
Combining Differential Privacy and Secure Multiparty
Computation

Martin Pettai
Cybernetica AS / STACC

martin.pettai@cyber.ee

Peeter Laud
Cybernetica AS

peeter.laud@cyber.ee

ABSTRACT
We consider how to perform privacy-preserving analyses on
private data from different data providers and containing
personal information of many different individuals. We com-
bine differential privacy and secret sharing based secure mul-
tiparty computation in the same system to protect the pri-
vacy of both the data providers and the individuals. We
have implemented a prototype of this combination and have
found that the overhead of adding differential privacy to se-
cure multiparty computation is small enough to be usable
in practice.

1. INTRODUCTION
Many organizations maintain registries that contain pri-

vate data on the same individuals. Important insights might
be gained by these organizations, or by the society, if the
data in these registries could be combined and analyzed.
The execution of such combination and analysis brings sev-
eral kinds of privacy problems with it. One of them is com-
putational privacy — one must perform computations on
data that must be kept private and there is no single entity
that is allowed to see the entire dataset on which the analysis
is run. Another issue is output privacy — it is not a priori
clear whether the analysis results contain sensitive informa-
tion traceable back to particular individuals. Kamm [22,
Sec. 6.7.1] has presented evidence that the second kind of
issues is no less serious than the first kind — even after the
computational privacy of data in a study was ensured, one
of the data providers (the tax office) was worried about the
leaks through the results of the study.

Secure Multiparty Computation (SMC) [37, 17] is a pos-
sible method for ensuring the computational privacy of a
study. It allows the entity executing the study to be re-
placed with several entities that perform the computations
in distributed manner, while each of them alone or in small
coalitions remains oblivious to the input data and the in-
termediate results. To achieve output privacy, the analysis
mechanism itself must be designed with privacy in mind [28].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07 - 11, 2015, Los Angeles, CA, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818027

A commonly targeted privacy property is differential pri-
vacy (DP) [12, 31], which has both well-understood proper-
ties [20] and supports simple arguments, due to its compos-
ability.

A statistical analysis mechanism can be designed from
ground up with differential privacy in mind. Alternatively,
a mechanism, treated as a black-box functionality, can be
modified to make it differentially private, albeit with some
loss of accuracy. Laplace and exponential mechanisms are
basic tools to add differential privacy to a sufficiently smooth
mechanism [12]. For many statistical functions, other mech-
anisms may provide better accuracy for the same level of
privacy. In this paper, we will consider the sample-and-
aggregate method [32], smoothening the function, such that
less noise has to be added in order to obtain the same level
of privacy.

Differential privacy introduces a generic mechanism for
responding to queries about a database containing private
data. The mechanism for answering each query has a certain
level of privacy loss associated with it; for different queries
the levels may be different. There is an overall privacy bud-
get associated with the database. Each given response low-
ers the available budget by the amount of privacy loss of the
mechanism used to construct it. A query is accepted only if
its privacy loss does not exceed the remaining budget.

Differential privacy has been generalized to take into ac-
count that different records or columns of a database may
have different sensitivity [8]. As an instance of generalized
definitions, personalized differential privacy (PDP) [14] as-
signs a privacy budget not to the entire database, but to
each record separately. The responses to queries may de-
pend only on a subset of all records, and only the budgets
of these records will be lowered. This gives more freedom to
the data analyst in formulating the queries.

In real applications and database systems, we would like
to use both SMC and DP, in order to achieve both compu-
tational and output privacy, and to protect the interests of
both data owners and data subjects. Alone, both of them
have been demonstrated to work with reasonable efficiency,
being applicable for realistically sized databases.

In this paper, our main contribution is to show that
fast methods for SMC and precise methods for DP can be
combined, and still provide reasonable performance. We re-
port on the experience that we have obtained with the im-
plementations of GUPT’s sample-and-aggregate method [31]
and the provenance for PDP method [14] on top of the
Sharemind SMC framework. We have implemented a num-
ber of statistical functions in this framework, and compared

http://dx.doi.org/10.1145/2818000.2818027

their performance with and without DP mechanisms. Our
results show that the extra overhead of implementing DP
mechanisms on top of SMC is not prohibitive.

While implementing the DP mechanisms on top of the
SMC framework, we had to come up with novel SMC proto-
cols for some subtasks. These subtasks are related to reading
the elements of an array according to private indices; there
are no cheap SMC protocols for that and hence the algo-
rithms with a lot of data-dependent accesses incur very sig-
nificant overhead when straightforwardly converted to run
on top of an SMC framework. The subtasks with novel pro-
tocols are the following:

• Inner join of two tables. This operation is needed when
tracking the provenance of records in queries comply-
ing with PDP.

• Counting the number of equal values in an array. This
operation is needed for updating the privacy budgets
of records. Also, a novel form of updating the elements
of an array (where the writing locations are private) is
needed for writing back the updated budgets.

The Sharemind SMC framework [4, 5] that we are using
employs protocols working on data secret-shared between
several computing parties. This gives our databases and
queries the greatest flexibility, as we do not have to restrict
how the database is stored, and who can make the queries.
Indeed, we can just state that the database is secret-shared
between the computing parties, and so are the parameters of
the query. The answer will be similarly secret-shared. In an
actual deployment, the entity making the query will share
it among the computing parties. The shares of the answer
will be sent back to it, to be recombined. Alternatively,
the answer to a query may be an input to further secure
computations. In this case it will not be recombined and no
party will ever learn it.

2. RELATED WORK
PINQ [29] is one of the best-known implementations of

differentially private queries against sensitive datasets. It
provides an API for performing such queries, maintaining
and updating the privacy budget for a queryable data source.

Rmind [3] is a tool for statistical analysis, preserving com-
putational privacy. It implements a number of statistical op-
erations and functionalities on top of Sharemind, including
quantiles, covariance, detection of outliers, various statis-
tical tests and linear regression. The implementations are
packaged as a tool resembling the statistics package R.

The combination of SMC and DP has been explored in
PrivaDA [15]. They consider the problem of releasing ag-
gregated data collected from many sources. The aggrega-
tion (only addition of individual values is considered) is per-
formed using SMC. Afterwards, a perturbation mechanism
providing DP is applied to the aggregated data and the per-
turbed data is made public.

Differentially private data aggregation has received a lot
of interest [13, 1, 19], but typically without employing SMC.
In this case, each data source itself has to add some noise
to its outputs, which will be summed during aggregation.
Typically, the noise level in the aggregated result will be
larger, compared to adding the noise after aggregation.

Privacy-preserving joins in databases have been consid-
ered before in [26]. They obliviously apply a pseudo-random

permutation on the key columns of both joined tables, and
declassify the results, after which the actual join can be per-
formed in public. Their approach leaks the counts of records
that have equal keys.

The reading and updating of arrays according to private
indices has been considered before, mostly by implementing
the techniques of Oblivious RAM [18] on top of SMC [10,
27]. Our methods have similarities to parallel oblivious array
access [25], but differently from them, we do not have to
perform computations on stored values.

In our implementation, we had to choose which aggrega-
tion functions to implement for queries. We concentrated
on count, arithmetic average, median, and linear correlation
coefficient. Count has been considered in [12, 29], median in
[32, 29]. Arithmetic average has been considered in [29] and
is used as the final step in the Sample-and-Aggregate algo-
rithm in [31]. Linear correlation coefficient we chose as an
example of a multivariable aggregation function. We have
also implemented sum, which is considered in [1], but we do
not consider it further in this paper because it is similar to
the average.

An alternative to the Sample-and-Aggregate mechanism
is the exponential mechanism [30], as an example of which
we have implemented a differentially private quantile com-
putation algorithm from [36]. We have not optimized it and
thus we do not consider it further in this paper.

3. DIFFERENTIAL PRIVACY
Definition 1. A (probabilistic) algorithm that takes a set

of data records as an input, is ε-differentially private if the
removal of any single record from the input changes the
probability of any predicate on the output being true at
most by a factor of eε.

To achieve differential privacy, one usually adds random
noise to the computed result. This noise must have high
enough variance to mask the possible variation in the out-
put due to removing or changing one record. This noise is
usually from a Laplace distribution, which fits perfectly to
the statement of Def. 1.

An alternative would be to use noise from the uniform
distribution. This would not satisfy Def. 1 but would instead
satisfy the following property:

Definition 2. A (probabilistic) algorithm that takes a set
of data records as an input, is additively δ-differentially pri-
vate if the removal of any single record from the input changes
the probability of any predicate on the output being true at
most by δ.

This has the advantage that the amount of noise is bounded
and the average absolute deviation is half of that needed for
the Laplace noise, to achieve the same level of indistinguisha-
bility for the adversary (a probability of 1

2
may change to at

most 1
2

+ δ by changing one input record). The disadvan-
tage is that a probability of 0 may change to δ by changing
one record, which is not possible with Laplace noise. Thus in
the following, we will consider only Laplace noise and Def. 1,
which is the mainstream practice.

Suppose we have an algorithm for computing a function
f , whose input is a set of data records. To determine how
much noise must be added we need to know the sensitivity
of f , i.e. how much the value of f can change if we remove
one record from its input.

Definition 3. The sensitivity of a function f : 2Records →
R is

max
T⊆Records,r∈T

|f(T)− f(T \ {r})|

If the sensitivity of the function is s then adding noise from
the distribution Laplace(s

ε
) (this has the average absolute

deviation s
ε

and standard deviation s
√
2
ε

) to the value of f
guarantees ε-differential privacy.

For example, if f is the arithmetic mean of n values from
the range [a, b] then its sensitivity is b−a

n
. Here it is impor-

tant that the inputs of f are bounded, i.e. in the range [a, b]
for some a and b, otherwise the sensitivity of f would also
be unbounded.

In practical analysis, the input values (e.g. salaries) may
be from a very wide range. Because the data is private,
we may not know the maximum and the minimum of the
values. Revealing the exact minimum and the maximum
would breach the privacy of the individuals who have those
values. Thus we need to guess some values a and b and then
clip the input values to the range [a, b] (replacing values
smaller than a with a, and values larger than b with b). The
range [a, b] must be chosen carefully. If it is too wide, then
the added noise (which is proportional to b− a) distorts the
result too much. If it is too narrow, then the clipping of
inputs distorts the result too much.

If a and b differ by orders of magnitude and the distribu-
tion of the values is asymmetric in this range (e.g. it may be
lognormal) then it may be useful to take logarithms of the
values before clipping and later (after adding noise) take the
exponent of the final result. Instead of logarithm we may
also use other transformation functions, e.g. square root, to
make the distribution more symmetric.

If several queries are made where the ith query is εi-
differentially private then the composition of the queries is
(
∑
εi)-differentially private. We can define a (global) pri-

vacy budget B and require
∑
εi ≤ B. Thus every query

consumes a part of the privacy budget and when a query
has a higher ε than the amount of budget remaining then
this query cannot be executed or the accuracy will be re-
duced.

4. THE SAMPLE-AND-AGGREGATE MECH-
ANISM

Let us have a dataset T that can be interpreted as the re-
sult of |T | times sampling a probability distribution D over
Records (different samples are independent of each other).
By processing T , we want to learn some statistical charac-
teristic f(D) — a vector of values — of the distribution D.
We have two conflicting goals — we want to learn this char-
acteristic as precisely as possible, but at the same time we
want our processing to be ε-differentially private.

A robust method for differentially privately computing
the function f is the Sample-and-Aggregate mechanism pro-
posed and investigated by Nissim et al. [32] and Smith [36],
and further refined in the GUPT framework [31]. The basic
mechanism is given in Alg. 1. Beside the dataset T and the
privacy parameter ε, Alg. 1 receives as an input a subrou-
tine for computing the function f (without privacy consid-
erations). This subroutine is called by Alg. 1 ` times in a
black-box manner.

Algorithm 1 The Sample-and-Aggregate algorithm [31]

Input: Dataset T , length of the dataset n, number of blocks
`, privacy parameter ε, clipping range [left, right]

Randomly partition T into ` disjoint subsets T1, . . . , T` of
(almost) equal size
for i ∈ {1, . . . , `} do

Oi ← output of the black box on dataset Ti
if Oi < left then Oi ← left
if Oi > right then Oi ← right

return 1
`

∑`
i=1Oi + Laplace

(
right−left

`·ε

)

Alg. 1 is clearly differentially private due to the noise
added at the end. At the same time, Smith [36] shows that if
f is generically asymptotically normal, then the output dis-
tribution of Alg. 1, and the output distribution of f on the
same dataset T converge to the same distribution as the size
n of T grows (and ` grows with it). The convergence holds
even if the output dimensionality and clipping range of f ,
as well as 1/ε grow together with n, as long as the growth
is at most polynomial. A statistic is generically asymptot-
ically normal, if its moments are sufficiently bounded; we
refer to [36] for the precise definition.

As an example of the Sample-and-Aggregate algorithm,
we can compute differentially privately the linear correla-
tion coefficient. The black box in this case takes a dataset
as input and computes the non-differentially private linear
correlation coefficient of the dataset. We can compute other
functions differentially privately by just replacing the black
box.

The optimal value of ` (giving the best accuracy for the
same privacy) may be different for different functions f . [31]
suggests using a non-private dataset with a similar distribu-
tion to select the optimal value of `. As such non-private
datasets are not always available, they take ` = n0.4 by
default. [36] proves a convergence theorem for the case
` = n0.5−η where η > 0 is a small constant (e.g. η = 0.1).

For computing the arithmetic mean, we can take ` = n
and use one-element blocks with the identity function as
the black box. This gives the highest accuracy because the
amount of added noise is inversely proportional to `. In
our implementation, we use this differentially private arith-
metic mean as a subroutine of the Sample-and-Aggregate
algorithm.

Another parameter that affects the accuracy is the clip-
ping range [left, right]. [31] suggests using some of the pri-
vacy budget for computing the differentially private α- and
(1 − α)-quantile of {Oi} (by default α = 0.25) and using
those as the clipping range. As the goal of this paper was
to add SMC to differential privacy, and accuracy does not
depend much on whether we use SMC or not, we will not
discuss accuracy further in this paper.

The privacy parameter ε affects both accuracy and pri-
vacy. [20] discusses how to choose ε for some practical ap-
plications (statistical surveys). They assume that there is an
upper bound E on the expected cost caused to an individual
by disclosing the output of the survey even if he does not
participate in the survey. Then ε-privacy guarantees that
participating does not increase those costs by more than a
factor of eε. Thus each participant must be paid (eε − 1)E
and the budget sets an upper limit on ε.

For computing the median, we could use the Sample-and-

Aggregate algorithm, with the black box returning ` ele-
ments of the dataset, close to the median. In our implemen-
tation, we improve on this by skipping the black box and
just taking the ` or ` + 1 (depending on the parities of `
and n) elements closest to the median (i.e. the elements on
positions dn+1−`

2
e to bn+1+`

2
c (1-based) in the sorted order).

5. PERSONALIZED DIFFERENTIAL PRI-
VACY

We have also implemented a mechanism for Personalized
Differential Privacy [14]. This uses a more general form of
Def. 1, which we give in Def. 4.

Definition 4. Let E : Records → R. A (probabilistic)
algorithm that takes a set of data records as an input, is
E-differentially private if the removal of any single record r
from the input changes the probability of any predicate on
the output being true at most by a factor of eE(r).

Thus a query can provide a different level of privacy for each
record. If E(r) = ε for all r then we get ε-differential privacy
as a special case.

We can consider two different methods for enforcing Per-
sonalized Differential Privacy. In the simpler case, this means
that instead of the global privacy budget, each row in the
database has a separate privacy budget. When an ε-diffe-
rentially private query is made, then only the rows partici-
pating in the query have their budgets reduced (by ε). Thus
we have E-differential privacy with E(r) = ε if the row r par-
ticipates in the query and E(r) = 0 otherwise. This allows
performing more queries using the same privacy budget.

In the more complicated case, each row in the database
has a provenance, each provenance (not each row) has a pri-
vacy budget, and there can be several rows with the same
provenance. Thus if an ε-differentially private query uses r
rows with some provenance p then the budget of this prove-
nance p is reduced by rε. Here we have E(p) = rε. Here
the domain of E is the set of provenances, not the set of
actual records but, as in [14], we can instead consider prove-
nances themselves to be records and take the composed
query Q ◦ F where F is a union-preserving function that
maps each provenance to a set of records with that prove-
nance and Q is the actual query on the chosen records. If Q
is ε-differentially private then Q◦F is E-differentially private
with E(p) = |F ({p})| · ε.

6. SECURE MULTIPARTY COMPUTATION
Secure multiparty computation (SMC) is the universal

cryptographic functionality, allowing any function to be com-
puted obliviously by a group of mutually distrustful par-
ties. There exist a number of different techniques for SMC,
including garbled circuits [37] and homomorphic encryp-
tion [9]. Some practical applications of SMC are considered
in [21, 6]. In this work, we have considered SMC based on
secret sharing.

In secret sharing there are n parties (n > 1), and every
private value x is split into shares x1, . . . , xn such that party
i has the share xi. The private value can be recovered if at
least k parties out of n provide their shares. For a num-
ber of operations, there exist more or less efficient protocols
that receive the shares of the operands as input, and de-
liver the shares of the result of the operation as output to

the parties. A number of different protocol sets exist, in-
cluding the GMW protocol [17], protocols for data shared
using Shamir’s secret sharing [35, 16], Sharemind’s proto-
col set [5] or protocols based on predistributed correlated
randomness [2, 11]. The protocols are composable, mean-
ing that they can be combined to solve large computational
tasks in privacy-preserving manner. Also, they are input
private, meaning that no party or a tolerated coalition of
parties learns anything new during these protocols, except
for the final output.

The framework underlying our implementation is Share-
mind, which provides protocols for three parties, and is se-
cure against a passive adversary that corrupts at most one
party. Compared to other frameworks, it offers protocols for
a large set of operations over integers, fixed- and floating-
point values, thereby simplifying our implementations and
comparisons. The offered protocols are efficient compared to
other frameworks, but performing computations on secret-
shared private data is still considerably slower than perform-
ing the same computations on public data. The difference
is especially large for floating-point operations. Thus it is
often better to convert private floating-point data to fixed-
point data, which can be simulated using integers, and is
much faster. When implementing this, we must be careful
to avoid overflows. This is especially important for differen-
tially private computations, because an overflow can change
the result so much that no reasonable amount of added noise
can mask this. Similarly, we must avoid exceptions, e.g.
division by zero, since these cannot be masked by noise.
Instead, it is necessary to remove the exceptional or over-
flown values or replace them with default values. This will
change the result by a very small amount, because we use
ε-differentially private algorithms.

Even if we can perform most operations using fixed-point
arithmetic, we may still perform a constant number of float-
ing-point operations, e.g. the division when computing an
average or the generation of a Laplace random value. For
the latter, we first generate a uniformly random value s in
the set {−1, 1} and a uniformly random value r in the in-
terval [0, 1]. Then s ln r is a Laplace random value. We first
generate r as a fixed-point value (each party generates a uni-
formly random share), then convert it to floating-point, and
then compute the logarithm (for which a protocol exists in
Sharemind).

Because protocols on secret-shared data have a much bet-
ter performance when a single operation is applied to a large
number of values in parallel rather than sequentially (due
to the network latency), we may have to structure our dif-
ferentially private algorithms differently than in the non-
secret-shared case. In the Sample-and-Aggregate algorithm
(Alg. 1), the set of n inputs is randomly partitioned into `
samples, the black box computing f is applied to each of
the samples, and the results are combined. It is easy to run
the black box on each sample sequentially, but in the secret-
shared context we may need to run many copies of the black
box in parallel, which would complicate the realization. The
sequential algorithm would also work but it would be slower,
especially for small values of n/`. For large n/`, each sam-
ple would be large enough to fully take advantage of the
parallelizability of vector operations, and the difference in
performance would diminish.

When implementing an algorithm in privacy-preserving
manner, it is generally not possible to branch on a private

condition, because the control flow of the algorithm is visible
to all parties. Instead, we must use evaluate both branches
and combine them using oblivious choice. If b is private then
if b then c else d must be replaced with b·c+(1−b)·d, where
the boolean b is used as an integer (true = 1, false = 0). This
can be further optimized to d+b·(c−d), which uses only one
multiplication instead of two. Three-way oblivious choice
if b1 then c else if b2 then d else e where b1 and b2 are
never true at the same time can then be implemented using
two multiplications: e+ b1 · (c− e) + b2 · (d− e). The three-
way oblivious choice is used to implement the computation
of each Oi in Alg. 1.

To get better performance in the secret-shared setting, the
` invocations of the black box in Alg. 1 are done in parallel
in single invocation. The input of the black box in this case
is a list of datasets and the output is a list of values of f for
each dataset. For example, in differentially private computa-
tion of the linear correlation coefficient, the black box takes
any number of datasets and computes the non-differentially
private linear correlation coefficient of each dataset in par-
allel. For computing other functions differentially privately,
we need to replace only the black box.

In privacy-preserving statistics applications, before apply-
ing an aggregating function, the dataset is usually filtered by
some predicate [3, Sec. 3]. In a non-secret-shared setting, the
trusted party can then create a new dataset containing only
those rows that matched the predicate and apply the ag-
gregating function to this new dataset. In the secret-shared
setting, we cannot create a new dataset this way because
it would leak the number of rows that matched the predi-
cate. Instead, we must use a mask vector, which contains for
each row a boolean that specifies whether this row matched
the predicate (and therefore should be used in aggregation)
or not. Therefore, all aggregating functions (including the
non-differentially private ones used as black boxes in the
Sample-and-Aggregate algorithm) receive this mask vector
in addition to the dataset and must aggregate only the sub-
set of the dataset denoted by the mask vector.

In most cases, it is not difficult to modify the aggregating
function to use a mask vector, but in some cases, there can
be complications. For example, for computing the median,
we replace half of the values excluded by the filter with a
very small value, and the other half with a very large value.
This will keep the median roughly (exactly if the number of
excluded values is even) the same.

When using mask vectors, filtering will not reduce the size
of a table. To improve performance, we can reduce the size
of the filtered table using a cut operation. This requires
an upper bound k on the number of records. The resulting
table will have exactly k records (some of which may still
be disabled by the mask vector). If there were more than k
records, then some elements will be thrown away (uniformly
randomly). This distorts the result of the analysis similarly
to the clip operation described above, thus the upper bound
must be chosen carefully.

The data used in the analysis is in a secret-shared database.
Because the data comes from different providers, it will be
in different tables. For making the more complex queries,
we may need a database join operation to combine two ta-
bles. This can be done on secret-shared data in O(n log n)
time (where n is the total number of records in the tables)
provided that only one of the two joined tables may have
non-unique values in the column used for joining (actually,

the other may also contain non-unique values but in this
case, for each set of rows with the same key, only one row,
chosen uniformly randomly, will be used in the join; this
may be acceptable for some applications).

In order to make a query in the system, one may have
to provide a range [a, b] (for clipping initial or intermediate
values), a number k (for cutting the number of records in
an intermediate table), and a value ε. These parameters
represent the tradeoff between privacy, accuracy, and per-
formance. If we do not know enough about the private data
then we can make some preliminary queries to obtain rough
estimates for the parameters. These queries should use as
small ε as possible, to avoid excessive consumption of the
privacy budget.

7. ASYMPTOTIC OVERHEAD OF DIFFER-
ENTIAL PRIVACY

Adding differential privacy to a secret-shared aggregation
introduces some overhead. In Alg. 2, we give an algorithm
for computing (non-differentially privately) in parallel the
correlation coefficients of ` datasets.

Here and in the following, we use the notation JxK to de-
note the secret shares of x. Variables without the brackets
JK are public. Thus JxKJyK is the secret-shared product of x
and y obtained by applying the secret-shared multiplication
protocol to the shares of x and the shares of y. The vector
J~cK has elements JciK, where i is public.

Alg. 2 implements the following formula:

ci =

∑
j xijyij√

(
∑
j x

2
ij)(
∑
j y

2
ij)

where the values have been normalized by subtracting the
corresponding row averages and the values excluded by the
mask vector have been replaced with zeros.

Algorithm 2 Parallelized masked correlation algorithm

Input: Dataset matrices JXK and JY K (fixed-point num-
bers) and mask matrix JMK (each ` rows by m columns),
number of blocks `, number of elements in each block m.
Output: For each row i ∈ {1, . . . , `}, the correlation JciK of
the ith row of JXK with the ith row of JY K.

for each i ∈ {1, . . . , `} (in parallel) do
JriK←

∑
jJMijK

Jr′iK← 1
JriK

JsiK← Jr′iK ·
∑
jJXijKJMijK

JtiK← Jr′iK ·
∑
jJYijKJMijK

for each j ∈ {1, . . . ,m} (in parallel) do
JxijK← (JXijK− JsiK) · JMijK
JyijK← (JYijK− JtiK) · JMijK

JaiK←
∑
jJxijKJyijK

JbiK←
∑
jJxijK

2

JdiK←
∑
jJyijK

2

JciK← JaiK√
JbiKJdiK

return J~cK

In Alg. 2, we first compute JriK, the number of elements
in each row i. This is a local operation, so parallelization
is not required. Then we compute the inverses Jr′iK, which

are used to compute JsiK and JtiK, the row averages of JXK
and JY K. We do one inverse and two multiplications for each
row, which is faster than doing two divisions. When com-
puting the JsiK, we can do all `·m multiplications JXijKJMijK
in parallel. The next five sets of ` ·m multiplications each
(for computing JxijK, JyijK, JaiK, JbiK, JdiK) are handled in the
same way. Finally, we compute the JciK by doing ` multi-
plications, divisions, and square roots. Divisions and square
roots are expensive operations, so it is important to do them
in parallel, even though we only do ` of each, not ` ·m. If
m is small then the divisions and square roots dominate
the computation time. If m gets larger then the O(` · m)
multiplications begin to dominate.

If we compare the computation of the correlation of ` sam-
ples in parallel to the computation of the correlation of the
whole dataset as a single sample then we see that the number
of multiplications is almost the same (7`m+ ` vs 7`m+ 1).
The number of divisions increases from 2 to 2` and that of
square roots from 1 to `.

When computing correlation differentially privately, we
use Alg. 1 with Alg. 2 as a subroutine that is called only
once. In addition to the operations done in the subroutine,
the algorithm in Alg. 1 does 2` comparisons, 2` multiplica-
tions, 1 division (the operations in the argument of Laplace
are public), and one generation of a Laplace random value
(which uses one division and one logarithm).

We keep our data (the matrices JXK and JY K in Alg. 2)
in the database in fixed-point form. The multiplications in
Alg. 1 and Alg. 2 are integer multiplications but we need
to do 2`m+ 2` (or 2`m+ 2 in the non-differentially private
case) shift rights to avoid overflow.

In addition, we need to convert JriK,
∑
jJXijKJMijK,∑

jJYijKJMijK, JaiK, JbiK, JdiK in Alg. 2 and
∑
iJOiK in Alg. 1

from integer or fixed-point form to floating point for a total
of 6`+ 1 conversions. We also need to do 3` conversions to
convert JsiK, JtiK, and JciK in Alg. 2 from floating point to
integer.

We summarize the number of (non-local) operations in
both cases:
operation non-diff. private diff. private
int multiplication 7`m+ 1 7`m+ 3`
shift right 2`m+ 2 2`m+ 2`
float multiplication 2 2`
int to float 6 6`+ 1
float to int 2 3`
division 2 2`+ 2
square root 1 `
comparison 0 2`
logarithm 0 1
As we see, for large m, the multiplications and shift rights

dominate the running time, and if m → ∞ then the ratios
7`m+3`
7`m+1

→ 1 and 2`m+2`
2`m+2

→ 1, i.e. the overhead of differential
privacy is negligible for large block size m. For small m, the
O(`) overhead may be important.

8. ALGORITHM FOR JOIN
Sometimes the values needed for performing a query are

in more than one table (e.g. in Sec. 9). Then we need to
join those tables. In this section, we describe an algorithm
(Alg. 3) for this. In the following, we call the columns by
which the tables are joined, the provenance columns but
actually any columns can be used in this role.

Suppose we have matrices JV K (with rV rows and cV

Algorithm 3 Joining two secret-shared tables

Input: Matrices JV K and JBK
J~sK← the provenance column from JV K
J~tK← the provenance column from JBK
JAK←

r(
~s 0 V 0
~t 1 0 B

)z
JAK← sort JAK by the first (provenance) column, breaking
ties by the second column
the last cB columns of JAK ← propagateValuesBack(the
last cB columns of JAK, the first column of JAK) using
Alg. 4
randomly shuffle the rows of JAK
declassify the second column of JAK
JV ′K ← the rows corresponding to JV K (0 in the second
column) from JAK
return JV ′K without the first two columns

columns) and JBK (with rB rows and cB columns). Also as-
sume that different rows in JBK have different provenances,
and all provenances in JV K also occur in JBK. This assump-
tion holds in Sec. 9. We create a bigger matrix

JAK =

s(
V 0

0 B

){

with rV + rB rows and cV + cB columns. Then we add to it
two extra columns to the left, the first of which contains the
provenance of the row of JV K or JBK contained in this row
of JAK. The second column contains 0 or 1 depending on
whether the corresponding row of JAK contains values from
JV K or JBK, respectively.

Now we sort JAK by the first column, breaking ties by the
second column. Then rows with the same provenance will
appear sequentially in JAK, with the rows from JV K appear-
ing before the rows from JBK with the same provenance.

Now we apply the algorithm in Alg. 4 to the last cB
columns of JAK. This algorithm takes a matrix JMK with

Algorithm 4 Propagating values back

Input: An n by c matrix JMK, an n-element vector J~pK
containing the provenance of each row of JMK
propagateValuesBack(JMK,J~pK):
j ← 1
while j < n do

for each i ∈ {1, . . . , n− j} (in parallel) do
JMiK← if JpiK = Jpi+jK then JMi+jK else JMiK

j ← j · 2
return JMK

rows sorted by provenance, and copies the last row of each
provenance to the previous rows of the same provenance.
The while loop does approximately log n iterations. After
the first iteration, there are up to two copies of a value. Af-
ter the second, up to 2, then 4, 8, and so on. The algorithm
makes approximately n logn equality tests. This technique
can be used also for other tasks where we have a matrix
sorted by a certain column (provenance) and we want to do
something with each group of rows with the same prove-
nance. We will see an example later (Alg. 7).

If the provenance of each row of JBK is different then after
applying Alg. 4 to the right part of JAK, the rows of JAK
with 0 in the second column contain the join of JV K and

JBK. We may extract the join using a (linear-time) cut op-
eration. This operation is also described towards the end of
Alg. 3, starting from the shuffling of the rows of JAK. The
declassification that follows the shuffle does not increase an
adversary’s knowledge. Indeed, it produces a randomly or-
dered vector of rV zeroes and rB ones, where both rV and
rB are public information.

9. IMPLEMENTING PERSONALIZED DIF-
FERENTIAL PRIVACY

Our implementation supports both cases introduced in
Sec. 5 but the overhead is much higher in the second case.

We first consider the simpler case. Here we add to the
database table an extra column, where we store the privacy
budget of each row. There is another column that contains
the mask vector that shows which rows participate in the
query. When performing an ε-differentially private query,
we check that each of the rows participating in the query
has at least ε left in its privacy budget. The rows that do
not have enough budget are silently excluded from the query.
The other participating rows have their budgets reduced by
ε. Then the query is executed, using a modified mask vec-
tor, where some rows may have been silently excluded. This
algorithm is given in Alg. 5. The overhead here is n com-
parisons (and n multiplications and n boolean operations,
which are much cheaper than comparisons).

Algorithm 5 Personalized Differential Privacy with in-
place budgets

Input: The number of rows n in the table, privacy param-
eter ε, an ε-differentially private query Q

J~mK← the mask column read from the database

J~bK← the budget column read from the database
for each i ∈ {1, . . . , n} (in parallel) do

JaiK← JmiK ∧ JbiK ≥ ε
Jb′iK← JbiK− JaiK · ε

write J~b′K to the database as the new budget column
JrK← output of Q with J~aK as the mask vector
return JrK

Now we consider the more complicated case. Here we
have in the database a separate table (the budget table)
that contains the privacy budget for each provenance. The
table containing the analyzed values (the value table) has an
extra column that now contains the provenance of that row
instead of the budget. Now the data needed for performing
a differentially private query is in two separate tables, thus
before the query, we need to join those two tables by the
provenance columns, and after the query, we need to extract
the updated budgets from the joined table and write them
to the budget table. Because there may be r rows with a
provenance p, the budget of the provenance p must be at
least rε, otherwise all the r rows are silently dropped. If
the provenance has enough budget, the budget is reduced
by rε. Thus the reduction may be different for different
provenances. We use Alg. 6 for this case.

It uses the same elements as the join algorithm (Alg. 3)—
the big sorted matrix A, propagating values back, and cut
(extracting certain rows of a matrix)—but in a modified way,
so we cannot use the join algorithm as a black box. In addi-
tion, it computes (Alg. 7, which uses the same technique as

Algorithm 6 Personalized Differential Privacy with prove-
nances
Input: Privacy parameter ε, an ε-differentially private
query Q

JV K← the value table read from the database
JBK← the budget table read from the database
J ~pV K← the provenance column from JV K
J ~mV K← the mask column from JV K
J~sK← J ~pV K · J ~mV K (multiply elementwise)
J~tK← the provenance column from JBK
JAK←

r(
~s 0 V 0
~t 1 0 B

)z
JAK← sort JAK by the first (provenance) column, breaking
ties by the second column
J~mK← the mask column from JAK
J~bK← the budget column from JAK
J~pK← the provenance (first) column from JAK
J~fK← the frequency table of J~pK using Alg. 7
n← the number of rows in JAK
for each i ∈ {1, . . . , n} (in parallel) do

JhiK← JbiK ≥ JfiK · ε
Jb′iK← JbiK− JhiK · JfiK · ε

J~hK ← propagateValuesBack(J~hK (as a 1-column matrix),
J~pK) using Alg. 4
for each i ∈ {1, . . . , n} (in parallel) do

JaiK← JmiK ∧ JhiK
randomly shuffle the rows of JAK
declassify the second column of JAK
JB′K ← the rows corresponding to JBK (1 in the second

column of JAK) from (J~pK, J~b′K)
write JB′K to the database as the new budget table

(JV ′K, J ~m′K) ← the rows corresponding to JV K (0 in the
second column of JAK) from (JAK, J~aK)
JrK← output of Q on JV ′K with J ~m′K as the mask vector
return JrK

Algorithm 7 Frequency table

Input: A sorted vector J~vK of length n

Output: A vector J~fK, where JfiK is the number of values
equal to JviK before the ith position in J~vK

initialize J~fK with zeros
j ← 1
while j < n do

for each i ∈ {j + 1, . . . , n} (in parallel) do
JfiK← if JviK = Jvi−jK then Jfi−jK + j else JfiK

j ← j · 2
return J~fK

Alg. 4) the frequency table (the number of rows with each
provenance) to determine how much budget is needed for
each provenance and which provenances have enough bud-

get (the vector J~hK). Then the booleans in J~hK are propa-
gated back from the rows corresponding to JBK to the rows
corresponding to JV K to find the rows whose provenance has
enough budget.

We also need to replace the provenances of the rows ex-
cluded from the query by zeros (J~sK ← J ~pV K · J ~mV K). This
ensures that we do not include those rows when computing
the amount of budget required (JfiK · ε) for each provenance.

Let nv and nb be the number of rows in the value table
and the budget table, respectively, and n = nv + nb. Then
Alg. 6 uses O(n logn) comparisons for sorting JAK (using
quicksort) and at most a total of 2n logn equality checks
for computing the frequency table and propagating values
back (actually, the comparison results from computing the
frequency table can be reused for propagating values back,
thus we only need n logn equality checks instead of 2n logn).
The rest of the algorithm is linear-time.

If we need to make several queries in a row on the same
value table and the same mask vector (but with possibly dif-
ferent aggregation functions) then we can reuse (if we modify
Alg. 6 slightly) the results of the O(n logn) part of the algo-
rithm and need to repeat only the linear-time part for each
query. If the next query uses the same value table but a dif-
ferent mask vector then we need to recompute the frequency
table and propagating values back. Sorting (the most time-
consuming part of Alg. 6) needs to be redone only when the
next query uses a different value table.

10. BENCHMARKING RESULTS
In Fig. 1, we give benchmarking results of our imple-

mention for various aggregation functions and for various
forms of differential privacy (global budgets, Personalized
Differential Privacy with in-place budgets and provenance
budgets) and also for a non-differentially private (but still
secret-shared) version. We have skipped some of the larger
tests whose running time would be predictable from the run-
ning times of other (performed) tests. All tests were per-
formed on a cluster of three computers with 48 GB of RAM
and a 12-core 3 GHz CPU with Hyper Threading running
Linux (kernel v.3.2.0-3-amd64), connected by an Ethernet
local area network with link speed of 1 Gbps.

If we compare the non-differentially private and the global-
budget version of count, the overhead is roughly constant
(around 360 ms) independent of n (the number of rows).
This overhead is due to the floating-point operations of gen-
erating a Laplace random value that is added to the final
result.

When comparing the non-differentially private and the
global-budget version of average, we have in addition to
generating a Laplace random value, the overhead of 2n com-
parisons and 3n multiplications. For n = 200000, the over-
head is 3427 ms, of which 2638 ms are comparisons, 368 ms
are multiplications, and 395 ms are floating-point operations
(mostly for the Laplace random value).

When comparing the non-differentially private and the
global-budget version of correlation, we see that the over-
head depends mostly on ` and not much on n because the
number of slow floating-point operations is proportional to `.
For ` = 1000 the running time is about 8000 ms larger than
for ` = 100. This extra overhead is used mostly (7000 ms)
for floating-point operations (square root, division, etc.).

When comparing the non-differentially private and the
global-budget version of median, we see that the differ-
entially private version is often the faster one. This is due
to the high variance of the running time of the selection al-
gorithm (for choosing the ith ranked element from a set of n
elements), and we made only one run for each of the larger
input sizes. The distribution of the running time does not
depend on the actual input, which is randomly shuffled be-
fore running the selection algorithm. In the differentially pri-
vate version, we do need to choose roughly ` middle-ranked

elements instead of only 1 or 2 but the running time of the
selection algorithm in this case is only 1 + `

n
times higher

on average, and usually ` is much less than n.
When comparing the global-budget version of differential

privacy with in-place budgets, we see that the extra over-
head depends mostly on n, not on the aggregating function.
This is because we use the same ε-differentially private ag-
gregating functions in both cases but in the latter case we
also need to check which rows have enough budget and to
reduce the budgets.

Similarly, the extra overhead of the provenance-budgets
version of differential privacy compared to in-place budgets
depends on n and not on the aggregating function.

We have also measured which operations take most of the
running time. For example, for correlation with prove-
nance budgets, n = 200000, and ` = 100, the total running
time was 112300 ms, of which 58168 ms is sorting (mostly
comparisons), 32949 ms (of which 19697 ms are equality
checks and 11707 ms multiplications) is computing the fre-
quency table and propagating values back (Algorithms 7 and
4 but reusing the results of equality checks instead of com-
puting them twice). As discussed in Sec. 9, if the query is
performed on the same value table as the previous query
then it is not necessary to redo the sorting and the running
time would be 54132 ms. If also the mask vector is the same
as in the previous query, we can also leave out Algorithms 7
and 4 and the running time would be 21183 ms, which is 2.5
times slower than with in-place budgets but 5.3 times faster
than the full provenance-budgets version.

Now we consider correlation with in-place budgets, n =
2000000, and ` = 1000. Here the overhead compared to
global budgets is about 21000 ms, of which 13237 ms are
comparisons, 1943 ms are multiplications, and 4345 ms is
spent on writing the new budgets to database (a local oper-
ation). This overhead would be almost the same for other
aggregating functions instead of correlation.

Thus the most important operations for our implementa-
tion of differential privacy are integer comparisons, followed
by equality checks and multiplications. For larger ratios of
`
n

(and thus smaller n), also floating-point operations are
important.

11. DISCUSSION
We have implemented our system on Sharemind which

provides security against a passive attacker (but also pri-
vacy against an active one [34]). Floating point operations
of Sharemind are described in [23] and integer operations
(which we also used to simulate fixed-point numbers) in [5].

We may wonder what the overheads of differential pri-
vacy would have been on an SMC platform that provides
security also against active adversaries. One of the most
efficient actively secure protocol sets is (the online phase
of) SPDZ [24]. They use an expensive offline preprocessing
phase, which in the online phase allows multiplying two inte-
gers with each party sending only two values to every other
party (as opposed to five in Sharemind, which does not
use preprocessing). Thus (integer) multiplications would be
faster on SPDZ but they are only a small part of our algo-
rithms. In the following, we discuss the expected overheads
of our protocols, if implemented on top of the online phase
of SPDZ.

More important for us are integer comparisons, which in
our tests (using 64-bit integers) took about 6.5 s per mil-

function num. rows non-diff. private
budgets:

global in-place provenance

count

10000 392 759 1124 6096
20000 405 768 1241 10672
50000 460 827 1587

100000 594 962 2257
200000 866 1184 3452
500000 7234

1000000 13871

average

10000 443 1099 1475 6598
20000 461 1285 1753 11051
50000 532 1774 2531

100000 694 2625 3873
200000 999 4426 6483
500000 15118

1000000 28995

correlation (` = 100)

10000 822 2455 2826 7663
20000 1001 2665 3157 12693
50000 1556 3278 4092 26833

100000 2473 4312 5525 54767
200000 4443 6359 8548 112300
500000 9721 12218 17895

1000000 19414 22608 33530

correlation (` = 1000)
500000 9850 20115 25961

1000000 19380 30657 41363
2000000 37643 51381 72436

median (` = 100)

10000 851 1332 1708 6548
20000 1327 1737 2131 11786
50000 2318 2137 3502

100000 4620 4075 5312
200000 6498 5559 9198
500000 24175

1000000 34583

Figure 1: Benchmarking results (in milliseconds)

lion elements. Multiplications took 0.5 s per million ele-
ments and equality tests 3 s per million elements. As SPDZ
multiplications use 2.5 times less communication, these may
take 0.2 s per million elements on our hardware. According
to [24], 64-bit integer comparisons in SPDZ are about 90
times slower than multiplications, i.e. these may take 18 s
per million elements, about 3 times slower than on Share-
mind. Equality tests are not considered in [24] but the best
equality-checking protocol in [7] makes 8 openings of secret
values for 64-bit integers in the online phase (and much more
in the precomputing phase), i.e. 4 times more than multipli-
cation. If this could be implemented on SPDZ then it may
take 0.8 s per million elements, about 4 times faster than
on Sharemind. Thus we guess the that the communication
costs of the online phase of an implementation on SPDZ
would not differ from our implementation by more than a
couple of times.

12. CONCLUSION
We have presented efficient algorithms for performing dif-

ferentially private statistical analyses on secret-shared data.
We have implemented them on the SMC platform Share-
mind. The current implementation supports the aggrega-
tion functions count, sum, arithmetic average, median, and
linear correlation coefficent but it can easily be extended
to other functions using the Sample-and-Aggregate mecha-

nism. We have implemented three different kinds of budgets
for differential privacy and compared their performance. We
can conclude that non-trivial queries using various forms of
differential privacy can be performed on an SMC platform
based on secret sharing, and the performance is good enough
to be usable in practice.
Acknowledgements. This work has been supported by
Estonian Research Council, grant No. IUT27-1, by Euro-
pean Regional Development Fund through STACC, and by
European Commission through grant No. FP7-284731.

References
[1] G. Ács and C. Castelluccia. I have a dream! (differentially pri-

vate smart metering). In T. Filler, T. Pevný, S. Craver, and A. D.
Ker, editors, Information Hiding - 13th International Confer-
ence, IH 2011, Prague, Czech Republic, May 18-20, 2011, Re-
vised Selected Papers, volume 6958 of Lecture Notes in Com-
puter Science, pages 118–132. Springer, 2011.

[2] D. Beaver. Efficient multiparty protocols using circuit random-
ization. In J. Feigenbaum, editor, CRYPTO, volume 576 of Lec-
ture Notes in Computer Science, pages 420–432. Springer, 1991.

[3] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk. Rmind: a tool for
cryptographically secure statistical analysis. Cryptology ePrint
Archive, Report 2014/512, 2014. http://eprint.iacr.org/.

[4] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In S. Jajodia and
J. López, editors, ESORICS, volume 5283 of Lecture Notes in
Computer Science, pages 192–206. Springer, 2008.

http://eprint.iacr.org/

[5] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-
performance secure multi-party computation for data mining ap-
plications. Int. J. Inf. Sec., 11(6):403–418, 2012.

[6] H. Carter, C. Lever, and P. Traynor. Whitewash: outsourcing
garbled circuit generation for mobile devices. In Payne Jr. et al.
[33], pages 266–275.

[7] O. Catrina and S. de Hoogh. Improved primitives for secure mul-
tiparty integer computation. In J. A. Garay and R. D. Prisco,
editors, Security and Cryptography for Networks, 7th Interna-
tional Conference, SCN 2010, Amalfi, Italy, September 13-15,
2010. Proceedings, volume 6280 of Lecture Notes in Computer
Science, pages 182–199. Springer, 2010.

[8] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi. Broadening the scope of differential privacy using
metrics. In E. D. Cristofaro and M. Wright, editors, Privacy En-
hancing Technologies - 13th International Symposium, PETS
2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings,
volume 7981 of Lecture Notes in Computer Science, pages 82–
102. Springer, 2013.

[9] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In B. Pfitzmann,
editor, EUROCRYPT, volume 2045 of Lecture Notes in Com-
puter Science, pages 280–299. Springer, 2001.

[10] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly secure
oblivious ram without random oracles. In Y. Ishai, editor, TCC,
volume 6597 of Lecture Notes in Computer Science, pages 144–
163. Springer, 2011.

[11] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryption. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417
of Lecture Notes in Computer Science, pages 643–662. Springer,
2012.

[12] C. Dwork. A firm foundation for private data analysis. Commun.
ACM, 54(1):86–95, 2011.

[13] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In S. Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, vol-
ume 4004 of Lecture Notes in Computer Science, pages 486–503.
Springer, 2006.

[14] H. Ebadi, D. Sands, and G. Schneider. Differential privacy: Now
it’s getting personal. In S. K. Rajamani and D. Walker, editors,
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 69–81. ACM,
2015.

[15] F. Eigner, M. Maffei, I. Pryvalov, F. Pampaloni, and A. Kate.
Differentially private data aggregation with optimal utility. In
Payne Jr. et al. [33], pages 316–325.

[16] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS
and Fast-Track Multiparty Computations with Applications to
Threshold Cryptography. In PODC, pages 101–111, 1998.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to Play any
Mental Game or A Completeness Theorem for Protocols with
Honest Majority. In STOC, pages 218–229. ACM, 1987.

[18] O. Goldreich and R. Ostrovsky. Software Protection and Simu-
lation on Oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[19] S. Goryczka, L. Xiong, and V. S. Sunderam. Secure multi-
party aggregation with differential privacy: a comparative study.
In G. Guerrini, editor, Joint 2013 EDBT/ICDT Conferences,
EDBT/ICDT ’13, Genoa, Italy, March 22, 2013, Workshop
Proceedings, pages 155–163. ACM, 2013.

[20] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan,
B. C. Pierce, and A. Roth. Differential privacy: An economic
method for choosing epsilon. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22
July, 2014, pages 398–410. IEEE, 2014.

[21] N. Husted, S. Myers, A. Shelat, and P. Grubbs. GPU and CPU
parallelization of honest-but-curious secure two-party computa-
tion. In C. N. Payne Jr., editor, Annual Computer Security
Applications Conference, ACSAC ’13, New Orleans, LA, USA,
December 9-13, 2013, pages 169–178. ACM, 2013.

[22] L. Kamm. Privacy-preserving statistical analysis using secure
multi-party computation. PhD thesis, University of Tartu, 2015.

[23] L. Kamm and J. Willemson. Secure floating point arithmetic
and private satellite collision analysis. International Journal of
Information Security, pages 1–18, 2014.

[24] M. Keller, P. Scholl, and N. P. Smart. An architecture for practi-
cal actively secure MPC with dishonest majority. In A. Sadeghi,
V. D. Gligor, and M. Yung, editors, 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 549–560. ACM,
2013.

[25] P. Laud. Parallel Oblivious Array Access for Secure Multiparty
Computation and Privacy-Preserving Minimum Spanning Trees.
Proceedings on Privacy Enhancing Technologies, 1, 2015. To
appear.

[26] S. Laur, R. Talviste, and J. Willemson. From Oblivious AES
to Efficient and Secure Database Join in the Multiparty Setting.
In Applied Cryptography and Network Security, volume 7954 of
LNCS, pages 84–101. Springer, 2013.

[27] C. Liu, Y. Huang, E. Shi, J. Katz, and M. W. Hicks. Automating
efficient ram-model secure computation. In 2014 IEEE Sympo-
sium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 623–638. IEEE Computer Society, 2014.

[28] A. Machanavajjhala and D. Kifer. Designing statistical privacy
for your data. Commun. ACM, 58(3):58–67, 2015.

[29] F. McSherry. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. Commun. ACM, 53(9):89–
97, 2010.

[30] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2007), October 20-23, 2007, Prov-
idence, RI, USA, Proceedings, pages 94–103. IEEE Computer
Society, 2007.

[31] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. E. Culler.
GUPT: privacy preserving data analysis made easy. In K. S.
Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and A. Fux-
man, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2012, Scotts-
dale, AZ, USA, May 20-24, 2012, pages 349–360. ACM, 2012.

[32] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitiv-
ity and sampling in private data analysis. In D. S. Johnson and
U. Feige, editors, Proceedings of the 39th Annual ACM Sympo-
sium on Theory of Computing, San Diego, California, USA,
June 11-13, 2007, pages 75–84. ACM, 2007.

[33] C. N. Payne Jr., A. Hahn, K. R. B. Butler, and M. Sherr, ed-
itors. Proceedings of the 30th Annual Computer Security Ap-
plications Conference, ACSAC 2014, New Orleans, LA, USA,
December 8-12, 2014. ACM, 2014.

[34] M. Pettai and P. Laud. Automatic Proofs of Privacy of Se-
cure Multi-Party Computation Protocols Against Active Adver-
saries. In IEEE 28th Computer Security Foundations Sympo-
sium, CSF 2015, Verona, Italy, 14-17 July, 2015. IEEE, 2015.

[35] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[36] A. Smith. Privacy-preserving statistical estimation with opti-
mal convergence rates. In L. Fortnow and S. P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Com-
puting, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
813–822. ACM, 2011.

[37] A. C.-C. Yao. Protocols for secure computations (extended ab-
stract). In FOCS, pages 160–164. IEEE, 1982.

	Introduction
	Related Work
	Differential Privacy
	The Sample-and-Aggregate mechanism
	Personalized Differential Privacy
	Secure Multiparty Computation
	Asymptotic Overhead of Differential Privacy
	Algorithm for Join
	Implementing Personalized Differential Privacy
	Benchmarking Results
	Discussion
	Conclusion

