
Journal of Computer Security 10 (2002) 273–296 273
IOS Press

Eliminating counterevidence with applications
to accountable certificate management 1

Ahto Buldasa, Peeter Laudb and Helger Lipmaac,∗
a Tallinn Technical University/University of Tartu/Cybernetica AS, Akadeemia tee 21,
12618 Tallinn, Estonia
E-mail: ahto.buldas@cyber.ee
b FB 14 Informatik, Universität des Saarlandes, Im Stadtwald – Bau 45, Postfach 15 11 50,
66041 Saarbrücken, Germany
E-mail: laud@cs.uni-sb.de
c Laboratory for Theoretical Computer Science, Department of Computer Science and Engineering,
Helsinki University of Technology, FIN-02015 HUT, Espoo, Finland
E-mail: helger@tcs.hut.fi

This paper presents a method to increase the accountability of certificate management by making it
intractable for the certification authority (CA) to create contradictory statements about the validity of a
certificate. The core of the method is a new primitive,undeniable attester, that allows someone to commit
to some setS of bitstrings by publishing a short digest ofS and to give attestations for anyx that it is or
is not a member ofS. Such an attestation can be verified by obtaining in authenticated way the published
digest and applying a verification algorithm to the triple of the bitstring, the attestation and the digest.
The most important feature of this primitive is intractability of creating two contradictory proofs for the
same candidate elementx and digest. We give an efficient construction for undeniable attesters based on
authenticated search trees. We show that the construction also applies to sets of more structured elements.
We also show that undeniable attesters exist iff collision-resistant hash functions exist.

Keywords: Accountable certificate management, authenticated search trees, attesters, long-term
authenticity, non-repudiation, public-key infrastructure, search trees, time-stamping

1. Introduction

The concept of public-key cryptography was created in an effort to solve the cryp-
tographic key management problem [12]. While giving an answer to many difficult
problems, public-key cryptography also raised several of its own. Not surprisingly,
one of the main problematic areas to be solved before public-key cryptography can
be successfully applied in practice is still that of key management. There has been a
huge body of research on key management methods since [19] but key management
involves still considerably more trust toward the third parties than rest of cryptogra-
phy.

1A preliminary version of this paper [6] appeared in theACM CCS ’2000 Conference. The current
version is the final submission to theJournal of Computer Security.

* Corresponding author.

0926-227X/02/$8.00 2002 – IOS Press. All rights reserved

274 A. Buldas et al. / Eliminating counterevidence with applications

We say a certificate management system isaccountablewhen all forgeries by third
parties can be explicitly proven and all false accusations explicitly disproven. Effi-
cient and accountable identity-based certificate management is necessary in partic-
ular, but not only to support authenticity of digital documents with a long lifetime.
A body of supporting methods for long-term authenticity was developed in the area
commonly known as digital time-stamping [16]. Recent work in time-stamping has
also shown how to build efficient yet accountable time-stamping systems [7,8,20]
with minimal trust in the third parties. However, one has to complement the tech-
niques of accountable time-stamping with methods from other areas of applied cryp-
tography to support long-term authenticity and non-repudiation. One of such areas is
accountable efficient certificate management. Unfortunately, cryptographic literature
has only briefly treated the question of how to achieve the latter [10].

First, we present informal motivation and definition of accountable certificate
management, where every validity change of a certificate is accompanied by a trans-
ferable attestation ascertaining this act, and a short digest of the current state of
database of valid certificates is periodically published. In Section 2, we arguein-
formally that a certificate management system is accountable if and only if it is in-
tractable for anybody to create a pair of contradictory attestations, so that a certificate
would be accepted as valid or not, depending on which certificate is in possession
of the verifier. Under this intractability assumption, our certificate management sys-
tem has several desirable properties. The most important property is that if physical
visits to the Certification Authority (CA) are audited, every subsequent dispute in
court can be solved by the present evidence. Moreover, one can verify certificate
validity at some moment, based only on a short digest of the certificate database, a
short certificate-specific attestation and the certificate itself. The rest of the paper is
focused on this assumption.

In Section 3, we give the formal definition of a new primitive calledundeniable
attester. Informally, an attester is a triple (P ,D,V) of algorithms, such that

• The proving algorithmP , given a candidate stringx and a setS, outputs an
attestation certifying whetherx ∈ S.
• The digest algorithmD, given a setS, outputs a short digestd = D(S) of it.
• The verification algorithmV is given a candidate elementx, a digestd, and an

attestationp. V accepts or rejects on input (x,d,p), depending on whetherx
belongs to a set with digestd. Here,p contains additional information about the
status ofx ∈? S.

We call an attesterundeniableif it is intractable to generate a digestd, an elementx
and two attestationsp andp such thatV (x,d,p) accepts butV (x,d,p) rejects. In
the context of certificate management,S is a database of identity certificate serial
numbers.

In Section 4 we survey some attesters whose subsystems were considered pre-
viously in certificate management and public-key infrastructure. In particular, we

A. Buldas et al. / Eliminating counterevidence with applications 275

review attesters based on certificate revocation lists, hash trees [22], certificate revo-
cation trees [18,25] and RSA accumulators [2,9]. However, since most of the men-
tioned systems have not been designed with accountability in mind, they all have
some implicit trust assumptions. As a result, we conclude that the only previously
known undeniable attester is the trivial one (similar in efficiency to the certificate
revocation lists) with attestation lengthsΘ(|S| · log |S|).

A good example of an attester that isnotundeniable is the sorted hash tree attester,
defined in Section 4.4. Sorted hash tree attesters are based on an efficient construction
similar to the certificate revocation trees. We show in Section 4.4 that sorted hash tree
attesters are not undeniable and therefore a sorted hash tree attester-based certificate
management system makes it possible for the CA to cheat clients.

In Section 5, we propose a very simple efficientauthenticated search tree-based
construction of undeniable attesters that we call anauthenticated search tree attester.
The key difference between sorted hash tree attesters and the proposed construction
is that authenticated search tree attesters assign to every internal nodev of a search
tree a hash valueS[v], taken over the labels ofv’s childrenand the search key ofv.
(In sorted hash tree attesters,S[v] doesnot authenticate the search key ofv.) More-
over, authenticated search tree attesters are in several aspects more intuitive than
sorted hash tree attesters: Being directly based on search trees as they are generally
understood in computer science, they allow us to carry over to cryptography the re-
search done in the area of algorithms and data structures [17]. As such, the proposed
undeniable attester might have surprisingly wide applications in different security
applications, and not only in certificate management.

After defining new attester, we will prove that it is undeniable. As with any new
cryptographic primitive it is good to know how it relates to previously known prim-
itives. A proof that undeniable attesters exist if and only if collision-resistant hash
functions exist is presented in Section 5.

We show in Section 5.4 that our methods can be extended to multi-field records.
First, we can think of everyx ∈ S as composed of two parts, a unique key and
a body. Searching can be performed only by looking up the key; the authenticated
search tree attester can be modified to enable detecting the case when the key is not
unique. Further extensions are possible. These extensions provide also a better an-
swer to natural question whatexactlyis a candidate stringx in the case of certificate
management. We purposefully have not yet specified this:x could be certificate serial
number, but also a hash of whole certificate, whatever is more relevant in practical
applications. However, the best solution might be to let the unique key to correspond
to serial number, and the body to correspond to the hash of whole certificate.

In Section 6, we will provide efficiency analysis of the authenticated search tree at-
tester. We show that attestations in the authenticated search tree can be compressed,
under ideal conditions, by a factor of 2; this makes authenticated search tree at-
tester almost as space efficient as the sorted hash tree attester. While this method is
straightforward, the authors are unaware of any previous constructions that use the
same technique to compress search trees. Moreover, it is unusual to apply standard

276 A. Buldas et al. / Eliminating counterevidence with applications

compression methods to make cryptographic primitives more space efficient. The
attestation compressing method given in Section 6 might be of independent interest.

Terminology.We have intentionally chosen to use slightly nonstandard but self-
consistent terminology. In particular, we have tried to avoid overloading already no-
toriously overloaded terms ‘certificate’ and ‘proof’ and relatives, by introducing the
termattestation. We use the more concrete termcertificate managementinstead of
‘PKI’. (Certificate management denotes usually the process whereby certificates are
managed and used, while the PKI refers to the entire framework established for cer-
tificate management.)

2. Motivations

Our research is motivated by the observation that for long-term authenticity and
non-repudiation of digital documents, new methods are necessary for verifying
whether identity certificates (bindings between a person and a signature key) were
valid at some moment of time. Since many digitally signed documents (e.g., loan
agreements) may have important legal value for decades, it would be desirable to en-
sure that validity information of certificates cannot be forged by anybody, including
the authorities.

We aim at construction of an accountable certificate management system, where
all forgeries by third parties can be explicitly proven and all false accusations explic-
itly disproven [8]. More precisely, we would like the only part of certificate manage-
ment (physical visit of a person to an authority) that clearly cannot be mathematically
modeled also to be the only stage in the system that needs some non-cryptographic
solution (i.e., involving physical presence of a client-chosen notary) to trust prob-
lems. If visits were ‘correct’, the system should need no auditing anywhere else. In
particular, clients should be able to discover if the CA has maliciously issued new
invalid certificates or removed valid certificates that are still valid.

Long-term certificate validity can be partially ensured by the methods of time-
stamping [7,16], where absence of a proof that a certificate was issued is implicitly
counted as the proof of its nonexistence. However, such an assumption is clearly
undesirable in many situations. We would like to have not only explicit positive at-
testations stating that valid certificates are valid, but also explicit negative attestations
stating that non-valid certificates are not valid. In this way, all disputes regarding the
validity of a certificate could be solved based on the present evidence (a positive
or a negative attestation), given that it is intractable for anybody to create a pair of
contradictory attestations.

From now on, we will work in a setting where the CA maintains a dynamic
databaseS of valid certificates. See [15,28] for argumentation why a database of
valid certificates is better than a database of revoked certificates. In our case, database
of revoked certificates would just add unnecessary complexities to the system. The
presence of a central authority lessens the communication complexity of the scheme

A. Buldas et al. / Eliminating counterevidence with applications 277

and simplifies tracking of the origins of frauds. Our model also includes the Publica-
tion Authority [8] and a (possibly huge) number of clients.

We assume that every client receives a positive (resp. negative) attestation from
the CA if her certificatex belongs (resp., does not belong) to the databaseS of valid
certificates. This assumption is not restricting, since some sort of attestation – or
receipt – is returned to the client by the CA in every certificate management system.
In our system, it is in client’s own interest to store the attestation so that he can later
explicitly prove or disprove the validity of his certificate at some time. Additionally,
everyone can make membership queries of type ‘x ∈? S’ to the CA, who then returns
an attestation. Clients who want later to use an attestationp of ‘x ∈ S’ (or of ‘x �∈ S’)
as evidence in court, should obtain it from the CA in some suitable time-frame. This
is very similar to what is done in time-stamping [7,20].

A digest of databaseS (denoted asD(S)) is published by the Publication Au-
thority in some authenticated and widely available medium by using accountable
publishing protocols [8]. Motivations behind this are the same as in time-stamping
[7,8,16]. First, without authenticated information about the database, the CA can
easily create contradictory attestations. Second, long-term authenticity should not
depend on the security of private keys [16]. Publishing the digest is the most natu-
ral and widely accepted solution in digital time-stamping to achieve the long-term
authenticity. Third, nobody should be forced to store old versions of the dynamic
databaseS: the system should still be accountable, if a verifier does not have any-
thing more than an element, a short attestation, and a short digest of the database.
This is again very similar to the situation in time-stamping, where clients can verify a
time stamp given only the time stamp (equivalent to the attestation), the round stamp
(equivalent to the digest), and the candidate element itself [7,16].

Our model of accountable certificate management incorporates at least three dif-
ferent algorithms. Motivated by this, we define a new primitive,attester, to be a
triple (P ,D,V) of algorithms. The proving algorithmP , given a candidate stringx
and a setS, outputs an attestation. The digest algorithmD, given a setS, outputs a
short digestd = D(S) of the database. Finally, the verification algorithmV takes as
input a candidate elementx, a digestd, and an attestationp, and accepts or rejects
depending on whetherx belongs to a setS such thatd = D(S).

In described model, the CA cannot cheat a client. (We assume that Denial of Ser-
vice attacks by the CA, where the CA does not return an attestation to the client, can
be prevented for example by letting a client-chosen notary to participate in handing
over the attestation.) That is, if a client has a positive (resp., negative) attestation
that some certificate belonged (resp., did not belong) to the database of valid cer-
tificates at some time, the CA has no means to generate a contradictory attestation,
claiming that the same certificate was not (resp. was) in this database at that time,
assuming that the CA is not able to break some underlying cryptographic primi-
tives. More formally, we call an attesterundeniable, if it is intractable to generate a
setS, an elementx and two attestationsp andp such thatV (x,D(S),p) accepts but
V (x,D(S),p) rejects.

278 A. Buldas et al. / Eliminating counterevidence with applications

For long-term authenticity undeniability is crucial – e.g., when the CA who issued
a concrete certificate might have gone bankrupt long before the verification act, so
that it is impossible to sue her for cheating. Moreover, if a client has accidentally
deleted his attestation, he can at least be sure that nobody else can sue him, based on
a contradictory attestation. These properties will significantly increase the trustwor-
thiness of the CAs.

2.1. Application in court

The relevance of undeniable attestations can probably be best exemplified by the
next application. If a digital signature law is passed in some country, it becomes
natural to expect that digital signatures would then be considered as legally valid as
handwritten ones. In particular, one should be able to solve legal disputes based on
the validity of a particular signature on a particular document. As is well known, one
needs certificate management for that in order to determine the validity of the digital
signature. However, one often overlooks the real process in court, where a person
presents to the judge a piece of evidence, which in this case is a signed document to-
gether with a certificate. The judge cannot take an action, based on the evidence (that
we call an attestation) alone, if it is possible for somebody else to create counterevi-
dence (that we call the contradictory attestation). For example, certificate revocation
list can be seen as counterevidence.

Currently, it is almost always possible, at least for the CA, to create counterevi-
dence. Therefore, court’s decisions often base on heuristics that involve trust in some
authorities, eyewitnesses or other human beings. In the case of digital signatures, the
definition of eyewitnesses is unclear, and one might not want to trust the authorities.
Not only is it possible that the authorities might be corrupted, but a malicious client
could also claim that a honest authority is guilty. In such cases the judge cannot take
an action, since the authority might or might not be guilty. If it is intractable to create
a counterevidence even for the authorities, the court can always authoratively decide
a case, based on evidence. By doing this, the judge does not have to trust anybody,
and everybody can also check that judge’s actions are correct. The latter means that
one cannot question ambiguous actions of court related to digital signatures, and
hence there is no reason to appeal to a higher court if the actions of the the lower
court were provably wrong.

2.2. Separation of duties

Functions of the CA should be divided between at least two authorities, an off-line
CA, and an on-line Validation Authority, as it is done also in many other certificate
management systems [10]. However, while the distinction between the CA and the
Validation Authority is important in practice, it is not a subject of this paper: since our
methods help to prevent forgeries even in the case when one possibly misbehaving
party (the CA) has control over the whole system, it also prevents forgeries if there

A. Buldas et al. / Eliminating counterevidence with applications 279

are several third parties. For simplicity, in this paper we will not stress separation
between the authorities. For the same reason, we do not elaborate on the accountable
publication protocols but rather refer the reader to [8] for necessary information.

3. Formal definitions

3.1. Preliminaries

Let Σ = {0, 1}. As usually,Σk denotes the set ofk-bit words,Σ∗ :=
⋃

k�0 Σk. For
σ ∈ Σ, σk denotes string ofk σ-s. From now on,k denotes the security parameter,
relative to which security of various schemes is measured. We assume thatnil is
a special symbol, encoded differently from anyx ∈ Σ∗. Let EA be the class of
probabilistic algorithms with execution time that is polynomial in the length of their
first input. A familyP = (Pk) of probabilities,k ∈ N, is negligibleif for all ε > 0
there exists akε, such thatPk < k

−ε, for anyk > kε. NotationX ← S means
thatX is assigned according to the probability spaceS that may be the output space
of some probabilistic algorithm.

A collision-resistant hash function(CRHF)H for some index setI ⊆ Σ∗ is a pair
(G,H), such that (1)G ∈ EA is ageneration algorithm, such thatG(1k) ∈ Σk ∩ I;
(2) For an indexi ∈ I, H(i, ·) = Hi(·) is a functionHi : Σp(|i|) → Σ|i|, such that
H ∈ EA, for some polynomialp, wherep(k) > k; (3) For all algorithmsA ∈ EA,
the probability familyCRHH(A) is negligible ink, where

CRHH,k(A) := Pr[i← G(1k), (x1,x2)← A(1k, i) : x1 �= x2

∧Hi(x1) = Hi(x2)].

Note that indexi is only necessary when one requiresH to be collision-resistant.
Otherwise one can assume that|I| = 1.

3.2. Definition of attester

We have already given informal definitions of attesters. Next, we present the full
formalism, followed by discussion.

Definition 1. A quadrupleA = (G,P ,D,V) is anattesterfor an index setI ⊆ Σ∗,
if there is a polynomialf , f (k) > k, such that

1. A generating algorithmG ∈ EA takes as input a security parameter 1k and
outputs an indexi ∈ Σk ∩ I.

2. A proving algorithmP ∈ EA takes as input an indexi, an elementx ∈ Σk and
a setS ⊆ Σk, |S| � f (k) and outputs anattestationPi(x,S) = P (i,x,S).

280 A. Buldas et al. / Eliminating counterevidence with applications

3. A digest algorithmD ∈ EA takes as input an indexi, a setS ⊆ Σk, |S| � f (k)
and outputs a digestDi(S) = D(i,S) ∈ Σ�f (k) ∪ { Error}.

4. A verification algorithmV ∈ EA takes as input an indexi, a candidate element
x ∈ Σk, a digestd and an attestationp and outputs

Vi(x,d,p) = V (i,x,d,p) ∈ { Accept, Reject, Error} .

We require that ifi �∈ Σk ∩ I, S �⊆ Σk, |S| > f (k) or x �∈ Σk, then for
anyp, Vi(x,Di(S),p) = Error. (In practice, one should setDi(S) = Error if
i �∈ Σk∩I,S �⊆ Σk or |S| > f (k).) Otherwise, for anyS ⊆ Σk with |S| � f (k),
and for anyx ∈ Σk, Vi(x,Di(S),Pi(x,S)) outputsAccept if x ∈ S andReject
if x �∈ S.

Definition 2. LetA = (G,P ,D,V) be an attester and letA ∈ EA. Let

CRPA,k(A) := Pr[i← G(1k), (x,S,p)← A(1k, i) :

x /∈ S ∧ Vi(x,Di(S),p) = Accept],

CRDA,k(A) := Pr[i← G(1k), (x,S,p)← A(1k, i) :

x ∈ S ∧ Vi(x,Di(S),p) = Reject]

and

UNA,k(A) := Pr[i← G(1k), (x,d,p,p)← A(1k, i) :

Vi(x,d,p) = Accept ∧ Vi(x,d,p) = Reject] .

AttesterA is acollision-resistant prover(resp.collision-resistant disprover) if ∀A ∈
EA, CRPA(A) (resp.CRDA(A)) is negligible.A is acollision-resistant attesterif
for anyA ∈ EA, bothCRPA(A) andCRDA(A) are negligible.A = (G,P ,D,V)
is undeniableif for anyA ∈ EA, UNA(A) is negligible.

3.3. Discussion

Note that in the definition of attesters the role of generating function and indices
is the same as in the definition of hash functions. Namely, they are not necessary
unless we discuss strong security properties like collision-resistance and undeniabil-
ity. Otherwise we can assume that|I| = 1. In informal treatment, one can omitI at
all. However, in our constructions of undeniable attesters we have to assume that the
used hash function is collision-resistant, which automatically introduces need for the
index setI in the formal treatment.

It is important to understand the seemingly subtle but crucial in applications
difference between collision-resistant attesters and undeniable attesters. Collision-
resistant attesters assume that a verifier has access to the correctly computed

A. Buldas et al. / Eliminating counterevidence with applications 281

valueDi(S). In practice, it means that she either has to rely on some trusted third
party to provide a correctDi(S) or has to have access toS herself. Both possibilities
are undesirable in many security applications, including accountable certificate man-
agement. Undeniable attesters stay secure even in the presence of an adversary who
forges the digest, and therefore potentially provide a much higher level of confidence
in the system.

In practice,S is organized as a certain data structure. In many cases, attester is just
a security add-on to this data structure. We will see this in Sections 4.4 and 4.3, where
attesters will be based on corresponding types of trees. Therefore, we will often use
the terminology of data structures in the context of attesters. For example, one would
like an attester to have ‘succinct’ attestations and digests but also fast average-case
update time of the data structure. Informally, we say that an attester isdynamicif
average-case time per insertion and deletion of elements to the corresponding data
structure isO(|i| log |S|) for anyi ∈ I. We say an attester issuccinctif for any i ∈ I,
|Di(S)| = O(|i|) and|Pi(x,S)| = O(|i| · log |S|). Note that sinceP ,D ∈ EA, any
attester has|Di(S)| = |Pi(x,S)| = |i|O(1).

4. Some known constructions

Next, we will give a short survey of some attesters based on previously proposed
ideas. Table 1 summarizes the properties of attesters described in this section, to-
gether with authenticated search tree attesters described later in Section 5. Note that
the hash tree attester and the RSA attester are not succinct, since they have neg-
ative attestations of lengthΘ(|S| · log |S|). However, one can easily modify both
attesters to be succinct, by definingPi(x,S) to be equal to some fixed constant for
all x �= S. Both the modified hash tree attester and the modified RSA attester are
succinct collision-resistant provers. A similar trick does also work with the list at-
tester, but the resulting succinct construct will only be attester without satisfying any
stronger security requirements.

As emphasized in Section 2, in accountable certificate management we are inter-
ested in undeniable attesters. In the following we will briefly explain why already
known attesters fail to satisfy our requirements. The main result of this paper is the
provably secure authenticated search tree attester, described in Section 5.

4.1. List attester

List attester is the most trivial attester. For anyx and a setS, attestationP (x,S) is
equal toS (i.e., to the whole set), with length|P (x,S)| = Θ(|S| log |S|). The digest
D(S) is equal to a shortk-bit hashH(S) of S, whereH is a collision-resistant hash
function. (Remember thatk is a security parameter.) The verification algorithmV ,
givenS = P (x,S), d = D(S) andx, accepts if and only ifd = H(P (x,S)) and
x ∈ P (x,S). The resulting construction is clearly undeniable.

282 A. Buldas et al. / Eliminating counterevidence with applications

Table 1

Some known succinct attesters, i.e., security is given only for the succinct versions (see Section 3.3).
For example, while the list attester is an undeniable attester, it is only a succinct attester. Heren = |S|,
andk > logn is the security parameter. (A= attester, P= prover, CR= collision resistant, U=
undeniable.)

Primitive type Name Length inΘ(·)
Digest Positive Negative

attestation attestation

A List (§4.1) k n logn n logn

CRP RSA (§4.2) k k n logn

Hash Tree (§4.3) k k logn n logn

CRA Sorted Hash Tree (§4.4) k k logn k logn

UA Authenticated Search Tree (§5) k k logn k logn

Unfortunately, the list attester becomes utterly inefficient if the number of simul-
taneously valid certificates grows, since both storage requirements and verification
time are at least linear in|S|. One of the possibilities to decrease the verification time
is to assume that the CA has sorted the database. Although then the clients can per-
form a binary search in the database, the attester will cease to be undeniable since the
CA may leave the database unsorted. This method would also not reduce the storage
requirements.

4.2. RSA attester

The RSA attester can be in a natural way built upon the RSA accumulator [2,9].
Here, the positive attestations have the form

P (x,S) = zy1···ymmodn,

for somey1, . . . ,ym, and therefore the attestation length isΘ(k), wherek is again a
security parameter. The digest has the same form and therefore also the same length.
However, as first pointed out by Nyberg [26,27], the length of the attestations can
be reduced by introducing built-in trapdoor information known to some coalition
of participants, which should therefore be trusted. The best known method [29] of
making the RSA accumulator trapdoorless introduces attestation lengths of order
Θ(k2). Sincek � 128 > log |S|, the trapdoorless RSA accumulator has longer
attestations than the sorted hash tree attester, described below. Moreover, the negative
attestations are equal to all ofS.

4.3. Hash tree attester

Hash trees [22] are widely used to authenticate an element as a set member. In
the full generality, the hash tree is a labeled tree, with the leaves labeled by different

A. Buldas et al. / Eliminating counterevidence with applications 283

valuesx ∈ S and internal nodes labeled by the hash over their children labels, where
a fixed collision-resistant hash function is used.

In thehash tree attester, a positive attestation consists of the minimal amount of
data necessary to verify the hash path from the leaf, labeled byx, to the root. We
assume that the hash trees used have depth logarithmic in the number of nodes. As a
result, the positive attestations have lengthΘ(k log |S|), wherek is again the output
length of the used collision-resistant hash function. The digestD(S) of lengthΘ(k)
is equal to the label of the root. On the other hand, negative attestations must include
every element ofS an have hence lengthΘ(k|S|).

4.4. Sorted hash tree attester

Similarly to the case of the list attester, hash tree attester can be made more ef-
ficient if the CA sorts the leaves, an idea only recently proposed in [18,25]. (We
assume that the values stored at the leaves are sorted from left to right.) The result-
ing sorted hash tree attesterhas both negative and positive attestations with length
Θ(k log |S|) and is therefore succinct. However, as also in the case of (sorted) list
attester, the proposed solution hides in itself an implicit assumption that the CA du-
tifully sorts the leaves. Since the observed weakness in sorted hash trees is a crucial
motivation to our subsequent work, we will next give a detailed definition of sorted
hash tree attesters together with a full explanation of their weak points.

4.4.1. Construction
The next attester (G,P ,D,V) is based on a fixed CRHFH = (GH,H). The

only role of the generating functionG in this attester is to choose a concrete hash
functionHi from this family, according to the functionGH. Therefore, for the sake
of simplicity, we will describe attesters for a fixedi ∈ Σk ∩ I and for a fixed hash
functionH = Hi. The latter can in practice be instantiated with SHA-1 [24] or any
other strong (keyed) hash function. Letf be an a priori fixed polynomial that does
not depend onk.

Next, suppose thatS = {S[1], . . . ,S[n]} is a nonempty set ofk-bit integers such
thatS[j] < S[j + 1] for any 1� j < n. Let T be a (directed) binary tree withn
leaves, with itsjth leftmost leaf labeled byS[j] (Fig. 1). A non-leaf vertexv ∈ T is
labeled by an auxiliary hash value

S[v] = H(S[vL], S[vR]),

wherevL (vR) denotes the left (right) child ofv. The digestd = D(S) of S is equal
to the label of the root vertexv, or toError, if the leaves were unsorted,|S| > f (k),
or some leaf had a labelS[v] /∈ Σk.

Let p = (b;h1,h2, . . . ,hm), such thathj ∈ Σk andb = b1 . . . bm, bj ∈ {0, 1} with
0 corresponding to the left and 1 corresponding to the right direction. The verifica-

284 A. Buldas et al. / Eliminating counterevidence with applications

Fig. 1. A toy example of the sorted hash tree attester. Dashed lines are present only in the improved sorted
hash tree attester, described in Section 4.4.2. The valuesS[v] are given for the unimproved construction.
For the ease of illustration we have chosen all vertices to be elements ofZ, although the concrete values
of v’s are not important in practice.

tion algorithmV (x,d,p) returnsError if p does not have such form. Otherwise,V
computesdm by assigningd0 := x and then recursively, for everyj > 0,

dj :=
{
H(dj−1,hj), if bj = 0,
H(hj,dj−1), if bj = 1.

Verification returnsAccept, if dm = d, andError, otherwise. Ifx ∈ S, the prov-
ing algorithmP returns ap such thatV (x,d,p) accepts. Proving thatx �∈ S is equiv-
alent to finding a quadruple (x1,p1,x2,p2), such thatV (x1,d,p1) = V (x2,d,p2) =
Accept, x1 < x < x2, andx1 andx2 correspond to two neighboring leaves in the
treeT . If x is smaller than the least elementx1 of S, we can defineP (x,S) to be
equal toP (x1,S). The situation whenx is bigger than the greatest element ofS is
dealt with analogously.

Looking at the tree depicted in Fig. 1,D(S) = S[15],

P (30,S) = (101; 40,S[9], S[14]),

andP (35,S) = (P (30,S),P (40,S)). On the other hand,

P (8,S) = P (10,S) = (111; 12,S[10],S[14]).

4.4.2. Further efficiency improvements
One can further shorten the negative attestations by inserting additional arcs to the

underlying tree as follows (slightly different methods were also proposed in [18,25]):
If the parents of a leafv �= 1 and its left neighbor leafw are different, then add an
arc fromw to v’s parent, as in Fig. 1. Build an attester upon the resulting graph, by
modifying the algorithmsP ,D andV to account for the new arcs. Let the negative
attestation ofx be equal to the positive attestation of the smallestx′ > x in setS
if such x′ exists, or of thex, otherwise. As the result, both negative and positive
attestations will have the same length.

A. Buldas et al. / Eliminating counterevidence with applications 285

Fig. 2. A toy example of improperly created sorted hash tree attester.

4.4.3. Sorted hash tree attester is not undeniable
Sorted hash tree attester is succinct, dynamic (if built upon dynamic trees) and

collision-resistant. However, it is not undeniable. We show this by the example de-
picted in Fig. 2. There, the positive attestations of 10, 40 and 20 are respectively
p1 = (11; 40,S[6]), p2 = (01; 10,S[6]) andp3 = (10; 30,S[5]). However, (p1,p2)
is also a negative attestation of 20. Therefore, a verifier, given the digestS[7] (root
of the hash tree), accepts or rejects 20 depending on which attestation was earlier
submitted to her. The same is also true for improved sorted hash tree attesters.

Such ‘unsorting’ attack is possible since there is no efficient way for the verifier to
check whether the CA dutifully sorted the database. The only obvious possibility to
prevent this attack, without involving another trusted third party, is to send the entire
database of total size|S| · log |S| to the verifier. The verifier would then recompute
the hash tree, verifying that this database in the sorted order results in digestd, ob-
tained by her beforehand from a reliable source. However, such solution is clearly
impractical if |S| is large, since the verifier has to do|S| − 1 hash computations per
every verification. Moreover, such a solution is impossible if some elements in the
database are inaccessible (if, to lessen the storage requirements, the old versions of
the certificate database are not stored).

Intuitively, the need to send the entire database is caused by the fact that a candi-
date stringx can be a label of any leaf, and therefore a negative attestation should
incorporate all positive attestations. To understand it, think of searching from an
unsorted databaseS. Showing thatx belongs toS is accelerated by presenting an
indexj (an attestation) ofx’s occurrence, followed by checking that thejth element
is equal tox. However, ifx does not belong to the database, one has to verify for
eachj that thejth element is not equal tox. Therefore, a corrupted CA may easily
build an unsorted hash tree without being detected by anyone who does not possess
a copy of the wholeS.

5. Authenticated search tree attester

Next, we give a construction of what we callauthenticated search trees. After that
we show that the resulting attester (authenticated search tree attester) is an undeni-
able attester, and finish the section with some discussions. First, let us remember that
a directed binary treeT is asearch tree[17, Section 6.2.2] if every nodev ∈ T has
a uniquesearch keyK[v] associated to it, such that ifw is the left (resp. right) child
of v, thenK[w] < K[v] (resp.K[w] > K[v]).

286 A. Buldas et al. / Eliminating counterevidence with applications

5.1. Construction

Let f be some a priori fixed polynomial. We give, as in Section 4.4, a construction
for fixed k and for fixedi ∈ Σk ∩ I. Let S ⊂ Σk be a nonempty set and letT
be a binary search tree with|S| vertices. Each vertexv of T is labeled by a pair
(K[v], S[v]). Here, the elementsK[v] belong to the setS andK[v1] �= K[v2], if
v1 �= v2. Moreover, the treeT together with keysK[v] is a search tree. The value
S[v] is equal to

S[v] := H(SL,K[v], SR),

whereSL (resp.SR) is equal to the labelS[·] of the v’s left (resp. right) child if
the corresponding child exists, or tonil, otherwise. For example, ifv is a leaf, then
S[v] = H(nil,K[v], nil). Once again, the digestD(S) is defined asS[v], wherev is
the root vertex, or asError, if T is not a proper search tree, in particular, if|S| > f (k)
or for some leafv, S[v] �∈ Σk.

For ax ∈ S (resp.x �∈ S), the attestationP (x,S) is defined as the least amount
of data necessary to verify thatK[v] = x for somev (resp.K[v] �= x for anyv,
given thatT is a proper search tree). Intuitively, following an attestation ofx ∈ Σk

is equivalent to searchingx from a search tree, where the usage of hash functions in
the vertices guarantees that the CA has to work with the same tree during each query.
Moreover, the verification algorithmV returnsError if the tree is not found to be a
proper search tree.

The rest of this subsection gives a more technical definition of the authenticated
search tree attesters, including the necessary (local) verifications thatT is a search
tree.It is necessary to perform these verifications for the authenticated search tree
attester to be undeniable, and therefore to avoid any fraud.

Let

p = (hL,k0,hR; k1,h1; k2,h2; . . . ; km,hm),

where all the elements are fromΣk, andm � 0. The verification algorithmV (x,d,p)
returnsError if (1) hL �= nil andx < k0, or (2)hR �= nil andx > k0. Naturally,V
also returnsError if the attestationp does not have the specified form. Otherwise,V
assignsd0 := H(hL,k0,hR) and for all 0< j < m,

dj :=
{
H(dj−1,kj,hj) if x < kj ,
H(hj,kj ,dj−1) if x > kj .

After that,V outputsError if

(ST1) dm �= d, or
(ST2) for somej > 0,x = kj or kj−1 = kj .

Otherwise,V returnsAccept or Reject, depending on whetherk0 = x.

A. Buldas et al. / Eliminating counterevidence with applications 287

Fig. 3. A toy example of authenticated search tree. Note that vertices can be enumerated arbitrarily. For
the ease of illustration we have chosen all vertices to be elements ofZ, although the concrete values of
v’s are not important in practice.

If x ∈ S, the algorithmP (x,S) returns a listp such thatV (x,D(S),p) accepts. As
we will see below, such ap is easy to find. Ifx /∈ S,P (x,S) finds (1) An elementx′,
such thatx′ is the greatest elementx′ � x (thepredecessorof x), if suchx exists, or
the smallest element inS, otherwise; (2) An elementx′′, such thatx′′ is the smallest
elementx′′ � x (thesuccessorof x), if suchx exists, or the greatest element inS,
otherwise.

By the construction of search trees, eitherx′′ = K[v′′] for some nodev′′ on
the root path starting from the node with sorting keyx′, or vice versa. (Otherwise
P (x,S) returnsError) P (x,S) returns a listp such thatV (x′′′,D(S),p) accepts,
wherex′′′ = x′ in the first case andx′′′ = x′′ in the second case.

Clearly,V (x,D(S),p) accepts if and only ifx ∈ S. Note that the verification
(ST2) returnsError only if the tree fragment, reconstructed fromp, cannot be a part
of a search tree.

A toy example withS = {10, 12, 30, 40, 42, 56, 70, 80} is depicted in Fig. 3. Here,
D(S) = S[4] and

P (41,S) = P (42,S) = P (43,S) = (nil, 42,nil; 56,nil; 70,S[8]; 40,S[2]).

This attestation contains the predecessor and the successor of 41 (40 and 42, resp.),
42 (42 and 42, resp.) and 43 (42 and 56, resp.).

5.2. Security

Theorem 1. The authenticated search tree attester is undeniable ifH is a collision-
resistant hash function family, where the reduction is security preserving in the next
meaning. LetA ∈ EA be an algorithm, s.t.UNA(A) = ε. Then there exists an
adversaryM ∈ EA with CRHH(M) = ε.

Proof. The adversaryM is defined as follows. Given an indexi and the security pa-
rameter 1k,M performs a query toA(1k, i). With probabilityε, this query outputs a
tuple (x,d,p,p), such thatVi(x,d,p) = Accept andVi(x,d,p) = Reject. Therefore,

p = (hL,k0,hR; k1,h1, . . . ,km,hm),

288 A. Buldas et al. / Eliminating counterevidence with applications

andp = (hL,k0,hR; k1,h1; . . . ; km,hm) for somem,m � 0. Analogously, we will
overline the variablesdj that are computed during the verification ofp.

The adversary processesp and p in parallel. From (ST1)dm = dm. Since
V (x,d,p) = Accept andV (x,d,p) = Reject, thenk0 = x �= k0. Therefore, using
(ST2) we get that for somes ands, dm = dm,dm−1 = dm−1, . . . ,ds = ds but
ds−1 �= ds−1. (Remember also thatnil /∈ Σk.)

Next, if ks �= ks, thenM has found a collisionHi(·,ks, ·) = Hi(·,ks, ·). Oth-
erwise let us assume, without loss of generality, thatx < ks = ks and therefore
ds = Hi(ds−1,ks,hs) andds = Hi(ds−1,ks,hs). Sinceds−1 �= ds−1,M has found
a collisionHi(ds−1, ·, ·) = Hi(ds−1, ·, ·).

Therefore, the adversaryM finds a collision toH with probabilityε. Note thatM
works in timeΘ(t log |S|), wheret is the working time ofA. �

As with any new cryptographic primitive – and undeniable attesteris a new prim-
itive – it is good to know how it relates to the previously known primitives. Next
results establish the relationships between collision-resistant attesters, undeniable
attesters and CRHFs.

Lemma 1. Any undeniable attester is a collision-resistant attester.

Proof. Let A = (G,P ,D,V), and let A be a machine, such that either
CRPA(A) = ε or CRDA(A) = ε. Next we construct an efficient machineM that
hasUNA(M) = ε.

Let i ← G(1k). AdversaryM (1k, i) lets (x,S,p) ← A(1k, i), d ← Di(S), v ←
Vi(x,d,p) andp ← Pi(x,S).M returns (x,d,p,p), if v = Accept, and (x,d,p,p),
otherwise.
M queries once the algorithmsG(1k), A(1k, i), Pi, Di andVi, and works other-

wise in constant time. With probabilityεk, either (a)x �∈ S ⊆ Σk, butv = Accept,
or (b)x ∈ S ⊆ Σk, butv = Reject. Therefore,UNA(M) = ε. �

Note that the construction in Section 4.4 showed that not each collision-resistant
attester is undeniable, and hence the opposite of this lemma is not true.

Theorem 2. Undeniable attesters exist if and only if CRHFs exist.

Proof. Let A = (G,P ,D,V) be an undeniable attester. By Lemma 1,A is also
collision-resistant. Next, we show that ifA is collision-resistant, thenD = (G,D) is
a CRHF on 2Σ

k

(i.e., on the subsets ofΣk). LetA ∈ EA be an adversary, such that
CRHD(A) = ε.

LetM be the next machine. Fori ∈ G(1k), Mi lets (S1,S2) ← A(1k, i). With
the probabilityεk, S1 �= S2 butDi(S1) = Di(S2) =: d. Since|S1|, |S2| = kO(1),

A. Buldas et al. / Eliminating counterevidence with applications 289

we can efficiently find an elementx in (w.l.o.g.)S1 \ S2. Let p := Pi(x,S1). By the
definition of attesters,

Vi(x,d,p) = Vi(x,Di(S1),Pi(x,S1)) = Accept.

Thus, we have found a tuple (x,S2,p), such thatx �∈ S2 but Vi(x,Di(S2),p) =
Accept. A contradiction, and thusDi is a CRHF on sets (i.e., on 2Σ|i|

, or alterna-
tively, on concatenated stringsS[1]S[2] · · ·S[|S|], where|S[j]| = |i| and for any
j < |S|, S[j] < S[j + 1]).

We finish the proof by constructing a CRHFH = (G,H) on the input domain
Σ∗ as follows. LetS = S[1]S[2] · · ·S[n], n � p(k), be an arbitrary string, such
that |S[j]| = k − log2n � k − log2 p(k). (It is sufficient to look at strings with
length dividingk − log2 p(k), due to the constructions presented in [11,23]. Now
defineHi(S[1] · · ·S[n]) := Di(σ[1] · · ·σ[n]), whereσ[j] = 〈j〉log2 p(k)S[j], and
〈i〉k denotes ak-bit binary fixed representation ofi ∈ N. Clearly, ifD is a CRHF on
the domain 2Σ

k

, thenH is a CRHF on domainΣ∗.
The opposite was proven by Theorem 1.�

5.3. Discussion

The construction of Section 5.1 generalizes to the case when the underlying tree
is a multiway search tree [17, Section 6.2.4]. However, if we wish the attestations to
have lengthO(k log |S|), we are restricted to the trees where the number of children
of every node is upper-bounded with some constant that does not depend onk. As
a result, we cannot base our construction on exponential search trees and other re-
lated data structures that have been lately extensively used in sub-logarithmic search
algorithms [5].

Authenticated search trees can be made dynamic as in [25] by requiring that the
CA stores the whole hash tree, and after each database update updates all the neces-
sary hash values in the tree, including the valueD(S). Updating can be done in time
O(k log |S|) by using appropriate dynamic search trees (say, AVL or 2–3 trees but
also skip lists). Since our construction is just a slight reformulation of what is usually
meant by search trees, and most of the ‘reasonable’ data structures for searching can
be seen as search trees, one can choose the data structure that is the most convenient
in a concrete application.

There are many other possible constructions of undeniable attesters. For example,
one could add a number of arcs to a binary tree as follows: For any non-leaf nodev,
add an arc (if it already does not exist) from its left child’s rightmost descendant leaf
to v. We emphasize that the main difference between the described constructions of
collision-resistant and undeniable attesters is that in the first case the choice between
the left and the right subtree is just done by an explicitly given bitbi. In the latter case,
there is instead an explicit search keyK[v], such that based onK[v], the verifier can
additionally check that the element returned in a query is in the correct location in
this tree.

290 A. Buldas et al. / Eliminating counterevidence with applications

5.4. Extensions to multi-field records

Both our definition of the attesters and the construction of authenticated search
trees were given for the case when the databaseS consists of some indivisible
recordsx. However, quite often one works in a situation wherex is composed of
several fields. For example, in many cases the first fieldkey(x) acts as a unique key
to the entire recordx = key(x)||body(x), wherebody(x) ∈ Σt for somet < k. In
such a case, there is a need for a set of algorithms (P ,D,V) allowing the database
maintainer to commit to the value ofS in such a way, that

• The clients can perform a querykey(x) ∈? S, to which the response is either
body(x) if the databaseS contains a unique record with the keykey(x) or
Undefined if there is none;
• It is intractable for the database maintainer to give different answers to queries

for the same keykey(x) (thus the response of the CA has to contain some kind
of proof).

The authenticated search tree can be used to construct the necessary primitive. The
databaseS is organized as an authenticated search tree; the algorithmD is left un-
changed. If there exists ay for which key(x)||y ∈ S then letx′ be the predecessor
of key(x)||y andx′′ be the successor ofkey(x)||y in S. Otherwise, letx′ be the pre-
decessor andx′′ be the successor ofkey(x)||0t in S. (If key(x)||0t < minS then
x′ = minS. If key(x)||0t > maxS thenx′′ = maxS.)

The attestationP (key(x),S) is equal toP (x′,S) ∪ P (key(x)||y,S) ∪ P (x′′,S)
in some well-defined presentation. Given negative attestation, the verification pro-
cedure additionally checks thatkey(x′) < key(x) < key(x′′) and that there are
no elements̄x with key(x′) < key(x̄) < key(x′′) in the tree, and returnsError if
this is not the case. Given positive attestation, the verification algorithm addition-
ally checks thatkey(x′) < key(x) < key(x′′), that there are no elements̄x with
key(x′) < key(x̄) < key(x) or key(x) � key(x̄) � key(x′′) in the tree, and that
there is somekey(x)||y ∈ P (key(x),S). In both cases, (non-)existence of suchx̄ can
be efficiently verified, because the positions of the vertices labeled byx′, key(x)||y
andx′′ in the search tree can be determined from the attestation.

More generally, one could useauthenticatedk-d treesto perform multidimen-
sional queries. Here, authenticatedk-d trees are natural extensions of authenticated
search trees to Bentley’sk-d trees [3,4] for handling databases withk fields. As
shown by Bentley,k-d trees can be balanced to have depthΘ(log |S|), in which case
it takesO(|S|1−t/k) steps to find all records witht fields equal to specified values,
andO(t|S|1−1/k + q) steps to find all elements in at-dimensional subspace, when
there isq such elements. (See [17, Section 6.5] for more information.)

In the context of certificate management, one could take, for example,key(x) to
be equal to the unique certificate serial number, whilebody(x) would be the hash of
the whole certificate.

A. Buldas et al. / Eliminating counterevidence with applications 291

6. Efficiency

6.1. Average-case attestation length

For a fixed size ofS, authenticated search trees result in the shortest worst case
attestation length if the underlying treeT is a complete binary tree. In this case, if
we additionally assume that the search keys have lengthk—in practice, we store
at leaves the hash values of certificates that are generally longer thank bits—
then the worst case attestation length isk · (2 log(n + 1) + 1), wheren = |S| =
2d+1 − 1. A simple calculation shows that the attestationsPi(x,S) have in total

(1/k)
∑2d+1−1

i=1 |Pi(x,S)| = 2d−1(2d + 2) − 3 + 2
∑d−2

i=0 2ii = 2d+1(d − 1) + 1
elements, which makes the average-case attestation length equal to

k · 2d+1(d− 1) + 1
2d − 1

≈ k · 2d ≈ 2k logn.

This is about twice as much as the attestation length in the complete binary tree based
(improved) sorted hash tree attester. Also, in general, upon other types of trees, our
construction has on average twice longer attestations than the optimal construction
of collision-resistant attesters presented in Section 4.4.2. When using the dynamic
AVL trees [17, Section 6.2.3], the worst case certificate length of the dynamic au-
thenticated search tree attester is therefore≈ 2.88 · k logn.

6.2. Attestation compression

Next, we describe a method for compressing the attestations. More often than not,
compression algorithms are seen as consisting of two standard parts, modeling and
coding [1]. An adaptive modeling algorithm estimates the source from the part of
the data sequence seen so far, by outputting a probability distribution for the new
symbol. After that, an encoder (say, the arithmetic encoder) uses this distribution to
encode a new symbol by using as few bits as possible.

We can apply this general approach to the authenticated search trees. First, letT
be a fixed search tree, and letk be the security parameter. We remind you that the
elements ofS arek bits long. During the modeling, we assign to every nodev re-
cursively a range (&v,uv), as follows. As previously, let minS � 0 be the least and
let maxS � |Σk| − 1 be the greatest element inS. If v is the root vertex, then
(&v,uv) := (minS, maxS). Now, letv be an arbitrary vertex. To the left childvL (if
existing) ofv, we assign a range (&vL ,uvL) := (&v,K[v] − 1). Analogously, to the
right child vR (if existing) of v we assign the range (&vR ,uvR) := (K[v] + 1,uv).
Next, every root path inT can be seen as a data sequence. For a nodev in this se-
quence, the adaptive modeling algorithm returns the uniform distribution in (&v,uv)
to the encoder.

292 A. Buldas et al. / Eliminating counterevidence with applications

After that, the encoder encodes the valueK[v] − &v as a binary numberKc[v],
using�log2(uv − &v)� bits. The compressed attestationPc(x,S) is equal to the un-
compressed attestationP (x,S), with search keysK[v] replaced with correspond-
ing compressed keysKc[v]. We additionally assume that the new digestDc(S) is
equal to the triple (D(S), minS, maxS). Verification still needs the uncompressed
attestationP (x,S), which can be easily computed fromPc(x,S). Not surprisingly,
the fact that all intermediate valuesK[v] can be unambiguously reconstructed from
Pc(x,S) is crucial for undeniability, and guided us during the choice of the encoder.
Some more efficient encoders that we are aware of do not guarantee unambiguous
reconstruction of all intermediate values, especially since the verifier has no previous
knowledge about the treeT .

Assuming thatT is a complete binary tree, the uncompressed attestations have the
length� k(2n+1), wheren = log(|S|+1)� k is the height ofT . The compressed
attestations are never longer thank(n+ 1)+ (n2 + n)/2. The worst case is obtained
if S = {0, . . . , |Σk| − 2}. (We will not count in the short additional data necessary
to encode the lengths ofK[v]’s. One could use, for example, Eliasω-codes [14] for
the latter.) This provable gap between the worst case length of the compressed and
uncompressed attestations is achieved thanks to the implicit structure hidden in the
ordered data. However, the valuekn− (n2+n)/2 = (2kn−n2−n)/2 is a somewhat
unexpected quantification of the amount of this structure.

On the other hand, the attestations never shorten by a factor greater than two and
therefore the authenticated search tree attester has longer attestations than the sorted
hash tree one. However, the factor can be arbitrarily close to 2 whenk � n. As an
example, let us look again at Fig. 3. The root path from the root to the leaf with label
K[v] = 42 has nodes with search keysK[v1] = 40,K[v2] = 70,K[v3] = 56 and
K[v4] = 42. Computing the ranges, we find that (&v1,uv1) = (10, 80), (&v2,uv2) =
(41, 80), (&v3,uv3) = (41, 69) and (&v4,uv4) = (41, 55). Therefore (as previously, we
denote then-bit binary encoding ofm as〈m〉n),Kc[v1] = 〈40−10〉7 = 0011110,
Kc[v2] = 〈70− 41〉5 = 011101,Kc[v3] = 〈56− 41〉5 = 01111 andKc[v4] =
〈42− 41〉4 = 0001. Hence,

Pc(42,S) = (nil,0001, nil;01111, nil;011101,S[8]; 0011110,S[2]),

and |Pc(42,S)| = 5k + 21, while |P (42,S)| = 9k. If k = 160, the compression
gain is≈ 1.754≈ 9/5. While this is an unrealistic example due to maxS ≈ minS
(remember that the elements ofS are collision-resistant hashes of certificates. When
the hash function is modeled as a random function, maxS ≈ minS holds with a
negligible probability), it shows that this compression method can result in quite big
savings already for smalln-s. In real life situations an example withk = 160 and
|S| = 107 (a database of that size might be typical in future certificate management
systems in middle-sized countries), depicted by Table 2, is more appropriate.

A. Buldas et al. / Eliminating counterevidence with applications 293

Table 2

Comparison of the worst-case attestation lengths of collision-resistant and undeniable attesters in bytes,
wheren = �log |S|�

Method Attestation length in bits k = 160,|S| = 107

Collision-Resistant Attesters

Sorted hash tree k(n + 1) 500 B

Undeniable Attesters

List k · |S| 2× 108 B

Authenticated search tree 2k(n + 1) 1000 B

AST (compressed) k(n + 1) +
n2 + n

2
537.5 B

6.3. Optimality questions

The classicalpredecessor problemrequires one to maintain a setS so that the
queries of the form ‘Isj an element ofS and, if not, what element ofS, if any, is just
before it in sorted order?’ may be answered efficiently.Membership problemonly
requires that the question ‘Isj an element ofS?’ may be answered efficiently.

There exist extremely efficient dynamic attesters if one does not require them to be
collision-resistant. On the one hand, letA be an arbitrary attester, such thatfi, where
f ∈ {G,P ,D,V }, works in the worst-case timetf ,|i|. Straightforwardly, there exists
a search algorithm working in timetD+tP +tV +O(1), which solves the membership
problem.

On the other hand, according to the results of [13] for search algorithms solving
the membership problem, there exists a dynamic attester, such that for anyS ⊆ Σk

and for everyx ∈ S, tP , tD, tV = O(1), |Pi(x,S)| = 1 and|Di(S)| = 0. (Define
Pi(x,S) = 1 if and only ifx ∈ S, and fixDi(S) to be the empty string.) However,
both the sorted hash trees and our authenticated search trees do not solve only the
membership but also the predecessor problem, since the attestationP (x,S) always
contains the predecessor ofx, if it exists, or the smallest element inS. An interesting
open problem is whether this is really necessary.

7. Conclusions

The approach to certificate management in this paper is straightforward: First we
went back to the source (in our case, the legal system, and more precisely, the court),
then we identified why certificate management is necessary there and how to min-
imize the number of frauds; in our case, this was achieved by making it infeasible
to create counterevidences. We then gave a rigorous definition of necessary cryp-
tographic primitives (undeniable attesters), and described and analyzed an efficient
undeniable attester, the authenticated search tree attester. We showed that the latter
is almost as efficient as less secure sorted hash tree attesters, by using a simple (but
novel) compression technique.

294 A. Buldas et al. / Eliminating counterevidence with applications

The resulting certificate management system has many desirable properties. It is
accountable, since all disputes can be solved by the present undeniable evidence.
This means in particular that all forgeries by the third parties can be explicitly proven
and all false accusations explicitly disproven. It is efficient, since certificate validity
can be verified, given only the certificate, a short digest of the certificate database
and a short attestation.

Apart from the model of accountable certificate management system, the second
main result of this paper is a construction of undeniable attesters. Undeniable at-
testers may become a very useful security primitive, since they make it possible for
anyone to perform securely membership (and predecessor) queries without relying
on the trusted third parties nor requiring an access to the whole database.

We stress that the current paper provides a model of certificate management, not
a complete system, and that more work is needed for making the certificate manage-
ment really accountable. More precisely, our system guarantees that it is intractable
to create a certificate databaseS, such that ifx ∈ S (resp.,x �∈ S), the CA can create
an attestation certifying thatx �∈ S (resp.,x ∈ S). In practice,S is dynamic and
the CA may remove valid certificates or insert invalid certificates fromS at his will.
Such malpractice can be detected, for example, if interested parties ask attestations
of x ∈? S every timeS is updated. One possibility would be to introduce another
trusted party (or a set of volunteers), who would compare the changes between the
subsequent versions ofS with official documentation provided by the CA and no-
taries about the physical visits of clients. However, it would be desirable to find more
efficient protocols for this purpose. (See [30] for some preliminary analysis.)

8. Further work

Strict optimality of our constructions is left as an open question. For example,
since it is easier to solve the membership problem [13] than the predecessor prob-
lem [5], it would be interesting to know whether succinct undeniable attesters can
be built upon the search algorithms solving the membership problem. Elaboration
of exact protocols and duties of different participants in accountable certificate man-
agement is of utmost importance.

Finally, what benefits would be gained by using authenticated search trees instead
of sorted hash trees in other areas of data security? As an use example, results of the
preliminary version of this paper [6] have already been used to build a secure key
archival service in [21].

Acknowledgements

The authors were partially supported by the Estonian Science Foundation, grant
3742. The first author was partially supported by the Estonian Science Foundation,

A. Buldas et al. / Eliminating counterevidence with applications 295

grant 4760. A preliminary version of this paper was published as [6]. We would like
to thank Andris Ambainis, Carl Ellison, Kobbi Nissim, Berry Schoenmakers, Stuart
Stubblebine and anonymous referees for useful comments that helped to improve the
paper.

References

[1] T.C. Bell, J.G. Cleary and I.H. Witten,Text Compression, Prentice Hall, ISBN: 0139119914, 1990.

[2] J. Benaloh and M. de Mare, One-way accumulators: a decentralized alternative to digital signatures,
in: Advances in Cryptology – EUROCRYPT ’93, Vol. 765 of Lecture Notes in Computer Science,
T. Helleseth, ed., Lofthus, Norway, 1993, Springer-Verlag, ISBN 3-540-57600-2, 1994, pp. 274–285.

[3] J.L. Bentley, Multidimensional binary search trees used for associative searching,Communications
of the ACM18(9) (1975), 509–517.

[4] J.L. Bentley, Multidimensional binary search trees in database applications,IEEE Transactions on
Software Engineering5(4) (1979), 333–340.

[5] P. Beame and F.E. Fich, Optimal bounds for the predecessor problem, in:Proceedings of the Thirty-
First Annual ACM Symposium on the Theory of Computing, Atlanta, Georgia, USA, ACM Press,
1999, pp. 295–304.

[6] A. Buldas, P. Laud and H. Lipmaa, Accountable certificate management using undeniable attesta-
tions, in:7th ACM Conference on Computer and Communications Security, S. Jajodia and P. Sama-
rati, eds, Athens, Greece, ACM Press, ACM ISBN 1-58113-203-4, 2000, pp. 9–18.

[7] A. Buldas, P. Laud, H. Lipmaa and J. Villemson, Time-stamping with binary linking schemes,
in: Advances on Cryptology – CRYPTO ’98, Vol. 1462 of Lecture Notes in Computer Sci-
ence, H. Krawczyk, ed., Santa Barbara, USA, International Association for Cryptologic Research,
Springer-Verlag, 1998, pp. 486–501.

[8] A. Buldas, H. Lipmaa and B. Schoenmakers, Optimally efficient accountable time-stamping,
in: Public Key Cryptography ’2000, Vol. 1751 of Lecture Notes in Computer Science, H. Imai
and Y. Zheng, eds, Melbourne, Victoria, Australia, Springer-Verlag, ISBN 3-540-66967-1, 2000,
pp. 293–305.

[9] N. Barić and B. Pfitzmann, Collision-free accumulators and fail-stop signature schemes without
trees, in:Advances on Cryptology – EUROCRYPT ’97, Vol. 1233 ofLecture Notes in Computer
Science, W. Fumy, ed., Konstanz, Germany, Springer-Verlag, ISBN 3-540-62975-0, 1997, pp. 480–
494.

[10] B. Crispo and M. Lomas, A certification scheme for electronic commerce, in:1996 Security Proto-
cols International Workshop, Vol. 1189 ofLecture Notes in Computer Science, Cambridge, United
Kingdom, Springer-Verlag, ISBN 3-540-62494-5, 1996, pp. 19–32.

[11] I. Damgård, A design principle for Hash functions, in:Advances in Cryptology – CRYPTO ’89,
Vol. 435 of Lecture Notes in Computer Science, G. Brassard, ed., Santa Barbara, California, USA,
1989, Springer-Verlag, 1990, pp. 416–427.

[12] W. Diffie and M.E. Hellman, New directions in cryptography,IEEE Transactions Information The-
ory IT-22(November) (1976), 644–654.

[13] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F.M.A. Der Heide, H. Rohnert and R.E. Tarjan, Dynamic
perfect hashing: upper and lower bounds,SIAM Journal on Computing23(4) (1994), 738–761.

[14] P. Elias, Universal codeword sets and representations for the integers,IEEE Transactions on Infor-
mation TheoryIT-21(March) (1975), 194–203.

296 A. Buldas et al. / Eliminating counterevidence with applications

[15] I. Gassko, P. Gemmel and P. MacKenzie, Efficient and fresh certification, in:Public Key Cryptogra-
phy ’2000, Vol. 1751 ofLecture Notes in Computer Science, H. Imai and Y. Zheng, eds, Melbourne,
Victoria, Australia, Springer-Verlag, ISBN 3-540-66967-1, 2000, pp. 342–353.

[16] S.A. Haber and W.S. Stornetta, How to time-stamp a digital document,Journal of Cryptology3(2)
(1991), 99–111.

[17] D.E. Knuth,The Art of Computer Programming. Volume 3: Sorting and Searching, 2 edn, Addison-
Wesley, 1998.

[18] P. Kocher, On certificate revocation and validation, in:Financial Cryptography – Second Interna-
tional Conference, Vol. 1465 ofLecture Notes in Computer Science, R. Hirschfeld, ed., Anguilla,
British West Indies, Springer-Verlag, 1998, pp. 172–177.

[19] L.M. Kohnfelder, Toward a practical public-key cryptosystem, BSc thesis, MIT Department of Elec-
trical Engineering, 1978.

[20] H. Lipmaa, Secure and efficient time-stamping systems, PhD thesis, University of Tartu, June, 1999.

[21] P. Maniatis and M. Baker, Enabling the archival storage of signed documents, in:Conference on File
and Storage Technologies, Monterey, California, USA, 2002 (to appear).

[22] R.C. Merkle, Protocols for public key cryptosystems, in:Proceedings of the 1980 Symposium on
Security and Privacy, Oakland, California, USA, IEEE Computer Society Press, 1980.

[23] R.C. Merkle, One way Hash functions and DES, in:Advances in Cryptology – CRYPTO ’89, Vol. 435
of Lecture Notes in Computer Science, G. Brassard, ed., Santa Barbara, California, USA, 1989,
Springer-Verlag, 1990, pp. 428–446.

[24] NIST, Announcement of weakness in the Secure Hash Standard (SHS), FIPS 180-1, May, 1994.

[25] M. Naor and K. Nissim, Certificate revocation and certificate update,IEEE Journal on Selected
Areas in Communications18(4) (2000), 561–570.

[26] K. Nyberg, Commutativity in cryptography, in:Proceedings of the First International Workshop
on Functional Analysis at Trier University, S. Dierolf, S. Dineen and P. Domanski, eds, Berlin,
Germany, 1994, Walter de Gruyter & Co, 1996, pp. 331–342.

[27] K. Nyberg, Fast accumulated Hashing, in:Fast Software Encryption: Third International Workshop,
Vol. 1039 ofLecture Notes in Computer Science, D. Gollman, ed., Cambridge, UK, Springer-Verlag,
1996, pp. 83–87.

[28] R.L. Rivest, Can we eliminate revocation lists? in:Financial Cryptography – Second International
Conference, Vol. 1465 ofLecture Notes in Computer Science, R. Hirschfeld, ed., Anguilla, British
West Indies, Springer-Verlag, 1998, pp. 178–183.

[29] T. Sander, Efficient accumulators without trapdoor, in:The Second International Conference on In-
formation and Communication Security, Vol. 1726 ofLecture Notes in Computer Science, V. Varad-
harajan and Y. Mu, eds, Sydney, Australia, Springer-Verlag, ISBN 3-540-66682-6, 1999, pp. 252–
262.

[30] J. Särs, Analysis and application of accountable certificate management, in:Helsinki Uni-
versity of Technology Seminar on Network Security. Mobile Security ’2000, H. Lipmaa and
H. Pehu-Lehtonen, eds, Sjökulla, Helsinki University of Technology, 2000, Available from
http://www.tml.hut.fi/Opinnot/Tik-110.501/2000/, as of February 2002.

