\left\{ \{p_1 \mapsto \mathcal{E}(v_r; v_k, v_s), p_2 \mapsto \mathcal{E}(v_r + 1; v_k, v_s)\} \mid v_r \in \text{Coins} \right\}
$$

that does not depend (for \sim_L) on initial secrets.
Counter mode of using a block cipher

- A good encryption system.
- If we used it on the previous slide, then we could learn
 \[v_{s1} \oplus v_{s2}, \ v_{s2} \oplus v_{s3}, \ v_{s3} \oplus v_{s4}, \ldots \]
Security of encryption systems

Let O_0 and O_1 be the following interactive machines:
- on initialization, generate $k \leftarrow \mathcal{K}(\cdot)$;
- on query $x \in \{0, 1\}^*$
 - O_0 returns $E(k, x)$,
 - O_1 returns $E(k, 0|x|)$.

Encryption system is IND-CPA-secure if no reasonably powerful adversary A can guess b from the interaction with O_b.

IND-CPA with multiple keys: O_0 and O_1
- on initialization generate $k_i \leftarrow \mathcal{K}(\cdot)$ for all $i \in \mathbb{N}$;
- on query (i, x) use the key k_i for x as before.

IND-CPA with multiple keys is equivalent to IND-CPA.
More security considerations

- Encryption cycles are not excluded, hence we must use encryption systems secure in the presence of key dependent messages.

- Our definition of possibilistic NI also hides
 - the identities of keys,
 - the length of messages.
Let O_0 and O_1 be the following:

- **On initialization**
 - O_0 generates keys $k_i, i \in \mathbb{N}$;
 - O_1 generates the key k.

- **On input** (i, e) where e is an expression with free variables k_j the machine O_0
 - evaluates e, letting k_j refer to its keys,
 - encrypts the result with k_i and returns it;
 - and the machine O_1 returns $E(k, 0^\text{const})$.

If no reasonably powerful adversary A can guess b from the interaction with O_b then the encryption system is IND-CPA-secure, which-key concealing and length-concealing in the presence of key-dependent messages.
Condition: keys used only at \mathcal{E} and \mathcal{D}...

- ...and vice versa.
- Consider the program

$$k_1 := \text{newkey}; \text{if } B(k_1) \text{ then } k_2 := k_1 \text{ else } k_2 := \text{newkey} \text{ fi}; \ldots$$

- Afterwards, k_2 is not distributed as coming from \mathcal{K}.
What may be decrypted

- The possibilistic semantics only allows to decrypt legitimate ciphertexts.
- We may phrase this as a condition on the programs.
- Or we may require that the encryption system provides *integrity for plaintexts*:

 Let \mathcal{O} be the following:
 - On initialization, it generates $k \leftarrow \mathcal{K}()$;
 - On query x, it returns $\mathcal{E}(k, x)$.

 No reasonably powerful adversary \mathcal{A} interacting with \mathcal{O} may be able to produce a ciphertext c, such that
 - $\mathcal{D}(k, c) = m$ (i.e. \mathcal{D} does not fail);
 - \mathcal{A} did not query \mathcal{O} with m.
Enforcing those conditions

- Give types to variables: the types \(\tau \) are

\[
\tau ::= \text{int} \mid \text{key} \mid \text{enc}(\tau) \mid (\tau, \tau)
\]

- We may want to compute with ciphertexts, hence we subtype \(\text{enc}(\tau) \leq \text{int} \).

- Types of operations:
 - arithmetic operations: \(\text{int}^k \rightarrow \text{int} \);
 - pairing: \(\tau_1 \times \tau_2 \rightarrow (\tau_1, \tau_2) \);
 - \(i \)-th projection: \((\tau_1, \tau_2) \rightarrow \tau_i \);
 - key generation: \(1 \rightarrow \text{key} \);
 - encryption: \(\text{key} \times \tau \rightarrow \text{enc}(\tau) \);
 - decryption: \(\text{key} \times \text{enc}(\tau) \rightarrow \tau \);
 - guards: \(\text{int} \).

- [AHS06] already has such a type system.
Removing decryptions

- Change the real-world program:
 - Give names to keys: replace each $k := \text{newkey}$ with
 $$k := \text{newkey}; k_{\text{name}} := c; c := c + 1$$
 - for each ciphertext record the key name and the plaintext in the auxiliary variables. Replace
 $y := \mathcal{E}(k, x)$ with
 $$y := \mathcal{E}(k, x); y_{\text{keyname}} := k_{\text{name}}; y_{\text{ptext}} := x$$
 - Replace the statements $x := \mathcal{D}(k, y)$ with
 $$\text{if } k_{\text{name}} = y_{\text{keyname}} \text{ then } x := y_{\text{ptext}} \text{ else } x := \bot \text{ fi}$$
 - The low-visible semantics does not change.
Encryption \rightarrow random number generation

- Apply the definition of IND-KDM-CPA to the real-world program:
 - Replace each $E(k, y)$ with $E(k_0, 0)$.
 - $E(k_0, 0)$ generates random numbers according to a certain distribution.

- In the possibilistic NI, we also treat encryption as random number generation.
 - As only the initial vector matters.
Possib. secrecy $\not\Rightarrow$ probab. secrecy

Let h be a number from 1 to 100. Consider the following program:

```
if $\text{rnd}([0, 1]) = 1$ then $l := h$ else $l := \text{rnd}([1, \ldots, 100])$
```

The possible values of l do not depend on h.

But their distribution depends on h.

We can come up with similar examples in our language.

- Using $\&$ in place of rnd.
- Hence using ciphertexts in computations is questionable as well.

- Remove the subtyping $\text{enc}(\tau) \leq \text{int}$.
The conditions for the program

- The variables are typed, as specified before.
 \[\tau ::= \text{int} \mid \text{key} \mid \text{enc}(\tau) \mid (\tau, \tau) \]
 (no subtyping)

- The operations respect those types.

- Failures to decrypt are visible in the possibilistic semantics.

- Our theorem holds now.
 - In a program point, two ciphertexts are either equal or independent.